
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 92523, 14 pages
doi:10.1155/2007/92523

Research Article
A Hardware-Efficient Programmable FIR Processor Using
Input-Data and Tap Folding

Oscal T.-C. Chen and Li-Hsun Chen

Department of Electrical Engineering, Signal and Media Laboratories, National Chung Cheng University, Chia-Yi 621, Taiwan

Received 4 March 2006; Revised 1 August 2006; Accepted 24 November 2006

Recommended by Bernhard Wess

Advances in nanoelectronic fabrication have enabled integrated circuits to operate at a high frequency. The finite impulse response
(FIR) filter needs only to meet real-time demand. Accordingly, increasing the FIR architecture’s folding number can compen-
sate the high-frequency operation and reduce the hardware complexity, while continuing to allow applications to operate in real
time. In this work, the folding scheme with integrating input-data and tap folding is proposed to develop a hardware-efficient
programmable FIR architecture. With the use of the radix-4 Booth algorithm, the 2-bit input subdata approach replaces the con-
ventional 3-bit input subdata approach to reduce the number of latches required to store input subdata in the proposed FIR
architecture. Additionally, the tree accumulation approach with simplified carry-in bit processing is developed to minimize the
hardware complexity of the accumulation path. With folding in input data and taps, and reduction in hardware complexity of the
input subdata latches and accumulation path, the proposed FIR architecture is demonstrated to have a low hardware complexity.
By using the TSMC 0.18 µm CMOS technology, the proposed FIR processor with 10-bit input data and filter coefficient enables
a 128-tap FIR filter to be performed, which takes an area of 0.45mm2, and yields a throughput rate of 20M samples per second
at 200MHz. As compared to the conventional FIR processors, the proposed programmable FIR processor not only meets the
throughput-rate demand but also has the lowest area occupied per tap.

Copyright © 2007 O. T.-C. Chen and L.-H. Chen. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Finite impulse response (FIR) filter is regarded as one of the
major operations in digital signal processing; specifically, the
high-tap-number programmable FIR filter is commonly ap-
plied in ghost cancellation and channel equalization. The
main operation of an FIR filter is convolution, which can be
performed using addition andmultiplication. The high com-
putational complexity of such an operation makes the use
of special hardware more suitable for enhancing the compu-
tational performance. This special hardware used to realize
a high-tap-number programmable FIR filter is costly. Thus
minimizing the hardware cost of this special hardware is an
important issue.

With the regular computation of an architecture, a fold-
ing scheme that utilizes the same and small hardware com-
ponent to repeatedly complete a set of computation is fre-
quently used to reduce the hardware complexity of such ar-
chitecture [1, 2]. Generally, the folding schemes of an FIR
architecture can be classified into input-data folding, coeffi-

cient folding, and tap folding [3–11]. Additionally, while ad-
vances in nanoelectronic fabrication have enabled integrated
circuits to operate at a high frequency, the throughput-rate
demand of an FIR filter does not change significantly. Due
to such phenomenon, the folding technique must be further
improved to design a hardware-efficient FIR architecture.
Figure 1 presents the relationship between the computational
performance, hardware complexity, and circuit speed on dif-
ferent hardware platforms in realizing a high-tap-number
FIR filter. With only one or few multipliers/adders, the pro-
grammable processors cannot be applied to realize a high-
tap-number FIR filter in real time. On the other hand, the
conventional FIR architectures using the application spe-
cific integrated circuit (ASIC) approach would have the fixed
folding numbers to do so; but with the increase in circuit
speed, the conventional architectures are only able to slightly
decrease hardware complexities by reducing their pipelined
latches. Therefore, in the advanced fabrications, conven-
tional FIR architectures with fixed folding numbers cannot
be used to realize a hardware-efficient FIR filter. Instead,

2 EURASIP Journal on Advances in Signal Processing

Hardware
complexity

Real time

Computational
performance

Conventional architectures
with fixed folding number

Architectures with capability
of increasing folding number

Programmable processors

Circuit
speed

Figure 1: The relationship between computational performance,
hardware complexity, and circuit speed on different hardware plat-
forms to realize a high-tap-number FIR filter.

an FIR architecture that can increase its folding number
would cost-effectively meet the real-time performance de-
mand.With the use of high-speed circuitry, the folding num-
ber of such architecture is increased accordingly to effectively
decrease the computation units required. In overall, this FIR
architecture can fill the gap between fabrication migration
and hardware platform development, in the design of an ar-
chitecture that meets real-time demand with hardware effi-
ciency.

In the FIR architecture design, the circuit required for a
multiplication operation poses a major concern because it
takes a hefty part of hardware complexity. The multiplica-
tion operation includes partial-product generation, partial-
product shifting, and partial-product summation. Of which,
partial-product shifting can be realized with hardwire so no
additional hardware complexity is dedicated here. To avoid
computation at large word lengths, the folding scheme can be
applied to add the partial products at the same precision in-
dex from multiple multiplication operations, shift the added
results, and then perform summation of these shifted results
to complete an FIR filter operation. Based on the above ar-
rangement, an FIR architecture employing input-data and
tap folding is proposed in this work. With input-data fold-
ing, each input datum is partitioned into multiple input sub-
data with short word lengths. In each clock cycle, multiplica-
tion operations are performed on input subdata at the same
precision index and the coefficients correlated to these sub-
data. Results are then added, and the shifting and accumula-
tion operations of the multiplications are performed on the
summed results accordingly to derive at an output datum.
With the shifting operation performed after the tap summa-
tion, it would not incur an increase in the word length of
the intermediate data thus saves the hardware cost of adders
in the tap summation. However, with the use of only input-
data folding, the architecture’s folding number is limited by
the input-data word length and cannot increase along with
the use of high-speed circuitry. The proposed architecture

then takes it further by integrating tap folding to partition an
FIR filter into multiple sections, and completes each section
chronologically. The folding number of the proposed archi-
tecture using the input-data folding and tap-folding schemes
is the product of the folding numbers from input-data fold-
ing and tap folding. An increase in the folding number of
the tap-folding scheme would also increase the folding num-
ber of the proposed FIR architecture to accommodate the
use of high-speed circuit in effectively reducing the hardware
complexity. In comparison to the conventional architectures
under the same folding number, the proposed architecture
clearly demonstrates a lower hardware complexity.

Based on the radix-4 Booth algorithm, two approaches
to reduce the hardware complexity of the FIR architecture
are proposed—one is a 2-bit input subdata approach and the
other is a tree accumulation approach with simplified carry-
in bit processing. In the 2-bit input subdata approach, other
than the input subdata currently in-use, the Booth decoder
could also rely on the prior input subdata and control sig-
nal to perform Booth decoding. Such flexibility would allow
the proposed FIR architecture to reduce the latch amount re-
quired to store these input subdata. As for the tree accumu-
lation approach, a full adder is fully utilized to perform the
addition operations. The proposed FIR architecture can omit
the use of half adders, and lives up to its appeal for a design
with low hardware complexity. In this work, the cell library of
the TSMC 0.18 µm CMOS technology is used to implement
the proposed FIR processor equipped with 10-bit input data
and coefficients to realize 128 taps. Other than satisfying the
throughput-rate requirement, the proposed FIR processor is
demonstrated to have the least hardware area per tap than
the conventional ones.

2. CONVENTIONAL BOOTH-ALGORITHM FIR
ARCHITECTURES USING FOLDING SCHEMES

The operation of an FIR filter can be written as

Yn =
N−1∑

i=0
Ci × Xn−i, (1)

whereX ,C, and Y represent the input data, filter coefficients,
and output data, respectively, and N is the number of taps.
The Booth algorithm is typically used to implement the mul-
tiplication operations of a programmable FIR filter and thus
effectively reduce computational time and hardware com-
plexity [12, 13]. Comparing radix-2, radix-4, radix-8, and
radix-16 Booth algorithms in terms of both computational
performance and hardware complexity reveals that the radix-
4 Booth algorithm strongly outperforms in terms of hard-
ware efficiency [14]. Therefore, the radix-4 Booth algorithm
was applied in the proposed FIR architecture.

The radix-4 Booth algorithm incorporates the multiplier
Xn−i and the multiplicand Ci with word lengths ofW and L,
respectively. Each input datum Xn−i is partitioned into many
3-bit groups, each of which has one bit that overlaps with the
previous group, which can be written as

Xn−i,l =
{
x2l+1n−i , x

2l
n−i, x

2l−1
n−i

}
, (2)

O. T.-C. Chen and L.-H. Chen 3

where l is an integer between 0 and (W/2)− 1; x
j
n−i is the jth

digit of Xn−i, and x−1n−i is zero. x
2l−1
n−i overlaps the preceding

group Xn−i, l−1. The 2’s complement representation of Xn−i
can be

Xn−i = −xW−1
n−i × 2W−1 +

W−2∑

j=0
x
j
n−i × 2 j

=
(W/2)−1∑

l=0

(−2x2l+1n−i + x2ln−i + x2l−1n−i
)× 22l

(3)

Ci is multiplied by Xn−i, and (3) is modified to

Ci × Xn−i =
(W/2)−1∑

l=0

(−2x2l+1n−i + x2ln−i + x2l−1n−i
)× Ci × 22l

=
(W/2)−1∑

l=0
B
(
Xn−i,l,Ci

)× 22l,

(4)

where B(Xn−i,l,Ci) is the output of Booth decoding that can
take five values, 0, ±Ci and ±2Ci, according to Xn−i,l.

According to (1), an FIR architecture can fold itself based
on input data, coefficients, and taps. First, in the input-data
folding scheme, with the radix-4 Booth algorithm being used
to perform the multiplication operations, each W-bit input
datum is partitioned into (W/2) 3-bit input subdata that then
undergo Booth decoding in order. From (1) and (4), the op-
eration of an FIR filter can be modified as

Yn =
N−1∑

i=0

[(W/2)−1∑

l=0
B
(
Xn−i,l,Ci

)× 22l
]

=
(W/2)−1∑

l=0

[N−1∑

i=0
B
(
Xn−i,l,Ci

)
]
× 22l .

(5)

Like the input-data folding scheme, the coefficient-folding
scheme can be employed to partition each L-bit coefficient
into (L/2) 3-bit sub-coefficients, and then Booth decoding is
performed in a sequence. Equation (1) can be modified as

Yn =
N−1∑

i=0

[(L/2)−1∑

l=0
B
(
Ci,l,Xn−i

)× 22l
]

=
(L/2)−1∑

l=0

[N−1∑

i=0
B
(
Ci,l,Xn−i

)
]
× 22l,

(6)

where Ci,l is the lth 3-bit sub-coefficient of the coefficient,
Ci, and B(Ci,l,Xn−i) can be one of the five values, 0, ±Xn−i,
and ±2Xn−i. In the tap-folding scheme, an FIR filter is par-
titioned into f parts to complete the operations accordingly.
Such a scheme can be applied to modify the operation of an
FIR filter from (1) as follows:

Yn =
(N/ f)−1∑

i=0

[f−1∑

k=0
Xn−(i f +k) × Ci f +k

]

=
f−1∑

k=0

[(N/ f)−1∑

i=0
Xn−(i f +k) × Ci f +k

]
.

(7)

Equations (5), (6), and (7) reveal that the FIR architectures
equipped with input-data folding, coefficient folding, and
tap folding would result in folding numbers ofW/2, L/2, and
f , respectively.

The three folding schemes based on (5), (6), and (7) are
applied in the design of the two FIR architectures that are
commonly used, the direct form and the transposed direct
form, to derive the six FIR architectures shown in Figure 2.
Among them, the preprocessing units of architectures in
Figures 2(a), 2(b), 2(c), and 2(d) can partition input data
or coefficients into many 3-bit input subdata or 3-bit sub-
coefficients, and perform predecoding on these input sub-
data or sub-coefficients to reduce the hardware complexities
of Booth decoders [3–5, 11]. Input (sub)-data latches and
(sub)-coefficient latches are used to store input (sub)-data
and (sub)-coefficients, respectively. N Booth decoders are
applied to perform Booth decoding, with the results being
added in the accumulation path. Pipelined latches are then
used to reduce the delay and to arrange the data flow in accu-
mulation computation. Lastly, the post-processing unit per-
forms summation and shifting on results from the accumu-
lation path to realize the computation of (5) and (6). As for
the architectures shown in Figures 2(e) and 2(f), N/ f multi-
pliers are assigned to perform the multiplication operations.
Each multiplier is equipped withW/2 or L/2 Booth decoders
to generate partial products. Partial products fromN/ f mul-
tipliers are summed together in the accumulation path. Fi-
nally, the results from the accumulation path are carried on
to the post-processing unit to perform the summation oper-
ation, thus satisfies the computation in (7) [6–8].

An FIR architecture with the transposed direct form is
able to use the pipelining in the accumulation path to reduce
the number of input (sub)-data latches. But, for the trans-
posed direct-form architectures using coefficient folding and
tap folding, as shown in Figures 2(d) and 2(f), the opera-
tion frequencies of input data paths are lower than those of
pipelined latches in the corresponding accumulation paths.
Hence, the accumulation path has to use more pipelined
latches to store the computation results from its adders, in
order to generate the correct output of an FIR filter. Due to
this fact, the two architectures in Figures 2(d) and 2(f) can-
not achieve low hardware complexities, and thereby are not
explored further.

To take a closer look at the architectures in Figures 2(a),
2(b), 2(c), and 2(e), the features of functional units of these
four architectures are listed in Table 1. Under the same fold-
ing number, W/2 = L/2 = f , these four architectures all
have the same amount of Booth decoders. However, with the
pre-processing unit capable of performing predecoding on
subdata and sub-coefficients to reduce the hardware com-
plexity of the Booth decoders, hardware complexities of the
Booth decoders in architectures shown in Figures 2(a), 2(b),
and 2(c) are lower than that in Figure 2(e). Moreover, the
partial-product shifting operations of Figures 2(a), 2(b), and
2(c) are processed in the post-processing unit, so their accu-
mulation paths also have lower hardware complexities than
the accumulation path in Figure 2(e). Furthermore, with the
use of multiplexers to select input data and coefficients, the

4 EURASIP Journal on Advances in Signal Processing

� � �X1X0 Pre-proc.

unit

W 3

W/2

D D D D D D D� � � � � � � � �

� � �CN�2CN�1 L

Booth
decoder

D D

Booth
decoder

D

Booth
decoder

� � �

L + 1

Y0Y1� � �
D

D

Post-proc. unit

>>
+

+ + + +
D D D D

+ +
D D

+

+
D

� � �

� � �

Accumulation
path

...

(a)

� � �X1X0 Pre-proc.

unit

W 3
(W/2)� 1

D D D D D D D� � � � � � � � �

� � �CN�2CN�1 L

Booth
decoder

D D

Booth
decoder

D

Booth
decoder

� � �

L + 1
Y0Y1� � �

D

D

Post-proc. unit

>>
+ D D D+ +

� � �

Accumulation path

(b)

� � �X1X0
W

D D
� � �

Booth
decoder

Booth
decoder

Booth
decoder

MUX MUX MUX
� � �

� � �CN�2CN�1 3Pre-proc.

unit
D D D D D D D D D� � � � � � � � �

L/2 W + 1

Y0Y1� � �
D

D

Post-proc. unit

>>
+

+ + + +
D D D D

+ +
D D

+

+
D

� � �

� � �... Accumulation
path

(c)

� � �X1X0
W

� � �

� � �CN�2CN�1

Booth
decoder

Booth
decoder

Booth
decoder

MUX MUX MUX
� � �

3Pre-proc.

unit
D D D D D D D D D� � � � � � � � �

L/2

Y0Y1� � �
D

D

Post-proc. unit

>> + D D D D D D D� � � � � �

L/2

+ + � � �

Accumulation path

(d)

� � �X1X0 W

f

D D D D D D D D D� � � � � � � � �

� � � � � � � � �

� � �

MUX MUX MUX

� � �

MUX MUX MUX

� � �CN�2CN�1 L
D D D D D D D D D

� � � � � � � � �

� � �

f
W + L

Y0Y1� � �
D

D

Post-proc. unit

+

+ +
D D

+
D

+
D

� � �

� � �...

(e)

� � �X1X0 W

f

D D D D D D D� � � � � � � � �

� � �

MUX MUX MUX

� � � � � � � � �

� � �

MUX MUX MUX� � �

� � �CN�2CN�1 L
D D D D D D D D D

� � � � � � � � �

f W + L
Y0Y1� � �

D

D

Post-proc. unit

+ D D D D D D D� � � � � �+ + � � �

f

(f)

Figure 2: Six conventional FIR architectures. (a) Direct form using the input-data folding scheme. (b) Transposed direct form using the
input-data folding scheme. (c) Direct form using the coefficient folding scheme. (d) Transposed direct form using the coefficient folding
scheme. (e) Direct form using the tap-folding scheme. (f) Transposed direct form using the tap-folding scheme.

architecture in Figure 2(e) incurs a higher hardware com-
plexity than the other three architectures. As illustrated in
Table 1, when W equals L, architectures in Figures 2(a) and
2(c) have the same number of latches to store input (sub-
)data and (sub-)coefficients. They both also have Booth de-
coders and accumulation paths with the same hardware com-
plexities. However, with the architecture in Figure 2(c) re-
quiring multiplexers to select the sub-coefficients, its hard-
ware complexity would be slightly higher than the architec-
ture in Figure 2(a). In comparing the architectures in Figures

2(a) and 2(b), the architecture in Figure 2(b) has fewer in-
put subdata latches than those of Figure 2(a). But for the ar-
chitecture in Figure 2(b), the linear accumulation structure
causes the word lengths of the addition results to increase
rapidly and thus raises the hardware complexities of the
adders and latches in the accumulation path. Consequently,
the hardware complexity of the architecture in Figure 2(a) is
lower than that in Figure 2(b).

Comparing the other four architectures in Figures 2(a),
2(b), 2(c), and 2(e), under the same folding number, the

O. T.-C. Chen and L.-H. Chen 5

Table 1: Features of functional units of the architectures in Figures 2(a), 2(b), 2(c), and 2(e).

Features
Architectures

Figure 2(a) Figure 2(b) Figure 2(c) Figure 2(e)

Hardware
complexity

Preproc.
unit 1 1 1 0

Input
(sub-)data
latches

N(W/2) of 3-bit latches N((W/2)− 1) of 3-bit latches N ofW-bit latches N ofW-bit latches

Input
(sub-)data
multiplexers

0 0 0
(N/ f) ofW-bit
f -to-1 MUXes

(Sub-)coeff.
latches

N of L-bit latches N of L-bit latches N(L/2) of 3-bit latches N of L-bit latches

(Sub-)coeff.
multiplexers

0 0
N of 3-bit (L/2)-to-1
MUXes

(N/ f) of L-bit
f -to-1 MUXes

Booth
decoders

N of Booth decoders N of Booth decoders N of Booth decoders
(N/ f)× (W/2) or
(N/ f)× (L/2) of
Booth decoders

Acc. path

Performing tree
summation on N
of (L + 1)-bit
partial products,
and including

Performing linear
summation on N
of (L + 1)-bit
partial products,
and including

Performing tree
summation on N
of (W + 1)-bit
partial products,
and including

Performing tree
summation on
(N/ f)× (W/2) of
(L + 1)-bit partial
products, each of
which is shifted
right by 2l bits
(l = 0, 1, 2, . . . , or
(W/2)− 1)

or
(N/ f)× (W/2) of
(W + 1)-bit
partial products,
each of which is
shifted right by
2l bits
(l = 0, 1, 2, . . . , or
(L/2)− 1)

(N/2) of (L + 1)-bit
adders,

1 of (L + 1)-bit adder,
(N/2) of (W + 1)-bit
adders,

(N/4) of (L + 2)-bit
adders

2 of (L + 2)-bit adders
(N/4) of (W + 2)-bit
adders

· · · · · · · · ·
(N/2i) of (L+ i)-bit
adders

2i−1 of (L + i)-bit
adders

(N/2i) of (W + i)-bit
adders

· · · · · · · · ·
1 of (L + log2N)-bit
adder

N/2 of (L+ log2N)-bit
adders

1 of (W + log2N)-bit
adder

& & &

(N/2) of (L + 2)-bit
latches,

1 of (L + 2)-bit latch,
(N/2) of (W + 2)-bit
latches,

(N/4) of (L + 3)-bit
latches

2 of (L + 3)-bit latches
(N/4) of (W + 3)-bit
latches

· · · · · · · · ·
(N/2i) of (L + i + 1)-
bit latches

2i−1 of (L + i + 1)-bit
latches

(N/2i) of (W + i + 1)-
bit latches

· · · · · · · · ·
1 of (L+ log2N +1)-bit
latch

N/2 of (L+ log2N + 1)-
bit latches

1 of (W + log2N + 1)-
bit latch

Post-proc.
unit

(L+W+log2N)-bit
adder and two
(L+W+log2N)-bit
latches

(L+W+log2N)-bit
adder and two
(L+W+log2N)-bit
latches

(L+W+log2N)-bit
adder and two
(L+W+log2N)-bit
latches

(L+W+log2N)-bit
adder and two
(L+W+log2N)-bit
latches

Folding number W/2 W/2 L/2 f

Capability of increasing
the folding number

No No No Yes

Techniques to reduce
hardware complexity at
the use of high-speed
circuitry

Reducing pipelined
latches of the
accumulation path

Reducing pipelined
latches of the
accumulation path

Reducing pipelined
latches of the
accumulation path

(1) Reducing
pipelined latches of
the accumulation
path.
(2) Increasing the
folding number

6 EURASIP Journal on Advances in Signal Processing

architecture in Figure 2(a) displays the lowest hardware com-
plexity but its folding number is limited by the input-data
word length. When the high-speed circuitry is employed in
this architecture, the only way to lower hardware complexity
is to reduce the pipelined latches in the accumulation path.
In contrast, the architecture in Figure 2(e) can increase its
folding number to reduce the numbers of Booth decoders
and adders, thus to effectively lower the hardware complex-
ity. However, with the partial-product shifting operation per-
formed prior to the accumulation path, the architecture in
Figure 2(e) would have adders and pipelined latches with
higher word lengths than those found in the accumulation
paths of the architectures in Figures 2(a), 2(b), and 2(c).
Hence, the integrated folding scheme combining input-data
folding and tap folding is proposed in this work. Such inte-
grated folding scheme can take advantages of the architec-
tures in Figures 2(a) and 2(e) to have the accumulation path
with a low hardware complexity and to have a capability of
increasing the folding number to reduce hardware complex-
ity.

3. PROPOSED FIR ARCHITECTURE

By using input-data folding and tap folding, the FIR filter
computation in (1) can be modified as

Yn =
(W/2)−1∑

l=0

[(N/ f)−1∑

i=0

f−1∑

k=0
B
(
Xn−(i f +k),l,Ci f +k

)
]
× 22l

=
(W/2)−1∑

l=0

f−1∑

k=0

[(N/ f)−1∑

i=0
B
(
Xn−(i f +k),l,Ci f +k

)
]
× 22l,

(8)

where f is the folding number of tap folding and
W/2 is the folding number of input-data folding.
∑(N/ f)−1

i=0 B(Xn−(i f +k),l,Ci f +k) is computed using N/ f Booth
decoders, and an accumulation path sums the outputs from

the Booth decoders.
∑(W/2)−1

l=0
∑ f−1

k=0 and ×22l are sequentially
computed in the post-processing unit. According to (8), this
integrated folding scheme can design an FIR architecture
with a high folding number by increasing the folding num-
ber of tap folding. Moreover, unlike the conventional tap
folding, its partial-product shifting operation is processed
in the post-processing unit to reduce hardware complexity
in the accumulation path. Based on (8), the proposed FIR
architecture is presented in Figure 3. While the input-data
and tap-folding schemes are employed in the proposed
FIR architecture, the 2-bit input subdata approach and
tree accumulation approach with simplified carry-in-bit
processing are developed to further reduce the hardware
complexity. The following subsections describe these two
approaches.

3.1. 2-bit input subdata approach

According to (2), the least significant bit of each original 3-
bit input subdatum is either zero or the most significant bit
of the previous input subdatum [12, 13]. Consequently, 2-
bit input subdata rather than 3-bit input subdata can be used

to reduce the number of latches on the input data path. As
shown in Figure 4, the preprocessing unit comprises an input
latch, a multiplexer, and a 1-bit XOR gate. The input latch
stores input data. The multiplexer that is addressed by the
control unit selects a correct sequence of 3-bit input subdata.
Meanwhile, the 1-bit XOR gate is used to predecode the 3-bit
input subdata to generate new 2-bit input subdata that can
slightly reduce the hardware complexities of Booth decoders.

Figure 3 shows that 2-bit input subdata generated by the
preprocessing unit are pipelined to input subdata latches.
Through multiplexers selecting data from input subdata and
coefficients, each Booth decoder can obtain the appropri-
ate input subdata and coefficient for Booth decoding. In the
radix-4 Booth algorithm, possible results, ± j × Ci, from the
Booth decoders are generated, where j is an integer between
zero and two. However, in the 2-bit input subdata approach,
a 2-bit input subdatum from the input subdata latches can-
not represent five choices. The Booth decoder must use one
bit from the neighboring input subdata latch (bl−1,1) as well
as two bits from its corresponding input subdata latches (bl,1
and bl,0), as shown in Figure 5. According to (2), when l in
(8) equals zero, this one extra bit (bl−1,1) must be set as zero.
To realize the computation of (8), a control signal is used
to control an AND gate so that bl−1,1 can be reset to zero
at every f × (W/2) clock cycles and be held at zero for f
clock cycles. Accordingly, bl,1, bl,0, and bl−1,1 with this con-
trol signal are employed to generate a partial product and a
carry-in bit, which represent the output of 0, Ci, −Ci, 2Ci, or
−2Ci. In particular, an inverter is applied to invert the sign
bit of the partial product, so when the outputs generated by
the Booth decoders are summed in the accumulation path,
the sign extension operation can be omitted and the hard-
ware complexity of the accumulation path is reduced accord-
ingly [5]. Although the proposed Booth decoder is little more
complex than the conventional Booth decoder [11], such a
design would allow 2-bit input subdata latches to be used in-
stead of conventional 3-bit input subdata latches in the input
data path.

3.2. Tree accumulation approach

In the FIR architecture, each Booth decoder generates a par-
tial product and a carry-in bit. The accumulation path sums
all of the partial products and carry-in bits. These summed
results are then inputted to the post-processing unit to yield
the final result. The carry-save addition technique is applied
to minimize the carry propagation delay and increase the
computational efficiency of the accumulation path. Its fun-
damental functions include full adders and half adders. The
full adder processes three input bits at the same precision in-
dex and then generates two output bits at different precision
indexes, whereas the half adder processes only a pair of input
bits at the same precision index, producing two output bits
at different precision indexes. The half adder cannot be used
to reduce the bit number because the number of input bits
is equal to that of output bits. Therefore, sufficient use of full
adders and reduced use of half adders would further decrease
the hardware complexity of the accumulation path.

O. T.-C. Chen and L.-H. Chen 7

Input
data

W

W/2 of 2-bit latches

(f �W/2) of 2-bit latches

Input subdata latches and multiplexers

Pre-
proc.
unit

D D � � � D D D � � � D D D
� � �

D D D � � � D D D
� � � D D D � � � D D D

� � � D D D
� � � D D D � � � D D D

� � �

D D D
� � �

D D D � � � D

� � � � � � � � � � � � � � �
D D � � � D D D

� � �
D D D

� � �
D D D

� � �
D D D

� � �
D D D

� � �
D D D

� � �
D D D

� � �
D D D

� � �

D D D
� � �

D D D
� � �

D D D
� � �

D

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX

� � �

MUX
� � �

clk
Pre-set
value

Enable

P
re
se
t

co
u
n
te
r

D
ec
od

er

�

�

�

Control unit

Coefficients L

Output
data

Post-
processing

unit

Sum
Carry

Two carry-in bits

Accumulation path

Booth
decoder

Booth
decoder

Booth
decoder

Booth
decoder

L-bit f -to
-1 MUX

1-bit f -to
-1 MUX

� � �

MUX MUX MUX MUX� � �

D D � � � D D D � � � D D D � � � D D D � � � D� � �

Coeff. latches and multiplexers
L + 1 L + 1 L + 1 L + 1

Figure 3: The proposed FIR architecture with input-data and tap folding.

Input
data
(Xn�i)

W

�

1
0

1
2

3
4

5

...

W

�

2
W

�

1

3

3

3

...

3

M
U
X

Xn�i,l

3

Control signals

bl,0

bl,1

Input latch

Figure 4: Preprocessing unit.

The conventional tree accumulation is divided into three
parts to perform the additions in the accumulation path—
the addition of the partial products, the addition of the carry-
in bits, and the addition of the outputs of the two parts.
The proposed tree accumulation approach hides the sum-
mation of the carry-in bits as part of the partial-product
summation in the accumulation path, and also as part of
the intermediate result summation in the post-processing
unit. Eight 4-bit partial products and carry-in bits are used

Control
signal

Carry-in
bit Partial product

Coefficient
(Ci)

bl,1
bl,0 bl�1,1

L

L

L

MUX

Figure 5: Booth decoder.

as an example in Figure 6, to demonstrate the proposed and
conventional tree accumulation approaches using carry-save
adders. Figure 6(a) depicts the conventional tree accumula-
tion in which partial products and carry-in bits are summed
individually, increasing the number of half adders required.
Moreover, the summed partial products must be added to the
summed carry-in bits in additional processing time. Herein,
the conventional tree accumulation requires 28 full adders
and five half adders. Figure 6(b) presents the proposed tree

8 EURASIP Journal on Advances in Signal Processing

Addition of partial products Addition of carry-in bits

p0
p1
p2
s00
c00

Layer 1

p3
p4
p5
s01
c01

p6
p7

s00
c00
s01
s10
c10

Layer 2

c01
p6
p7
s11
c11

sca
cca

s10
c10
s11
s2
c2

Layer 3
c11

sca
cca

s2
c2
c11
s3
c3

Layer 4 sca
cca

s3
c3
sca
s4
c4

Layer 5
cca Addition of outputs

from the two partss4
c4
cca

Sum
Carry

Layer 6

(a)

Addition of partial products and carry-in bits
Carry-in bits

p0
p1
p2
s00
c00

Layer 1

p3
p4
p5
s01
c01

p6
p7

s00
c00
s01
s10
c10

Layer 2

c01
p6
p7
s11
c11

s10
c10
s11
s2
c2

Layer 3
c11

s2
c2
c11

Sum
Carry

Layer 4
Two unprocessed
carry-in bits

(b)

Figure 6: Operations of proposed and conventional tree accumulations. (a) Conventional tree accumulation. (b) Proposed tree accumula-
tion.

O. T.-C. Chen and L.-H. Chen 9

accumulation in which the summation of the partial prod-
ucts and the carry-in bits are performed together. The pro-
posed approach effectively exploits full adders to perform the
addition of partial products and carry-in bits, and omits the
use of half adders. Hence, only 26 full adders are required in
the proposed tree accumulation.

An accumulation path can be partitioned into many
pipelined stages to improve computational performance.
When each pipelined stage needs the delay of one or two
carry-save adders, 89 or 38 1-bit latches are required in the
proposed tree accumulation, and 115 or 52 1-bit latches are
required in the conventional tree accumulation. Thus, the
proposed tree accumulation also has fewer latches than the
conventional one. Also, as shown in Figure 6(b), a carry-in
bit is regarded as the least significant bit of the carry value
in each layer and is added with the other sum or carry value.
But as Figure 6(b) points out too, the proposed accumula-
tion only yields six carry values, which implies that it can
only process the summation of eight partial products and
six carry-in bits. The outputs of sum and carry and the
two unprocessed carry-in bits would be moved to the post-
processing unit to perform addition.

In the post-processing unit, carry and sum values gener-
ated from the accumulation path and two unprocessed carry-
in bits are accumulated and shifted. Figure 7 shows the pro-
posed post-processing unit. Two (L+1+log2(N/ f))-bit carry-
save adders are employed to perform sequential accumula-
tion, and two (L + W + log2N)-bit 2-to-1 multiplexers are
applied in shifting. Notably, two (L +W + log2N)-bit 2-to-
1 multiplexers are used to select a zero value and a correc-
tion term in the first clock cycle. Adding the correction term
is for compensating the omission of the sign extension op-
eration from the accumulation path [3–5]. Additionally, the
least significant bits of the two carry values generated by the
carry-save adders in the post-processing unit are zero, so the
unprocessed two carry-in bits can be considered to be the
least significant bits of these two carry values, and their addi-
tion is performed in the two carry-save adders of the post-
processing unit. Finally, the vector merge adder (VMA) is
used to sum the carry and sum values to derive at a final re-
sult.

4. ANALYSES AND COMPARISONS OF PROPOSED
AND CONVENTIONAL FIR ARCHITECTURES

In this section, the cell library of the TSMC 0.18 µm CMOS
technology is applied to derive at the number of transistors
required for each functional unit [15], and to use such num-
bers in the analyses and comparisons of hardware complex-
ities between the proposed and conventional FIR architec-
tures. First, three types of the FIR architectures employing
input-data and tap folding, types I, II, and III, are defined
to analyze the effectiveness of the proposed 2-bit input sub-
data approach and tree accumulation approach in reducing
hardware complexity. All these three architectures have the
same folding numbers, with the folding numbers of input-
data folding and tap folding being W/2 and 2, respectively.
The type-I FIR architecture uses both the proposed 2-bit in-

put subdata approach and tree accumulation approach to
lower its hardware complexity, while the type-II one only
uses the 2-bit input subdata approach and the type-III one
only adopts the proposed tree accumulation approach. The
numbers of transistors required for these three architectures
are shown in Figure 8.

In comparing the type-I and type-II architectures, the
type-I architecture would require less transistors than the
type-II one because the type-I architecture can simplify the
processing of N/2 carry-in bits to reduce its hardware com-
plexity. With an increase in the number of tap number (N),
the number of carry-in bits that can be simplified in process-
ing is also increased to allow the type-I architecture to fur-
ther reduce the number of transistors required. Additionally,
the difference in the numbers of transistors required between
the type-I and type-II architectures is not significant with the
changes found in input-data word length (W) or coefficient
word length (L). In comparison to the type-III architecture,
the type-I architecture can take the 2-bit input subdata ap-
proach to reduce N × (W/2) 1-bit latches, (3×N × (W/2))-
(2 × N × (W/2)). The Booth decoder in the type-I architec-
ture demands slightly more logic gates than that of the type-
III architecture, but it still requires less transistors than the
type-III. With an increase in the input-data word length (W)
and tap number (N), the type-I architecture can demonstrate
that it requires less transistors than the type-III one.

As stated in Section 2, under the same folding number,
the architecture in Figure 2(a) would have lower hardware
complexity than the other architectures in Figure 2. But in
comparison to the fixed folding number of the architecture
in Figure 2(a), the folding number of the architecture in
Figure 2(e) can be increased to lower hardware complexity.
Due to this understanding, we compare the hardware com-
plexities of the proposed architecture and the architectures
in Figures 2(a) and 2(e). To fairly compare them, these three
architectures must operate at the same throughput rate. Ac-
cording to [13], the throughput rate can be represented by
ns/Tclk where Tclk is a period of a clock cycle and ns is the
number of outputs produced in a clock cycle. Additionally,
Tclk is equivalent to the critical delay. As for a folded FIR ar-
chitecture, the folding number is the number of clock cycles
required to generate an output. Accordingly, the throughput
rate can be denoted as follows [13]:

Throughput rate = 1
critical delay× folding number

.

(9)

With TFA representing the delay of the full adder, and the
throughput rate fixed at 1/(2× TFA ×W), the numbers of
transistors required for the above-mentioned three archi-
tectures in comparison are presented in Figure 9 where the
word length of input data is equal to that of coefficients. In
the proposed architecture, the folding numbers for input-
data and tap folding are W/2 and 2, respectively; hence the
folding number of the proposed architecture is W . Accord-
ing to (9), the proposed architecture has a critical delay
of 2TFA, which indicates that the delay for each pipelined
stage should be less than or equal to 2TFA. Looking at the

10 EURASIP Journal on Advances in Signal Processing

CSA 0
Sum
Carry

Sum
�

Carry-save
addition

CSA 1

Sum 0
Carry 0
Carry

�

No
operation

Sum 1
Carry 1

No
operation

: A carry-in bits

Sum Carry

Two
carry-in bits

Sum
�

CSA 0

Sum 0 Carry 0

MUX

Zero
MUX

�1 �1/4

D

Carry
�

MUX
Correction

term
MUX

�1 �1/4

D clk

CSA 1
Sum 1 Carry 1

D D clk �
1

f � (W/2)

VMA

Figure 7: Post-processing unit.

16
14

12
10

8
L (bits) 8

10
12

14
16

W (bits)

2

2.5

3

3.5
�104

Tr
an
si
st
or

co
u
n
ts

N = 32

Type-I

Type-II

Type-III

(a)

16
14

12
10

8
L (bits) 8

10
12

14
16

W (bits)

4

5

6

�104

Tr
an
si
st
or

co
u
n
ts

N = 64

Type-I

Type-II

Type-III

(b)

16
14

12
10

8
L (bits) 8

10
12

14
16

W (bits)

8

10

12

�104

Tr
an
si
st
or

co
u
n
ts

N = 128

Type-I

Type-II

Type-III

(c)

16
14

12
10

8
L (bits) 8

10
12

14
16

W (bits)

1.5

2

2.5
�105

Tr
an
si
st
or

co
u
n
ts

N = 256

Type-I

Type-II

Type-III

(d)

Figure 8: Transistor counts of three types of the FIR architectures using input-data and tap folding.

O. T.-C. Chen and L.-H. Chen 11

8 10 12 14 16

W and L (bits)

174

224

274

324

374

424

�102

Tr
an
si
st
or

co
u
n
ts

N = 32

Proposed arch.
Mode-II Figure 2(e)

Figure 2(a)
Mode-I Figure 2(e)

(a)

8 10 12 14 16

W and L (bits)

326

426

526

626

726

826

�102

Tr
an
si
st
or

co
u
n
ts

N = 64

Proposed arch.
Mode-II Figure 2(e)

Figure 2(a)
Mode-I Figure 2(e)

(b)

8 10 12 14 16

W and L (bits)

620

820

1020

1220

1420

1620

�102

Tr
an
si
st
or

co
u
n
ts

N = 128

Proposed arch.
Mode-II Figure 2(e)

Figure 2(a)
Mode-I Figure 2(e)

(c)

8 10 12 14 16

W and L (bits)

1232

1732

2232

2732

3232

�102

Tr
an
si
st
or

co
u
n
ts

N = 256

Proposed arch.
Mode-II Figure 2(e)

Figure 2(a)
Mode-I Figure 2(e)

(d)

Figure 9: Transistor counts of the proposed architecture and conventional FIR architectures in Figures 2(a) and 2(e).

architecture in Figure 2(a), the folding number isW/2, which
would derive at a critical delay of 4TFA according to (9).
In comparison to the proposed architecture, the pipelined
stage in Figure 2(a) architecture would have a much longer
delay. As for the architecture in Figure 2(e), since the fold-
ing number and critical delay in this architecture are both
changeable, two modes of Figure 2(e) are considered for our
comparison purposes. The architectures in the modes I and
II of Figure 2(e) have different folding numbers and crit-
ical delays, but both still operate at the same throughput
rate. The folding number and critical delay of the architec-
ture in the mode-I of Figure 2(e) are W/2 and 4TFA, respec-
tively, and the folding number and critical delay of the ar-
chitecture in mode-II of Figure 2(e) areW and 2TFA, respec-
tively.

As illustrated in Figure 9, the architecture in the mode-I
of Figure 2(e) would require the most number of transistors
due to having an accumulation path with a high hardware

complexity and a low folding number. In contrast, the ar-
chitecture in the mode-II of Figure 2(e), also using only tap
folding, has a high folding number and a low critical delay,
but a lower hardware complexity than those of the archi-
tectures in Figure 2(a) and mode-I of Figure 2(e). This phe-
nomenon explains that under the same throughput rate, in-
creasing the folding number instead of reducing pipelined
latches could cut down more hardware complexity. On the
other hand, the integrated input-data and tap folding in the
proposed architecture can make adders of the accumulation
path having small word lengths and the FIR architecture hav-
ing a high folding number to reduce the hardware complex-
ity. Additionally, the proposed 2-bit input subdata approach
and tree accumulation approach can further lower hardware
complexity. As shown in Figure 9, the comparison results re-
veal the proposed architecture to request the least transistor
number than the other conventional architectures in realiz-
ing an FIR filter.

12 EURASIP Journal on Advances in Signal Processing

Table 2: Specification of the proposed programmable FIR proces-
sor.

Architecture Direct form

Multiplier-less operation Radix-4 Booth algorithm

Folding scheme
Integrating input-data
folding and tap folding

Process
Standard cell library of the TSMC
0.18 µm 1P6M CMOS technology

Supply voltage 1.8 V

Tap number 128

Input-data word length
× coefficient word length

10 bits× 10 bits

Clock frequency 200MHz

Throughput rate 20M samples per second

Folding number 10

Core area 675µm× 662µm

Power consumption 46mW@ 200MHz, 1.8 V

5. PROPOSED 128-TAP FIR PROCESSOR

Based on the proposed architecture, the TSMC 0.18 µm
single-poly-six-metal CMOS standard cells are employed to
realize a 128-tap programmable FIR processor [15]. The
Cadance tool is used to generate the layout of the pro-
posed FIR processor, and then extract the netlist. Under such
netlist, the Nanosim tool is employed to verify the function-
ality and power consumption using a uniform-distribution
input sequence. This processor’s specifications are detailed
in Table 2 where input-data and coefficient word lengths are
both 10 bits. The folding numbers for input-data and tap
folding are 5 (10/2) and 2, respectively, so that the fold-
ing number of the proposed processor is 10 (5 × 2). With
the clock frequency operated at 200MHz, the throughput
rate is 20M samples per second (200M/10), the core area
is 0.45mm2, and the layout for the proposed processor is
displayed in Figure 10. Table 3 compares the proposed pro-
cessor with the other programmable FIR processors that use
conventional folding schemes. From Table 3, the throughput
rate of the proposed processor is larger than those of the con-
ventional processors, indicating that the proposed processor
meets the computational performance demands of the con-
ventional processors.

Differences in fabrications and specifications are such
that the following normalization must be completed before
the areas are compared [16],

A = core area
tap number

×
(
0.18
tech.

)2
× 10

bits coeff.
× 10

bits data
.

(10)

Table 3 lists that the tap-folding processors are designed by
Wang et al. and Meier and Schobinger. With employing the
memory module to store data, Wang et al.’s processor has less
hardware cost than Meier and Schobinger’s one. However, in
comparison to the proposed processor, given that Wang et
al.’s processor using tap folding would generate multiplica-

Figure 10: Layout of the proposed 128-tap programmable FIR pro-
cessor.

tion outputs at full word length, its hardware complexity re-
mains higher than the proposed processor. As for Edwards et
al.’s processor, input-data folding is adopted to lower hard-
ware complexity. Yet, the input-data folding inevitably re-
stricts the folding number of this architecture to be limited by
the input-data word length and cannot be increased to lower
hardware complexity. Lastly, Pao et al. proposes a processor
using the half bit-sequential multiplier structure so that the
folding number is correlated with input-data and coefficient
word lengths. Though this processor has a very high folding
number, a full word-length multiplication output is still gen-
erated in each tap. The multiplication results from the taps
are then summed together. Consequently, the addition in Pao
et al.’s processor is performed on product results at a high
word length, which then incurs high hardware cost for its
adders. With hardware-complexity reduction from the inte-
grated input-data and tap folding, and the approaches using
2-bit input subdata latches and the tree accumulation with
simplified carry-in bit processing, the proposed FIR proces-
sor is demonstrated to have the least hardware area per tap
than the conventional ones.

To fairly compare power consumption of the proposed
and conventional FIR processors, the following normaliza-
tion equation is applied [16, 17]:

P = power
tap number

×
(
1.8
vdd

)2
× 0.18

tech.
× 10

bits coeff.

× 10
bits input data

× 20
throughput rate

.

(11)

According to Table 3, the proposed FIR processor can have
the least power consumption than the conventional ones ow-
ing to its low-complexity hardware design. When consider-
ing the product of hardware area and power consumption,
the proposed processor still yields the best performance.

O. T.-C. Chen and L.-H. Chen 13

Table 3: Comparison of the proposed and conventional programmable FIR processors.

Processors

Features

Specifications
Folding
schemes

Folding
numbers

Throughput
rates (samples
per second)

Power (mW)
Core
areas
(mm2)

Normalized
power per tap
(P, mW)

Normalized area
per tap
(A× 10−3 mm2)

P × A

Proposed
FIR
processor

0.18 µm,
1.8 V,
128 taps,
10× 10 bits,
200MHz

Input-data
folding +
tap folding

10 20M 46 0.45 0.36 3.51 1.26

Edwards
et al.’s
processor [5]

1.0 µm,
5V,
180 taps,
8× 8 bits,
57.28MHz

Input-data
folding

4 14.35M 2500 56.25 0.71 15.82 11.23

Wang et al.’s
processor [6]

0.18 µm,
1.8 V,
73 taps,
16× 16 bits,
10MHz

Tap folding 10 1M 10.69 0.74 1.14 3.96 4.51

Meier and
Schobinger’s
processor [7]

0.5 µm,
16 taps,
8× 10 bits,
70MHz

Tap folding 10 7M N/A 1.00 N/A 10.13 N/A

Pao et al.’s
processor [9]

0.8 µm,
5V,
64 taps,
8× 10 bits,
324MHz

Input-data
folding +
coefficient
folding

18 18M 2300 8.50 1.46 8.40 12.26

6. CONCLUSION

Following advances in fabrication technology, circuits can
now operate at a high frequency, while the FIR filter per-
formance needs only to meet the real-time demand. Increas-
ing the architecture’s folding number can effectively reduce
the hardware complexity, without violating the conditions
demanded by the applications. Hence, a hardware-efficient
FIR architecture with a high folding number is developed by
integrating input-data folding and tap folding. Additionally,
the 2-bit input subdata approach and tree accumulation ap-
proach with simplified carry-in bit processing are proposed
to reduce the hardware complexities of input subdata latches
and accumulation path, respectively. Based on the proposed
architecture, the TSMC 0.18 µmCMOS technology is applied
to realize a 128-tap programmable FIR processor with 10-
bit input data and coefficients. Operating at 200MHz fre-
quency, the processor has a core area of 0.45mm2 and yields
a throughput rate of 20M samples per second. In compar-
ison to conventional FIR processors, the proposed proces-
sor is able to achieve hardware efficiency owing to its low-
complexity architecture design.

ACKNOWLEDGMENT

This project was partially supported by National Science
Council, Taiwan, under Contract no. NSC 93-2215-E-194-
002.

REFERENCES

[1] H. Li and C. N. Zhang, “Low-complexity versatile finite field
multiplier in normal basis,” EURASIP Journal on Applied Sig-
nal Processing, vol. 2002, no. 9, pp. 954–960, 2002.

[2] A. Bigdeli, M. Biglari-Abhari, Z. Salcic, and Y. T. Lai, “A new
pipelined systolic array-based architecture for matrix inver-
sion in FPGAs with Kalman filter case study,” EURASIP Jour-
nal on Applied Signal Processing, vol. 2006, Article ID 89186,
12 pages, 2006.

[3] L.-H. Chen and O. T.-C. Chen, “A low-complexity and high-
speed Booth-algorithm FIR architecture,” in Proceedings of
IEEE International Symposium on Circuits and Systems (IS-
CAS ’01), vol. 4, pp. 338–341, Sydney, NSW, Australia, May
2001.

[4] L.-H. Chen and O. T.-C. Chen, “A hardware-efficient FIR ar-
chitecture with input-data and tap folding,” in Proceedings of
IEEE International Symposium on Circuits and Systems (IS-
CAS ’05), vol. 1, pp. 544–547, Kobe, Japan, May 2005.

[5] B. Edwards, A. Corry, N. Weste, and C. Greenberg, “A single-
chip video ghost canceller,” IEEE Journal of Solid-State Circuits,
vol. 28, no. 3, pp. 379–383, 1993.

[6] C. H. Wang, A. T. Erdogan, and T. Arslan, “High throughput
and low power FIR filtering IP cores,” in Proceedings of IEEE
International SOC Conference, pp. 127–130, Santa Clara, Calif,
USA, September 2004.

[7] S. R. Meier and M. Schobinger, “Time-sharing architectures
for FIR filter structures,” in Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing

14 EURASIP Journal on Advances in Signal Processing

(ICASSP ’00), vol. 6, pp. 3307–3310, Istanbul, Turkey, June
2000.

[8] S. Saponara, L. Fanucci, and P. Terreni, “Design of a low-power
VLSI macrocell for nonlinear adaptive video noise reduc-
tion,” EURASIP Journal on Applied Signal Processing, vol. 2004,
no. 12, pp. 1921–1930, 2004.

[9] S. Pao, K.-Y. Khoo, and A. N. Willson Jr., “A programmable
FIR filter for TV ghost cancellation,” in Proceedings of the 39th
IEEE Midwest Symposium on Circuits and Systems (MWSCAS
’96), vol. 1, pp. 133–136, Ames, Iowa, USA, August 1996.

[10] O. T.-C. Chen and W.-L. Liu, “An FIR processor with pro-
grammable dynamic data ranges,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 8, no. 4, pp. 440–
446, 2000.

[11] D. S. Dawoud, “Realization of pipelined multiplier-free FIR
digital filter,” in Proceedings of the 5th IEEE AFRICON Con-
ference on Electrotechnological Services for Africa (AFRICON
’99), vol. 1, pp. 335–338, Cape Town, South Africa, September-
October 1999.

[12] I. Koren, Computer Arithmetic Algorithms, Prentice-Hall, En-
glewood Cliffs, NJ, USA, 1993.

[13] P. Pirsch, Architectures for Digital Signal Processing, JohnWiley
& Sons, New York, NY, USA, 1998.

[14] L.-H. Chen, W.-L. Liu, and O. T.-C. Chen, “Determination of
radix numbers of the Booth algorithm for the optimized pro-
grammable FIR architecture,” in Proceedings of IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS ’00), vol. 2,
pp. 345–348, Geneva, Switzerland, May 2000.

[15] “TSMC 0.18µm Process 1.8 Volt SAGE-XTM Standard Cell Li-
brary Databook,” Artisan components, September 2003.

[16] K.-S. Kim and K. Lee, “Low-power and area-efficient FIR filter
implementation suitable for multiple taps,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 1,
pp. 150–153, 2003.

[17] C. J. Nicol, P. Larsson, K. Azadet, and J. H. O’Neill, “A
low-power 128-tap digital adaptive equalizer for broadband
modems,” IEEE Journal of Solid-State Circuits, vol. 32, no. 11,
pp. 1777–1789, 1997.

Oscal T.-C. Chen was born in Taiwan in
1965. He received the B.S. degree in electri-
cal engineering from National Taiwan Uni-
versity in 1987, M.S. and Ph.D. degrees
in electrical engineering from University of
Southern California, Los Angeles, USA, in
1990 and 1994, respectively. He worked in
Computer Processor Architecture Depart-
ment of Computer Communication & Re-
search Labs. (CCL), Industrial Technology
Research Institute (ITRI), for serving a system design engineer,
project leader, and section chief from 1994 to 1995. He was an As-
sociate Professor in Department of Electrical Engineering, National
Chung Cheng University (NCCU), Chia-yi, Taiwan, from Septem-
ber 1995 to August 2003. After August 2003, he became a Profes-
sor in Department of Electrical Engineering, NCCU. In the tech-
nical society, he was an Associate Editor of IEEE Circuits & De-
vices Magazine from August 2003, and a founding member of the
multimedia systems and applications technical committee of IEEE
Circuits and Systems Society. He participates in the Technical Pro-
gramCommittee of many IEEE international conferences and sym-
posiums. He was the co-recipient of the Best Paper Award of IEEE
Transactions on VLSI Systems in 1995. His research interests in-
clude video/audio processing, DSP processors, VLSI systems, RF
IC, microsensors, and communication systems.

Li-HsunChen was born in Taiwan, in 1976.
He received the B.S. degree in electrical en-
gineering fromNational Chung Cheng Uni-
versity in 1998. Currently, he is working to-
ward the Ph.D. degree in electrical engineer-
ing. His research interests include digital
filter design, reconfigurable architectures,
DSP processors, and VLSI systems.

	INTRODUCTION
	CONVENTIONAL BOOTH-ALGORITHM FIRARCHITECTURES USING FOLDING SCHEMES
	PROPOSED FIR ARCHITECTURE
	2-bit input subdata approach
	Tree accumulation approach

	ANALYSES AND COMPARISONS OF PROPOSEDAND CONVENTIONAL FIR ARCHITECTURES
	PROPOSED 128-TAP FIR PROCESSOR
	CONCLUSION
	Acknowledgment
	REFERENCES

