
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 92928, 11 pages
doi:10.1155/2007/92928

Research Article
A NewMultistage Lattice Vector Quantization with Adaptive
Subband Thresholding for Image Compression

M. F. M. Salleh and J. Soraghan

Institute for Signal Processing and Communications, Department of Electronic and Electrical Engineering,
University of Strathclyde, Royal College Building, Glasgow G1 1XW, UK

Received 22 December 2005; Revised 2 December 2006; Accepted 2 February 2007

Recommended by Liang-Gee Chen

Lattice vector quantization (LVQ) reduces coding complexity and computation due to its regular structure. A new multistage LVQ
(MLVQ) using an adaptive subband thresholding technique is presented and applied to image compression. The technique con-
centrates on reducing the quantization error of the quantized vectors by “blowing out” the residual quantization errors with an
LVQ scale factor. The significant coefficients of each subband are identified using an optimum adaptive thresholding scheme for
each subband. A variable length coding procedure using Golomb codes is used to compress the codebook index which produces
a very efficient and fast technique for entropy coding. Experimental results using the MLVQ are shown to be significantly better
than JPEG 2000 and the recent VQ techniques for various test images.

Copyright © 2007 M. F. M. Salleh and J. Soraghan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Recently there have been significant efforts in producing ef-
ficient image coding algorithms based on the wavelet trans-
form and vector quantization (VQ) [1–4]. In [4], a review of
some of image compression schemes that use vector quan-
tization and wavelet transform is given. In [1] a still image
compression scheme introduces an adaptive VQ technique.
The high frequency subbands coefficients are coded using
a technique called multiresolution adaptive vector quanti-
zation (MRAVQ). The VQ scheme uses the LBG algorithm
wherein the codebook is constructed adaptively from the in-
put data. The MRAVQ uses a bit allocation technique based
onmarginal analysis, and also incorporates the human visual
system properties. MRAVQ technique has been extended to
video coding in [5] to form the adaptive joint subband vec-
tor quantization (AJVQ). Using the LBG algorithm results in
high computation demands and encoding complexity partic-
ularly as the vector dimension and bit rate increase [6]. The
lattice vector quantization (LVQ) offers substantial reduction
in computational load and design complexity due to the lat-
tice regular structure [7]. The LVQ has been used in many
image coding applications [2, 3, 6]. In [2] a multistage resid-
ual vector quantization based on [8] is used along with LVQ

that produced results that are comparable to JPEG 2000 [9]
at low bit rates.

Image compression schemes that use plain lattice VQ
have been presented in [3, 6]. In order to improve perfor-
mance, the concept of zerotree prediction as in EZW [10]
or SPHIT [11] is incorporated to the coding scheme as pre-
sented in [12]. In this work the authors introduce a technique
called vector-SPHIT (VSPHIT) that groups the wavelet coef-
ficients to form vectors before using zerotree prediction. In
addition, the significant coefficients are quantized using the
voronoi lattice VQ (VLVQ) that reduces computational load.
Besides scanning the individual wavelet coefficients based on
zerotree concept, scanning blocks of the wavelet coefficients
has recently become popular. Such work is presented in [13]
called the “set-partitioning embedded block” (SPECK). The
work exploits the energy cluster of a block within the sub-
band and the significant coefficients are coded using a sim-
ple scalar quantization. The work in [14] uses VQ to code the
significant coefficients for SPECK called the vector SPECK
(VSPECK) which improves the performance.

The image coding scheme based on the wavelet trans-
form and vector quantization in [1, 2] searches for the signif-
icant subband coefficients by comparing them to a threshold
value at the initial compression stage. This is followed by a



2 EURASIP Journal on Advances in Signal Processing

quadtree modelling process of the significant data location.
The threshold setting is an important entity in searching for
the significant vectors in the subbands. Image subbands at
different levels of decomposition carry different degrees of
information. For general images, lower frequency subbands
carry more significant data than higher frequency subbands
[15]. Therefore there is a need to optimize the threshold
values for each subband. A second level of compression is
achieved by quantizing the significant vectors.

Entropy coding or lossless coding is traditionally the last
stage in an image compression scheme. The run-length cod-
ing technique is very popular choice for lossless coding. Ref-
erence [16] reports an efficient entropy coding technique
for sequences with significant runs of zeros. The scheme
is used on test data compression for a system-on-a-chip
design. The scheme incorporates variable run-length cod-
ing and Golomb codes [17] which provide a unique binary
representation for run-length integer symbol with different
lengths. It also offers a fast decoding algorithm as reported in
[18].

In this paper, a new technique for searching the signif-
icant subband coefficients based on an adaptive threshold-
ing scheme is presented. A new multistage LVQ (MLVQ)
procedure is developed that effectively reduces the quantiza-
tion errors of the quantized significant data. This is achieved
as a result of having a few quantizers in series in the en-
coding algorithm. The first quantizer output represents the
quantized vectors and the remaining quantizers deal with
the quantization errors. For stage 2 and above the quan-
tization errors are “blown out” using an LVQ scale factor.
This allows the LVQ to be used more efficiently. This differs
from [2] wherein the quantization errors are quantized un-
til the residual quantization errors converge to zero. Finally
the variable length coding with the Golomb codes is em-
ployed for lossless compression of the lattice codebook index
data.

The paper is organized as follows. Section 2 gives a review
of Golomb coding for lossless data compression. Section 3
reviews basic vector quantization and the lattice VQ. The
new multistage LVQ (MLVQ), adaptive subband threshold-
ing algorithm, and the index compression technique based
on Golomb coding are presented in Section 4. The perfor-
mance of the multiscale MLVQ algorithm for image com-
pression is presented in Section 5. MLVQ is shown to be sig-
nificantly superior to Man’s [2] method and JPEG 2000 [9].
It is also better than some recent VQ works as presented in
[12, 14]. Section 6 concludes the paper.

2. GOLOMB CODING

In this section, we review the Golomb coding and its appli-
cation to binary data having long runs of zeros. The Golomb
code provides a variable length code of the integer symbol
[17]. It is characterized by the Golomb code parameter b
which refers to the group size of the code. The choice of the
optimum value b for a certain data distribution is a non-
trivial task. An optimum value of b for random distribution
of binary data has been found by Golomb [17] as follows.

Consider a sequence of lengthN having n zeros and a one
{00 · · · 01}

X = {0n1}; where N = n + 1. (1)

Let p be the probability of a zero, and 1− p is the probability
of a one

P(0) = p, P(1) = 1− p. (2)

The probability of the sequence X can be expressed as

P(n) = pn(1− p). (3)

The optimum value of the group size b is [12]

b =
[
− 1

log2 p

]
. (4)

The run-length integers are grouped together, and the ele-
ment in the group set is based on the optimum Golomb pa-
rameter b found in (4). The run lengths (integer symbols)
group set G1 is {0, 1, 2, . . . , b − 1}; the run lengths (integer
symbols) group set G2 is {b, b + 1, b + 2, . . . , 2b − 1}; and so
forth. If b is a value of the power of two (b = 2N ), then each
group Gk will have 2N number of run lengths (integer sym-
bols). In general, the set of run lengths (integer symbols) Gk

is given by the following [17]:

Gk =
{
(k − 1)b, (k − 1)b + 1, (k − 1)b + 2, . . . , kb− 1

}
.
(5)

Each group of Gk will have a prefix and b number of tails.
The prefix is denoted as (k − 1)1s followed by a zero defined
as

prefix = 1(k−1)0. (6)

The tails is a binary representation of the modulus operation
between the run length integer symbol and b. Let n be the
length of tail sequence

n = log2 b,

tail = mod(run length symbol, b) with n bits length.
(7)

The codeword representation of the run length consists
of two parts, that is, the prefix and tail. Figure 1 summa-
rized the process of Golomb coding for b = 4. From (5)
the first group will consist of the run-length {0, 1, 2, 3} or
G1 = {0, 1, 2, 3}, and G2 = {4, 5, 6, 7}, and so forth. Group
1 will have a prefix {0}, group 2 will have prefix {10}, and
so forth. Since the value of b is chosen as 4, the length of tail
is log2 4 = 2. For run-length 0, the tail is represented by bits
{00}, the tail for run-length 1 is represented by bits {10}, and
so forth. Since the codeword is the combination of the group
prefix and the tail, for run-length of 0 will have the codeword
of {000} where the first 0 is the group prefix and the remain-
ing 0 s is the tail, the run-length 1 will have codeword {001},
and so forth. Figure 1(b) shows the example of the encoding
process with 32 bits input with 6 ones (r = 6) which can be
encoded as 22 bits. The Golomb codes offer an efficient tech-
nique for run-length coding (variable-length coding).



M. F. M. Salleh and J. Soraghan 3

Group Run length Group prefix Tail Codeword

G1

0

0

0 0 0 0 0

1 0 1 0 0 1

2 1 0 0 1 0

3 1 1 0 1 1

G2

4

10

0 0 1 0 0 0

5 0 1 1 0 0 1

6 1 0 1 0 1 0

7 1 1 1 0 1 1

G3

8

1 1 0

0 0 1 1 0 0 0

9 0 1 1 1 0 0 1

10 1 0 1 1 0 1 0

11 1 1 1 1 0 1 1

· · · · · · · · · · · · · · ·
(a) Golomb coding for b = 4

S = {000001︸ ︷︷ ︸ 00001︸ ︷︷ ︸ 00000001︸ ︷︷ ︸ 1︸︷︷︸ 00000001︸ ︷︷ ︸}

l1 = 5 l2 = 4 l3 = l5 = 0 l6 = 7

CS = {1001 1000 1011 000 1011}
(b) Example of encoding using the Golomb
code b = 4, CS = 19 bits

Figure 1

3. VECTOR QUANTIZATION

3.1. Lattice vector quantization

Vector quantizers (VQ) maps a cluster of vectors to a sin-
gle vector or codeword. A collection of codewords is called
a codebook. Let X be an input source vector with n-
components with joint pdf fX(x) = fX(x1, x2, . . . , xn). A vec-
tor quantization is denoted as Q with dimension n and size L.
It is defined as a function that maps a specific vector X ∈ �n

into one of the finite sets of output vectors of size L to be
Yi = Y1,Y2, . . . ,YL. Each of these output vectors is the code-
word and Y ∈ �n. Around each codeword Yi, an associated
nearest neighbour set of points called Voronoi regions are de-
fined as [19]

V
(
Yi
) = {x ∈ �k :

∥∥x − Yi

∥∥ ≤ ∥∥x − Yj

∥∥} ∀i �= j. (8)

In lattice vector quantization (LVQ), the input data is
mapped to the lattice points of a certain chosen lattice type.
The lattice points or codewords may be selected from the
coset points or the truncated lattice points [19]. The coset
of a lattice is the set of points obtained after a specific vector
is added to each lattice point. The input vectors surrounding
these lattice points are grouped together as if they are in the
same voronoi region.

The codebook of a lattice quantizer is obtained by select-
ing a finite number of lattice points (codewords of length L)
out of infinite lattice points. Gibson and Sayood [20] used the
minimum peak energy criteria of a lattice point in choosing

the codewords. The peak energy is defined as the squared dis-
tance of an output point (lattice point) farthest from the ori-
gin. This rule dictates the filling order of L codewords start-
ing from the innermost shells. The number of lattice point on
each shell is obtained from the coefficient of the theta func-
tion [7, 20]. Sloane has tabulated the number of lattice points
in the innermost shells of several root lattices and their dual
[21].

3.2. Lattice type

A lattice is a regular arrangement of points in k-space that
includes the origin or the zero vector. A lattice is defined as a
set of linearly independent vectors [7];

Λ = {X : X = a1u1 + a2u2 + · · · + aNuN
}
, (9)

where Λ ∈ �k, n ≤ k, ai and ui are integers for i =
1, 2, . . . ,N . The vector set {ui} is called the basis vectors of
lattice Λ, and it is convenient to express them as a generating
matrix U = [u1,u2, . . . ,un].

The Zn or cubic lattice is the simplest form of a lattice
structure. It consists of all the points in the coordinate sys-
tem with a certain lattice dimension. Other lattices such as
Dn(n ≥ 2), An(n ≥ 1), En[n = 6, 7, 8], and their dual are
the densest known sphere packing and covering in dimen-
sion n ≤ 8 [16]. Thus, they can be used for an efficient lattice
vector quantizer. The Dn lattice is defined by the following
[7]:

Dn =
(
x1, x2, . . . , xn

) ∈ Zn, where
n∑

i=1
xi = even. (10)

The An lattice for n ≥ 1 consists of the points of
(x0, x1, . . . , xn) with the integer coordinates sum to zero. The
lattice quantization for An is done in n + 1 dimensions and
the final result is obtained after reverting the dimension back
to n. The expression for En lattice with n = 6, 7, 8 is explained
in [7] as the following:

E8 =
(
1
2
,
1
2
,
1
2
,
1
2
,
1
2
,
1
2
,
1
2
,
1
2

)
+D8. (11)

The dual of lattice Dn, An, and En are detailed in [7]. Besides,
other important lattices have also been considered for many
applications such as the Coxeter-Todd (K12) lattice, Barnes-
Wall lattice (Λ16), and Leech lattice (Λ24). These lattices are
the densest known sphere packing and coverings in their re-
spective dimension [7].

3.3. Quantizing algorithms

Quantizing algorithms were developed based on the knowl-
edge of the root lattices and their dual for finding the clos-
est lattice point to an arbitrary point x in the space. Conway
and Sloane [22] developed an algorithm for finding the clos-
est point of the n-dimensional integer lattice Zn. The Zn or
cubic lattice is the simplest form of a lattice structure and
thus finding the closest point in the Zn lattice to the arbitrary
point or input vectors in space x ∈ �n is straightforward.



4 EURASIP Journal on Advances in Signal Processing

Define f (x) = round(x) and w(x) as

w(x) = �x	 for 0 < x < 0.5

= 
x� for x > 0.5

= 
x� for − 0.5 < x ≤ 0

= �x	 for x < −0.5,

(12)

where 
·� and �·	 are the floor and ceiling functions, respec-
tively.

The following sequences give the clear representation of
the algorithm where u is an integer.

(1) If x = 0, then f (x) = 0, w(x) = 1.
(2) If −1/2 ≤ x < 0 then f (x) = 0, w(x) = −1.
(3) If 0 < x < 1/2, u = 0 then f (x) = u, w(x) = u + 1.
(4) If 0 < u ≤ x ≤ u + 1/2, then f (x) = u, w(x) = u + 1.
(5) If 0 < u+1/2 < x < u+1, then f (x) = u+1, w(x) = u.
(6) If −u − 1/2 ≤ x ≤ −u < 0, then f (x) = −u, w(x) =

−u− 1.
(7) If −u− 1 < x < −u− 1/2, then f (x) = −u−1, w(x) =

−u− 1/2.

Conway and Sloane [22] also developed quantizing algo-
rithms for other lattices such as the Dn, which is the subset
of lattice Zn and An. The Dn lattice is formed after taking
the alternate points of the Zn cubic lattice [7]. For a given
x ∈ �n we define f (x) as the closest integer to input vec-
tor x, and g(x) is the next closest integer to x. The sum of
all components in f (x) and g(x) is obtained. The quantizing
output is chosen from either f (x) or g(x) whichever has an
even sum [22]. The algorithm for finding the closest point of
An to input vector or point x has been developed by Conway
and Sloane, and is given by the procedure defined in [22].
The quantization process will end up with the chosen lattice
points to form a hexagonal shape for two dimensional vec-
tors.

4. A NEWMULTISTAGE LATTICE VQ FOR
IMAGE COMPRESSION

4.1. Image encoder architecture

Figure 2 illustrates the encoder part of the new multiscale-
based multistage LVQ (MLVQ) using adaptive subband
thresholding and index compression with Golomb codes. A
wavelet transform is used to transform the image into a num-
ber of levels. A vector or unit is obtained by subdividing the
subband coefficients into certain block sizes. For example, a
block size of 4× 4 gives a 16 dimensional vector, 2× 2 gives 4
dimensional vector, and 1 × 1 gives one dimensional vector.
The significant vectors or units of all subbands are identified
by comparing the vector energy to certain thresholds. The
location information of the significant vectors is represented
in ones and zeros, defined as a MAP sequence which is coded
using quadtree coding. The significant vectors are saved and
passed to the multistage LVQ (MLVQ). The MLVQ produces
two outputs, that is, the scale list and index sequence, which
are then run-length coded. The lowest frequency subband is
coded using the JPEG 2000 lossless coding. The details of

Image Quadtree
coding

MAP sequence in
quadtree structure

Wavelet
transform

Significant
coefficients
selection

Multistage
LVQ

Scale list

Significant
vectors/units Variable-length

codingIndex sequence

LL subband

JPEG 2000 lossless
coding

Figure 2: MLVQ encoder scheme.

MLVQ and the generation of M-stage codebook for a par-
ticular subband are described in Section 4.3.

4.2. Adaptive subband thresholding

The threshold setting is an important entity in searching for
the significant coefficients (vectors/units) in the subband. A
vector or unit which consists of the subband coefficients is
considered significant if its normalized energy E defined as

E = w(k)
NkxNk

Nk∑

i=1

Nk∑

j=1

(
Xk(i, j)

)2
(13)

is greater than a threshold T defined as

T =
(
av
100

× threshold parameter
)2
, (14)

where Xk is a vector in a particular subband k with dimen-
sion Nk, w(k) is the perceptual weight factor and av is the
average pixel value of input image. The “threshold parame-
ter” which has a valid value of 1 to 1000, is chosen by tak-
ing into account the target bit rate. Image subbands at dif-
ferent levels of decomposition carry different weights of in-
formation. The lower frequency subbands carry more signif-
icant data as compared to the higher ones [15]. Also different
subbands at the same wavelet transform level have different
statistical distributions. Thus, we introduce an adaptive sub-
band thresholding scheme, which adapts the threshold values
in two steps. First the scheme optimizes the threshold val-
ues between the wavelet transform levels. Then, these thresh-
old values are optimized at each wavelet transform level. In
both steps, the threshold values are optimized by minimizing
the distortion of the reconstructed image. The process is also
restricted by a bit allocation constraint. In this case the bit
allocation was bounded using the amount of vectors avail-
able (15). We define R as the target bit rate per pixel (bpp), r
and c are the number of row and column of the image, and
LL sb bit is the amount of bits required to code the low-low
subband and other sb bits is the amount of bits required to



M. F. M. Salleh and J. Soraghan 5

Stage 1

Stage 2

Stage 3

Initialization

Inter-level DWT setup

Thresholds optimization

End

(a) Adaptive subband thresholding scheme

For DWT level 1 to 3

Find direction

Th Param Up

Th Param Down

T

F

Num vector <
total vector

End

(b) Thresholds optimization (stage 3)

Figure 3

code the remaining subbands and bitbudget is the total bit bud-
get. The following relationships are defined:

bitbudget = R× (r × c) = LL sb bits + other sb bits,

total no vectors

=
Lmax∑

i=1

(other sb bits− 0.2× other sb bits− 3× 8)
ρ

where ρ =
⎧
⎨
⎩
6, n = 4,

3, n = 1.

(15)

In this work the wavelet transform level (Lmax) is 3, and
we are approximating 20% of the high-frequency subband
bits to be used to code the MAP data. For Zn lattice quantizer
with codebook radius (m = 3), the denominator ρ is 6 (6-bit
index) for n = 4 or 3 (3-bit index) for n = 1. The last term
in (15) accounts for the LVQ scale factors, where there are
3 high-frequency subbands available at every wavelet trans-
form level, and each of the scale factors is represented by
8 bits.

The adaptive threshold algorithm can be categorized into
three stages as shown by the flow diagram in Figure 3(a). The
first stage (initialization) calculates the initial threshold using
(14), and this value is used to search the significant coeffi-
cients in the subbands. Then the sifted subbands are used to
reconstruct the image and the initial distortion is calculated.
In the second stage (inter-level DWT setup) the algorithm
optimizes the threshold between the wavelet transform lev-
els. Thus in the case of a 3-level system there will be three
threshold values for the three different wavelet levels.

An iterative process is carried out to search for the op-
timal threshold setup between the wavelet transform levels.
The following empirical relationship between threshold val-
ues at different levels is used:

Tl =
⎧
⎪⎨
⎪⎩

Tinitial, for l = 1,

Tinitial

(l − 1)× δ
, for l > 1,

(16)

where Tinitial is the initial threshold value, Tl indicates the
threshold value at DWT level l, and δ is an incremental
counter.

In the search process every time the value of δ is incre-
mented the above steps are repeated for calculating the dis-
tortion and resulting output number of vectors that are used.
The process will stop and the optimized threshold values are
saved once the current distortion is higher than the previous
one.

The third stage (thresholds optimization) optimizes the
threshold values for each subband at every wavelet transform
level. Thus there will be nine different optimized threshold
values. The three threshold values found in stage 2 above are
used in subsequent steps for the “threshold parameter” ex-
pression derived from (14) as follows:

threshold parameter =
(
100
av

)√
Tl where l = 1, 2, 3.

(17)

In this stage the algorithm optimizes the threshold by in-
creasing or lowering the “threshold parameter.” The detail
flow diagram of the threshold optimization process is shown
in Figure 3(b).

The first process (find direction) is to identify the direc-
tion of the “threshold parameter” whether up or down. Then
the (Th Param Up) algorithm processes the subbands that
have the “threshold parameter” going up. In this process, ev-
ery time the “threshold parameter” value increases, a new
threshold for that particular subband is computed. Then it
searches the significant coefficients and the sifted subbands
are used to reconstruct the image. Also the number of signif-
icant vectors within the subbands and resulting distortion are
computed. The optimization process will stop, and the opti-
mized values are saved when the current distortion is higher
than the previous one or the number of vectors has exceeded
the maximum allowed.

Finally, the (Th Param Down) algorithm processes the
subbands which have the “threshold parameter” going down.
It involves the same steps as above before calculating the dis-
tortion. The vector gain obtained in the above step is used



6 EURASIP Journal on Advances in Signal Processing

Significant
vectors LVQ-1

LVQ-2

LVQ-M

α1

α2

αM

QV1

QV2

QVM

α1 ×QE1

αM−1 ×QEM−1

1
...

N

1
...

N

1

...
N

CB-1 Index

1 0 1 1 34

13

...
...

0 1 0 1

CB-2 Index

0 0 0 1 1

14

...
...

0 1 0 −1

CB-M Index

0 0 0 −1 2

7

...
...

...

1 0 0 0

M-stage
codebook and the
corresponding

indexes

Figure 4: MLVQ process of a particular subband.

as the lower bound. The optimized values are saved after
the current distortion is higher than the previous one or the
number of vectors has exceeded the maximum allowed.

4.3. Multistage lattice VQ

The multistage LVQ (MLVQ) process for a particular sub-
band is illustrated in Figure 4. In this paper we chose the Zn

lattice quantizer to quantize the significant vectors. For each
LVQ process, the input vectors are first scaled and then the
scaled vectors are quantized using the quantizing algorithm
presented in Section 3.3. The output vectors of this algorithm
are checked to make sure that they are confined in the cho-
sen spherical codebook radius. The output vectors that ex-
ceed the codebook radius are rescaled and remapped to the
nearest valid codeword to produce the final quantized vec-
tors (QV). The quantization error vectors are obtained by
subtracting the quantized vectors from the scaled vectors.
Therefore each LVQ process produces three outputs, that is,
the scale factor (α), quantized vectors (QV), and the quanti-
zation error vectors (QE).

The scaling procedure for each LVQ of the input vectors
uses the modification of the work presented in [3]. As a re-
sult of these modifications, we can use the optimum setup
(obtained from experiment) for codebook truncation where
the input vectors reside in both granular and overlap regions
for LVQ stage one. At the subsequent LVQ stages the input
vectors are forced to reside only in granular regions. The first
LVQ stage processes the significant vectors and produces a
scale factor (α1), the quantized vectors (QV1) or codewords,
and the quantization error vectors (QE1), and so forth. Then
the quantization error vectors (QE1) are “blown out” bymul-
tiplying them with the current stage scale factor (α1). They
are then used as the input vectors for the subsequent LVQ

stage, and this process repeats up to stage M until the allo-
cated bits are exhausted.

Figure 4 illustrates the resulting M-stage codebook gen-
eration and the corresponding indexes of a particular sub-
band. At each LVQ stage, a spherical Zn quantizer with code-
book radius (m = 3) is used. Hence for four dimensional
vectors, there are 64 lattice points (codewords) available with
3 layers codebook [3]. The index of each codeword is rep-
resented by 6 bits. If the origin is included, the outer lattice
point will be removed to accommodate the origin. In one di-
mensional vector there are 7 codewords with 3 bits index rep-
resentation. If a single stage LVQ produces N codewords and
there areM stages, then the resulting codebook size isM×N
as shown in Figure 4. The indexes of M-stage codebook are
variable-length coded using the Golomb codes.

TheMLVQ pseudo code to process all the high-frequency
subbands is described in Figure 5. The Lmax indicates the
number of DWT level. In this algorithm, the quantization
errors are produced for an extra set of input vectors to be
quantized. The advantage of “blowing out” the quantization
error vectors is that they can be mapped to manymore lattice
points during the subsequent LVQ stages. Thus the MLVQ
can capture more quantization errors and produce better im-
age quality.

4.4. Lattice codebook index compression

Run-length coding is useful in compressing binary data se-
quence with long runs of zeros. In this technique each run
of zeros is represented by integer values or symbols. For ex-
ample, a 24-bit binary sequence {00000000001000000001}
can be encoded as an integer sequence {10, 8}. If each run-
length integer is represented by 8-bit, the above sequence can
be represented as 16-bit sequence. This method is inefficient
when most of the integer symbols can be represented with
less than 8-bits or when some of the integer symbols exceed
the 8-bit value. This problem is solved using a variable-length
coding with Golomb codes, where each integer symbol is rep-
resented by a unique bit representation of different Golomb
codes length [17].

In our work, we use variable-length coding to compress
the index sequence. First we obtained the value of b as follows
assuming that X is a binary sequence with length N :

P(0) = p; P(1) = 1− p =
[∑N

i=1 xi
N

]
; xi ∈ X. (18)

From (4) we can derive the value of b

b = round
([
− 1
log2(1− δ)

])
; where δ =

[∑N
i=1 xi
N

]
.

(19)

In this work for 4 dimensional vector, the index sequence
consists of integer values with maximum value of 64, and can
be represented as 6-bit integer. The distribution of these in-
dex values is dependent upon the MLVQ stage. For exam-
ple, the index data are widely distributed between 1 and 64
(3 codebook levels) at stage one. However, the distribution



M. F. M. Salleh and J. Soraghan 7

Calculate leftover bits after
baseband coding

No
Leftover bits > 0

For DWT level = Lmax : 1

Yes

For subband type = 1 : 3

Prompt the user
for inadequate
bit allocation

Scale the significant vectors

(M = 1) or QE vectors, and
save into a scale record

Vector quantize the scaled
vectors, and save into a
quantized vectors record

Quantization error vectors =
(scaled vectors-quantized

vectors) x significant vectors
scale (M = 1) or input

vectors scale

Input vector = quantization
errors vectors

Calculate leftover bits, and
incrementMYes

No

End

leftover bits> 0

Figure 5: Flow diagram of MLVQ algorithm.

is more concentrated on the first codebook level and origin
when the multistage is greater than one. This is due to the
fact that the MLVQ has been designed to force the quantized
vectors to reside in the granular region if the multistage has
more than 1 stage as explained in Section 4.3. Figure 6 illus-
trates the index compression scheme using variable-length
coding with Golomb codes for 4-dimensional vector code-
book indexes.

The compression technique involves two steps for the
case of stage one of the MLVQ. First the index sequence is
changed to binary sequence, and then split into two parts,
that is, the higher nibble and the lower nibble. The compres-
sion is done only on the higher nibble since it has more ze-
ros and less ones. The lower nibble is uncompressed since it
has almost 50% zeros and ones. Figure 6 illustrates the index
compression technique for MLVQ of stage one. The higher
nibble index column bits are taken, and they are jointed to-
gether as a single row of bit sequence S. Then the coded
sequence CS is produced via variable length coding with
Golomb codes with parameter b = 4. From Figure 1(a), the

first run-length (l1 = 9) is coded as {11001}, the second
run-length (l2 = 0) is coded as {000}, the third run-length
(l3 = 1) is coded as {001}, and so forth. For the subsequence
stages for 4-dimensional vector of MLVQ, the entire data will
be compressed rather than dividing them into the higher
and lower nibbles. For 1 dimensional vector, the codebook
indexes are represented as 3-bit integers and the whole bi-
nary data are compressed for everyMLVQ stage. In this work,
the variable length coding with Golomb codes provides high
compression on the index sequences. Thus more leftover bits
are available for subsequent LVQ stages to encode quantiza-
tion errors and yield better output quality.

5. SIMULATION RESULTS

The test images are decomposed into several WT levels. In
this work we used 4WT levels for image size 512 × 512, and
3 levels for image size 256× 256. Various block sizes are used
for truncating the subbands which ultimately determine the
vector size. The 2 × 2 block size results in four dimensional



8 EURASIP Journal on Advances in Signal Processing

Index Higher nibble Lower nibble

2 0 0 0 0 1 0

3 0 0 0 0 1 1

4 0 0 0 1 0 0

9 0 0 1 0 0 1

5 0 0 0 1 0 1

1 0 0 0 0 0 0

7 0 0 0 1 1 1

15 0 0 1 1 1 1

12 0 0 1 1 0 0

52 1 1 0 1 0 0

40 1 0 1 0 0 0

12 0 0 1 1 0 0

60 1 1 1 1 1 1

S = {0 0 0 0 0 0 0 0 0 1︸ ︷︷ ︸ 1︸︷︷︸ 0 1︸ ︷︷ ︸ 0 0 . . . 1 1 1}

l1 = 9 l2 = 0 l3 = 1 b = 4

CS = {1 1 0 0 1 0 0 0 0 0 1 . . .}

Figure 6: Index sequence compression (multistage = 1).

vectors, and block size 1×1 results in one dimensional vector.
In this work the block size 1×1 is used in the lower subbands
with maximum codebook radius set to (m = 2). In this case,
every pixel can be lattice quantized to one of the following
values {0,±1,±2}. Since the lower subbands contain more
significant data, there are higher number data being quan-
tized to either to {±2} (highest codebook radius). This in-
creases the codebook index redundancy resulting in a higher
overall compression via entropy coding using the variable-
length coding with Golomb codes.

5.1. Incremental results

In MLVQ the quantization errors of the current stage are
“blown out” by multiplying them with the current scale fac-
tor. The advantage of “blowing out” the quantization errors
is that there will be more lattice points in the subsequence
quantization stages. Thus more residual quantization errors
can be captured and enhance the decoded image quality. Fur-
thermore, in this work we use the block size of 1 × 1 in the
lower subbands. The advantage is as explained as above. The
block size is set to 2×2 at levels one and two, and 1×1 for lev-
els three and four. Figure 7 shows the effect of “blowing out”
technique and the results are compared to Man’s codec [2].
In this scheme the image is decomposed to four DWT levels,
and tested on image “Lena” of size 512× 512. The incremen-
tal results for image compression scheme with 2×2 block size
for all four levels ofWT can be found in [23]. In addition, the
performance of MLVQ at 0.17 bpp (>32 dB) which is better
as compared to the result found in [3] for image lena with
PSNR 30.3 dB.

5.2. Comparisonwith other VQ coders

Besides comparison with Man’s LVQ [2], we also include the
comparison with other VQ works that incorporate the con-
cept of EZW zerotree prediction. Therefore, we compare the

26

28

30

32

34

36

38
P
SN

R
(d
B
)

0 0.1 0.2 0.3 0.4 0.5

Bit rate (bpp)

MLVQ
Man’s LVQ

Figure 7: Comparison with Man’s LVQ [2] for image Lena 512 ×
512.

Table 1: Performance comparison at bit rate 0.2 bpp.

Grey image VLVQ-VSPHIT
(entropy coded)

VSPECK MLVQ JPEG 2000

Lena 32.89 33.47 33.51 32.96

Goldhill 29.49 30.11 30.21 29.84

Barbara 26.81 27.46 27.34 27.17

MLVQ without adaptive threshold algorithm with the VLVQ
of VSPHIT presented in [12]. In addition, the comparison is
also made with the VSPECK image coder presented in [14].
Table 1 shows the comparison between the coders at 0.2 bpp
for standard test images “Lena,” “Goldhill,” and “Barbara.”
The comparison with JPEG 2000 is also included as refer-
ence so that the results in Section 5.3 on the effect of adaptive
thresholding algorithm becomemeaningful. The table shows
that MLVQ performs superior to VLVQ-VSPHIT for all three
test images and better than VSPECK for test images “Lena”
and “Goldhill.”



M. F. M. Salleh and J. Soraghan 9

23

25

27

29

31

P
SN

R

0 0.1 0.2 0.3 0.4 0.5 0.6

(bpp)

JPEG2000
MLVQ: T constant
MLVQ: T adaptive

Figure 8: Test image “goldhill.”

23

25

27

29

31

33

P
SN

R

0 0.1 0.2 0.3 0.4 0.5 0.6

(bpp)

JPEG2000
MLVQ: T constant
MLVQ: T adaptive

Figure 9: Test image “camera.”

5.3. Effect of adaptive thresholding

The grey (8-bit) “Goldhill,” “camera,” “Lena,” and “Clown”
images of size 256 × 256 are used to test the effect of adap-
tive subband thresholding to the MLVQ image compression
scheme. The block size is set to 2 × 2 at level one, and 1 × 1
for levels two and three. The performance results of the new
image coding scheme with constant and adaptive threshold
are compared with JPEG 2000 [9], respectively, as shown in
Figures 8, 9, 10, 11. It is clear that using the adaptive sub-
band thresholding algorithm with MLVQ gives superior per-
formance to either the JPEG 2000 or the constant subband
thresholding with MLVQ scheme.

Figure 12 shows the visual comparison of test image
“Camera” between the new MLVQ (adaptive threshold) and
JPEG 2000 at 0.2 bpp. It can be seen that the new MLVQ
(adaptive threshold) reconstructed images are less blurred
than the JPEG 2000 reconstructed images. Furthermore it
produces 2 dB better PSNR than JPEG 2000 for the “camera”
test image.

23

25

27

29

31

33

35

P
SN

R

0 0.1 0.2 0.3 0.4 0.5 0.6

(bpp)

JPEG2000
MLVQ: T constant
MLVQ: T adaptive

Figure 10: Test image “lena.”

22

24

26

28

30

32

34

P
SN

R

0 0.1 0.2 0.3 0.4 0.5 0.6

(bpp)

JPEG2000
MLVQ: T constant
MLVQ: T adaptive

Figure 11: Test image “clown.”

Table 2: Computational complexity based on grey Lena of 256×256
(8 bit) at bit rate 0.3 bpp.

Codec 1 Codec 2

Total CPU time (s) 23.98 Total CPU time (s) 180.53

Constant threshold 0.0% Adaptive threshold 86.3%

MLVQ 100% MLVQ 13.7%

5.4. Complexity analysis

As the proposed algorithm is an iterative process, its compu-
tational complexity is higher when the adaptive threshold-
ing algorithm is used (codec 2) as compared to the constant
threshold (codec 1) as shown in Table 2. The threshold eval-
uation stage of the adaptive subband thresholding procedure
illustrated in Figure 3(a) can be removed to reduce the com-
putational cost with a resulting reduction in performance. In
this evaluation, the Intel P4 (Northwood) with 3GHz CPU
clock speed, 800MHz front side bus (FSB) and 512MB RAM
is used as the evaluating environment.



10 EURASIP Journal on Advances in Signal Processing

(a) Original “camera” (b) JPEG 2000, (26.3 dB) (c) MLVQ, (28.3 dB)

Figure 12

6. CONCLUSIONS

The new adaptive threshold increases the performance of
the image codec which itself is restricted by the bit alloca-
tion constraint. The lattice VQ reduces complexity as well as
computation load in codebook generation as compared to
LBQ algorithm. This facilitates the use of multistage quanti-
zation in the coding scheme. The multistage LVQ technique
presented in this paper refines the quantized vectors, and re-
duces the quantization errors. Thus the new multiscale mul-
tistage LVQ (MLVQ) using adaptive subband thresholding
image compression scheme outperforms JPEG 2000 as well
as other recent VQ techniques throughout all range of bit
rates for the tested images.

ACKNOWLEDGMENT

The authors are very grateful to the Universiti Sains Malaysia
for funding the research through teaching fellowship scheme.

REFERENCES

[1] S. P. Voukelatos and J. Soraghan, “Very low bit-rate color video
coding using adaptive subband vector quantization with dy-
namic bit allocation,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 7, no. 2, pp. 424–428, 1997.

[2] H. Man, F. Kossentini, andM. J. T. Smith, “A family of efficient
and channel error resilient wavelet/subband image coders,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 9, no. 1, pp. 95–108, 1999.

[3] M. Barlaud, P. Sole, T. Gaidon, M. Antonini, and P. Mathieu,
“Pyramidal lattice vector quantization for multiscale image
coding,” IEEE Transactions on Image Processing, vol. 3, no. 4,
pp. 367–381, 1994.

[4] T. Sikora, “Trends and perspectives in image and video cod-
ing,” Proceedings of the IEEE, vol. 93, no. 1, pp. 6–17, 2005.

[5] A. S. Akbari and J. Soraghan, “Adaptive joint subband vector
quantisation codec for handheld videophone applications,”
Electronics Letters, vol. 39, no. 14, pp. 1044–1046, 2003.

[6] D. G. Jeong and J. D. Gibson, “Lattice vector quantization for
image coding,” in Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP ’89), vol. 3,
pp. 1743–1746, Glasgow, UK, May 1989.

[7] J. H. Conway andN. J. A. Sloane, Sphere-Packings, Lattices, and
Groups, Springer, New York, NY, USA, 1988.

[8] F. F. Kossentini, M. J. T. Smith, and C. F. Barnes, “Necessary
conditions for the optimality of variable-rate residual vector
quantizers,” IEEE Transactions on Information Theory, vol. 41,
no. 6, part 2, pp. 1903–1914, 1995.

[9] A. N. Skodras, C. A. Christopoulos, and T. Ebrahimi, “The
JPEG 2000 still image compression standard,” IEEE Signal Pro-
cessing Magazine, vol. 18, no. 5, pp. 36–58, 2001.

[10] J. M. Shapiro, “Embedded image coding using zerotrees of
wavelet coefficients,” IEEE Transactions on Signal Processing,
vol. 41, no. 12, pp. 3445–3462, 1993.

[11] A. Said and W. A. Pearlman, “A new, fast, and efficient im-
age codec based on set partitioning in hierarchical trees,”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 6, no. 3, pp. 243–250, 1996.

[12] D. Mukherjee and S. K. Mitra, “Successive refinement lattice
vector quantization,” IEEE Transactions on Image Processing,
vol. 11, no. 12, pp. 1337–1348, 2002.

[13] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient,
low-complexity image coding with a set-partitioning embed-
ded block coder,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 14, no. 11, pp. 1219–1235, 2004.

[14] C. C. Chao and R. M. Gray, “Image compression with a vector
speck algorithm,” in Proceedings of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP ’06),
vol. 2, pp. 445–448, Toulouse, France, May 2006.

[15] A. O. Zaid, C. Olivier, and F. Marmoiton, “Wavelet im-
age coding with adaptive dead-zone selection: application to
JPEG2000,” in Proceedings of IEEE International Conference on
Image Processing (ICIP ’02), vol. 3, pp. 253–256, Rochester, NY,
USA, June 2002.

[16] A. Chandra and K. Chakrabarty, “System-on-a-chip test-
data compression and decompression architectures based on
Golomb codes,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, no. 3, pp. 355–368,
2001.

[17] S. W. Golomb, “Run-length encodings,” IEEE Transactions on
Information Theory, vol. 12, no. 3, pp. 399–401, 1966.

[18] J. Senecal, M. Duchaineau, and K. I. Joy, “Length-limited
variable-to-variable length codes for high-performance en-
tropy coding,” in Proceedings of Data Compression Conference
(DCC ’04), pp. 389–398, Snowbird, Utah, USA, March 2004.



M. F. M. Salleh and J. Soraghan 11

[19] A. A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic, New York, NY, USA, 1992.

[20] J. D. Gibson and K. Sayood, “Lattice quantization,” in Ad-
vances in Electronics and Electron Physics, P. Hawkes, Ed.,
vol. 72, chapter 3, Academic Press, San Diego, Calif, USA,
1988.

[21] N. J. A. Sloane, “Tables of sphere packings and spherical
codes,” IEEE Transactions on Information Theory, vol. 27, no. 3,
pp. 327–338, 1981.

[22] J. H. Conway and N. J. A. Sloane, “Fast quantizing and decod-
ing algorithms for lattice quantizers and codes,” IEEE Transac-
tions on Information Theory, vol. 28, no. 2, pp. 227–232, 1982.

[23] M. F. M. Salleh and J. Soraghan, “A new multistage lattice
VQ (MLVQ) technique for image compression,” in European
Signal Processing Conference (EUSIPCO ’05), Antalya, Turkey,
September 2005.

M. F. M. Salleh was born in Bagan Serai,
Perak, Malaysia, in 1971. He received his
B.S. degree in electrical engineering from
Polytechnic University, Brooklyn, New
York, US, in 1995. He was then a Software
Engineer at Motorola Penang, Malaysia,
in R&D Department until July 2001. He
obtained his M.S. degree in communication
engineering from UMIST, Manchester, UK,
in 2002. He has completed his Ph.D. degree
in image and video coding for mobile applications in June 2006
from the Institute for Communications and Signal Processing
(ICSP), University of Strathclyde, Glasgow, UK.

J. Soraghan received the B.Eng. (first class
honors) and the M.Eng.S. degrees in 1978
and 1982, respectively, both fromUniversity
College Dublin, Dublin, Ireland, and the
Ph.D. degree in electronic engineering from
the University of Southampton, Southamp-
ton, UK, in 1989. From 1979 to 1980, he
was with Westinghouse Electric Corpora-
tion, USA. In 1986, he joined the Depart-
ment of Electronic and Electrical Engineer-
ing, University of Strathclyde, Glasgow, UK, as a Lecturer in the
Signal Processing Division. He became a Senior Lecturer in 1999,
a Reader in 2001, and a Professor in 2003. From 1989 to 1991, he
was Manager of the Scottish Transputer Centre, and from 1991 to
1995, he was Manager of the DTI Centre for Parallel Signal Pro-
cessing. Since 1996, he has been Manager of the Texas Instruments’
DSP Elite Centre in the University. He currently holds the Texas
Instruments Chair in Signal Processing in the Institute of Com-
munications and Signal Processing (ICSP), University of Strath-
clyde. In December 2005, he became Head of the ICSP. His main
research interests include advanced linear and nonlinear multime-
dia signal processing algorithms; wavelets and fuzzy systems with
applications to telecommunications; biomedical; and remote sens-
ing. He has supervised 23 Ph.D. students to graduation, holds three
patents, and has published over 240 technical papers.


	INTRODUCTION
	GOLOMB CODING
	VECTOR QUANTIZATION
	Lattice vector quantization
	Lattice type
	Quantizing algorithms

	A NEW MULTISTAGE LATTICE VQ FOR IMAGE COMPRESSION 
	Image encoder architecture
	Adaptive subband thresholding
	Multistage lattice VQ
	Lattice codebook index compression

	SIMULATION RESULTS 
	Incremental results 
	Comparison with other VQ coders
	Effect of adaptive thresholding
	Complexity analysis

	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

