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Guaranteeing ECG signal quality in wavelet lossy compression methods is essential for clinical acceptability of reconstructed sig-
nals. In this paper, we present a simple and efficient method for guaranteeing reconstruction quality measured using the new
distortion index wavelet weighted PRD (WWPRD), which reflects in a more accurate way the real clinical distortion of the com-
pressed signal. The method is based on the wavelet transform and its subsequent coding using the set partitioning in hierarchical
trees (SPIHT) algorithm. By thresholding the WWPRD in the wavelet transform domain, a very precise reconstruction error can
be achieved thus enabling to obtain clinically useful reconstructed signals. Because of its computational efficiency, the method is
suitable to work in a real-time operation, thus being very useful for real-time telecardiology systems. The method is extensively
tested using two different ECG databases. Results led to an excellent conclusion: the method controls the quality in a very accu-
rate way not only in mean value but also with a low-standard deviation. The effects of ECG baseline wandering as well as noise
in compression are also discussed. Baseline wandering provokes negative effects when using WWPRD index to guarantee quality
because this index is normalized by the signal energy. Therefore, it is better to remove it before compression. On the other hand,
noise causes an increase in signal energy provoking an artificial increase of the coded signal bit rate. Clinical validation by cardi-
ologists showed that a WWPRD value of 10% preserves the signal quality and thus they recommend this value to be used in the
compression system.

Copyright © 2007 A. Alesanco and J. Garcia. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

ECG signal recording and further interpretation constitute
the first tool for cardiopathy diagnosis. Almost all new ECG
acquisition devices offer the possibility to digitally store the
acquired ECG signals. Taking into account that a standard
acquisition device usually works with a sampling frequency
of 512 samples per second with a resolution of 16 bits and
records 8 leads, the output information rate obtained is
about 65 Kbit/s. Although the storage capacity in informa-
tion systems as well as network bandwidth increases quickly,
an efficient storage and transmission method is still re-
quired because it leads to an efficient use of the available re-
sources. Moreover, this is specially critical in telecardiology
systems, where the available network capacity could be scarce
and/or expensive, such as in mobile or satellite communica-
tions.

ECG compression is a well-studied topic by the biomedi-
cal research community. In the last 15, years a great variety of

compression algorithms has been presented. These methods
can be roughly divided into two categories: direct methods
and transform-based methods [1]. Direct methods treat the
ECG samples directly in the time domain. Representative di-
rect methods are AZTEC [2] and CORTES [3]. In transform-
based methods, ECG samples are transformed into another
domain in order to concentrate a large quantity of signal en-
ergy into a small number of coefficients, which afterwards
are efficiently coded. Although many transforms have been
used (KLT [4], DCT [5], etc.), the wavelet transform (WT)
has attracted much attention in the last years [6, 7]. One of
its main advantages is its simplicity. Computing the WT is
very fast due to the existence of efficient algorithms. Another
advantage is its versatility. Wavelet transform can use a great
variety of mother functions and some of them adjust very
well to the ECG morphology, leading to an efficient repre-
sentation of the ECG signal in the wavelet domain. A deeper
explanation of the wavelet transform can be found elsewhere

[8].
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In order to obtain relevant compression rates, wavelet
compression has to be lossy. Because the power spectral den-
sity of the ECG signal has a smooth low-pass shape, the en-
ergy distribution at each scale of the WT is concentrated in
a small number of coefficients. Moreover, the relevant WT
coefficients appear very close in the order sequence within a
wavelet scale and in the same position among scales. These
properties can be exploited so as to obtain a high compres-
sion gain. In this way, the set partitioning in hierarchical trees
(SPIHT) algorithm was proposed to be used for ECG signal
compression [6]. SPIHT codes the wavelet coefficients ex-
ploiting the redundancies among wavelet scales. SPIHT algo-
rithm has demonstrated its efficiency for ECG compression
both in obtaining high compression gain with low distortion
and computational simplicity, making it a good choice for
real-time ECG transmission. Another interesting property is
its scalability, not only for controlling the bit rate but also
for controlling the distortion introduced in the coding pro-
cess.

When working with lossy compression, much care must
be taken with the distortion introduced in the coding pro-
cess. The higher the compression rate, the better for trans-
mission and storage purposes but the higher the signal dis-
tortion introduced. Two mathematical indices are commonly
used to measure the distortion in the compressed ECG sig-
nal. The first one is the root mean square (RMS) error index,
which is defined as follows:

SN (x[n] = X(n])?
o ,

RMS=J (1)

where x[n] is the original signal, X[n] is the reconstructed
signal, and N is the length of the signal block over which
the RMS is calculated. The second one is the percentual RMS
Difference (PRD) and it is defined as follows:

N ~ 2
PRD = J 2oz Gl = HD)” g0y, (2)

=1 % [n]

Nevertheless, neither PRD nor RMS indices is directly re-
lated to the clinical quality a cardiologist would appreciate
when working with the compressed signals. For this reason,
a more appropriate index should be used where the clinical
quality was reflected while preserving the easy-to-compute
property in order to have the possibility to be used in a
real-time compression system. The wavelet-based weighted
PRD measure (WWPRD) was introduced by Al-Fahoum [9],
where it was shown that the correlation between the clinical
quality (obtained with a direct survey conducted with car-
diologists) and the new proposed index, WWPRD, is much
higher than the correlation with the mathematical indices,
for example, PRD index.

Since a highly distorted signal can be useless from a clin-
ical point of view, a precise control in the distortion intro-
duced (the quality of the reconstructed signal) is essential for
a compression algorithm. In [10], a method for guaranteeing

ECG quality using the SPIHT algorithm was also presented.
However, due to its indirect way to estimate the distortion
by using the Newton-Raphson technique to iteratively cal-
culate the distortion, guaranteeing quality was complex. Be-
sides, the index being guaranteed was PRD, which does not
reflect a real clinical distortion.

In this paper we propose a simple method to guar-
antee the quality of reconstructed signal by thresholding
the recently proposed index WWPRD, which reflects in a
more accurate way the clinical distortion introduced by the
coding process. The paper is organized as follows. A brief
summary of SPIHT algorithm is presented in Section 2. In
Section 3, the method for guaranteeing quality using the
SPIHT is introduced. Extensive results using two different
ECG databases as well as discussion of these results are pro-
vided in Sections 4 and 5, respectively. Finally, conclusions
are presented in Section 6.

2. SPIHT ALGORITHM

SPIHT was firstly presented in [11] as an efficient method
for coding wavelet coefficients in image compression. In [6],
the algorithm was introduced for ECG compression, obtain-
ing very good results when being compared with other ECG
compression methods.

The operation of the SPIHT method is here briefly ex-
plained. The principles of the SPIHT algorithm are partial
ordering of the transform coefficients by magnitude with a
set partitioning sorting algorithm, ordered bit plane trans-
mission, and exploitation of self-similarity across different
layers. By following these principles, the encoder always
transmits the most significant bit to the decoder.

In a first step, coefficients are arranged in temporal ori-
entation trees, which define the temporal relationship in
the wavelet domain. The subset of subband coefficients c;
in the subset 6 is said to be significant for mbit depth if
maxiepilcil} = 2™, otherwise it is said to be insignificant.
If the subset is insignificant, a zero is sent to the decoder. If it
is significant, a one is sent to the decoder and then the sub-
set is further split according to the temporal orientation tree
until all the significant sets are a single significant point. In
this stage of coding, called the sorting pass, the indices of the
coefficients are put onto three lists, the list of insignificant
points (LIP), the list of insignificant sets (LIS), and the list of
significant points (LSP). In this pass, only bits related to the
LSP entries and binary outcomes of the magnitude tests are
transmitted to the decoder. After each sorting pass, the sig-
nificant coefficients for the threshold are gotten and then the
mth most significant bits of every coefficient found signifi-
cant in the previous pass are sent to the decoder. By trans-
mitting the bit stream in this ordered bit plane way, the most
valuable (significant) remaining bits are sent to the decoder.
After the refinement pass, m is decreased by one, and the pro-
cess continues until some condition is reached (in our imple-
mentation, this condition is the reconstructed signal distor-
tion). Following the simple concept of an embedded scalar
quantizer, the decoding process is straightforward once the
encoded bits for wavelet coefficients are obtained.
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3. GUARANTEEING QUALITY USING SPIHT

We assume that the original ECG block is defined by a set of
sample values s[i] where i is the sample order. The coding is
actually done to the array

c=W(), (3)

where W (-) represents the wavelet transform and c is a vector
containing the transform coefficients. In order to reconstruct
the signal, the decoder initially sets the reconstruction vector
¢ to zero and updates its components according to the coded
information. Hence, the decoder can obtain a reconstructed
signal by using the inverse transform

§=WL(C). (4)

The reconstruction distortion D is measured by the squared
norm of the difference between the original vector and the
reconstructed vector:

N

D(s—%) = Is=5312 = > (sli] - $1i1)". (5)

i=1

If we use the fact that the Euclidean norm is invariant to the
wavelet transform (it is a unitary transformation), we can see
that

N
D(s=%)=D(c—2) = Y (cli] =l (6)
i=1

Due to RMS and PRD, distortion indices are variants of the
squared norm, it is easy to extrapolate these results to them:

SN (eli) - €1i)°
Fn ’

Drms/prp = J (7)

where Fy is the normalization factor with value N or
Zfil c[i]?* for RMS and PRD, respectively. Thus, it is clear
that the guarantee of reconstruction quality using PRD or
RMS indices can be easily done by controlling the value of
the coded coefficients.

The WWPRD index is defined as follows:

j=No
WWPRD = > w;WPRD;, (8)
j=0

where Np is the number of levels of the wavelet expansion
which is taken equal to 5 as proposed in [9], w; is the weight
for the subband j and, WPRD); is the PRD measure for each
subband, which is defined as follows:

WPRD; = J Z:Zl (cli] = €[i] )2
: SUL(eli)?

where c[i] is an original coefficient within subband j and €[]
is a reconstructed coefficient within subband j. In [9] two
kinds of weights were proposed. Heuristic weights, which
were assigned taking into account the distribution of ECG

X 100%, 9)

waves between scales [9]. The values of these weights are
Was = 6/27, Wps = 9/27, Wps = 7/27, Wp3 = 3/27,
wpy = 1/27, wp1 = 1/27. The WWPRD index calculated in
this manner is called WWPRD),. In the second version, data-
dependent weights are introduced to consider the actual con-
tribution of the subbands. The index calculated using these
weights is denoted as WWPRD,,. The weights are calculated
as follows:

Z;zl |Cj[i]|

S L) 10
S5 [l 1o

wj =

Guaranteeing reconstruction quality both in PRD/RMS and
WWPRD using the SPTHT algorithm can be achieved by
stopping the coding process when the desired distortion is
reached. To facilitate and speed up the task of calculating
the squared norm between the original and the coded co-
efficients, a list of significant coded coefficients (LSCCs) is
also introduced to the algorithm. Every time a bit is stored in
the sorting or refinement pass, the list of coded coefficients is
updated with the new value of the coefficient. In this way, the
LSCC vector has two types of data: coded coefficients and co-
efficients that have a value equal to zero because the stopping
condition has been reached before they are considered sig-
nificant. In order to accelerate the process of calculating the
error for RMS or PRD indices, (11) (which is derived directly
from (7)) can be used

Drus/prp =

J sY e+ Y 20 -2 3V, cli] - 8]
Fyn
(11)

Distortion indices (RMS and PRD) can be easily updated
every time a new bit is added in the refinement pass by sub-
tracting the term in the sumatories corresponding to the
value of the coefficient before a new bit was added to the term
corresponding to the coefficient’s new value.

Regarding WWPRD index, the process is quite similar to
the previously explained process. WPRD); values are stored
from one step to another. Every time a bit is added to a coded
coefficient, the corresponding WPRD); value is updated. Be-
cause (9) is similar to (7), the same approach can be used,
thus speeding up the process.

4. ECGDATABASES

In order to extensively test the method for guaranteeing qual-
ity, two different ECG databases have been used. The first one
is the MIT-BIH Arrhythmia [12]. This ECG database con-
sists of 48 two-lead ECG registers of 30-minute duration. The
sampling rate is 360 samples per second with a resolution of
11 bits per sample. Although the database was originally cre-
ated as standard test material for evaluation of arrhythmia
detectors, this database is by far the most used database to
test and compare ECG compression algorithms. The second
ECG database is MIT-BIH compression [13]. It is composed
of 248 two-lead ECG records of 20.48-second duration. The
sampling rate is 250 samples per second with a resolution of
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80 T T TaBLE 1: Results when guaranteeing WWPRD), in MIT-BIH ar-
ol From left to right, block size rhythmia. (WWPRDj,, WWPRD,, and PRD expressed in %, RMS
%: [2048,1024,512,256,128] expressed in 4V and bit rate in bps).
= a0t ‘
E ECG with baseline
200 Target 5% 10% 20%
0 1 T
0 500 1000 1500 WWPRD,, | 499+0.02 9.95%0.06 19.84 £0.17
WWPRD,, | 412 +0.63 825+1.22 16.14+2.23
FiGure 1: RD curves for different block lengths obtained for MIT- Lead 1 PRD 227+£056 458+038 10.19+1.86
BIH Compression database. RMS 9.96 + 2.28 20.54 + 4.1 46.48 + 7.83
Bit rate 698 = 112 361 + 63 192 = 26
WWPRD,, | 498 +0.02 9.96+0.04 19.87 = 0.14
12 bits per sample. This database was created to pose a vari- Lead 2 WWPRD,, | 5.05+ 104 9.83+1.96 18.16 = 3.46
ety of challenges for ECG compressors, in particular for lossy ca PRD 273083 48+135 9724248
compression methods. Despite of this fact, it is scarcely used RMS 751+£1.74 1395+£3.39  2952+6.9
to test the ECG compression algorithms, being relegated by Bitrate | 856+ 109 494 + 84 238 £43
MIT-BIH Arrhythmia. ECG without baseline
WWPRD,;, | 4.99+0.02 9.96+0.05 19.86 +0.15
5. RESULTS WWPRD,, | 593 £0.64 11.66=1.16 21.94+1.89
. _ Lead1 | PRD | 331+067 653+1.06 1406+ 171
In order to alrilgéze.the leffectslof 11)2:1se11t1)ne wall)lde.rlndg fwheﬁ RMS 051 +21 1928 +3.73 4236+ 6.92
compressing signals, results have been obtained for a Bit rate 717 + 110 374 + 65 196 + 27
the records in the databases both preserving and removing
. . . . WWPRD), | 499 +0.02 997 +0.04 19.88+0.12
the baseline wandering. A simple method that can easily
work in real-time operation has been used: a third-order low- WWPRD,, | 7.51+£0.96 1446+ 1.81 2594+ 3.08
pass Butterword filter with a cut frequency of 0.5 Hz used in Lead 2 PRD 467+1.02  789+148 15.27+2.43
the forward and backward directions to avoid phase distor- RMS 72155 1321+3.02  27.34+6.07
tion [14]. After the baseline is estimated, it is subtracted to Bit rate 875 + 105 514 + 85 247 + 47

the ECG signal. The selection of block length in the different
databases follows the following criterion. Because real-time
operation is required, it is not desirable that block length is
excessively high. On the other hand, short blocks derive in
lower compression rates than larger ones for the same dis-
tortion. Figure 1 illustrates this case for MIT-BIH compres-
sion database. It can be seen how as the block size increases,
the performance also increases but there is a point beyond
no significant gain can be achieved. As long as the block
size is larger than the sampling frequency, the performance is
not highly affected. Thus, block size is selected as the dyadic
length two times up the sampling frequency (e.g., for MIT-
BIH compression the sampling frequency is 250 thus the se-
lected block size is 512). In this way, we obtain slightly better
results than with the dyadic length just above the sampling
frequency but without falling into excessive delay.

Although in the previous section methodologies for
guaranteeing both PRD and WWPRD have been presented,
we concentrate here only on the results for guaranteeing
WWPRD since this index has been shown more impor-
tant from a clinical point of view. The results of applying
the method guaranteeing both WWPRD;,, and WWPRD,,
to the MIT-BIH Arrhythmia database are shown in Ta-
bles 1 and 2, respectively. The block size selected was
1024 samples. Results are given in the format of mean +
standard deviation (SD). Values are calculated as follows.
Three different WWPRD values were selected as targets (we
call target to the desired distortion in the reconstructed
ECG). Mean and SD values were calculated to the vector con-
taining the results obtained block to block. This procedure is

repeated for every record in the database. The mean value
provided in the tables is the average of the mean value of
each signal and the SD value is the average value of the sd for
each signal (average statistics). Results obtained in the MIT-
BIH Compression database are given in Tables 3 and 4 for
WWPRD;, and WWPRD,, errors, respectively. Selected block
size was 512 samples.

6. DISCUSSION

Results obtained for all the databases guaranteeing both
WWPRD);, and WWPRD,, are very accurate in mean value
with respect to the target and present a very low standard de-
viation. This fact demonstrates that the method for guaran-
teeing quality can be used with any type of ECG signal both
with and without baseline.

An interesting fact that can be noted is that the method is
more accurate when working with low thresholds rather than
high thresholds (the threshold is the target value to be guar-
anteed). This can be explained by the effect of magnitude
of the bits being coded and their quantity. SPIHT algorithm
starts storing the bits with highest value and as the threshold
decreases, it continues storing bits with lower value. Because
wavelet coefficients decrease with an exponential-like shape,
as the magnitude of the bits decreases, there are much more
bits available for coding (e.g., all the coefficients have bits of
level 2°). In this way, when trying to guarantee a low distor-
tion, the number of bits needed is high and it can be adjusted
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TABLE 2: Results when guaranteeing WWPRD,, in MIT-BIH Ar-
rhythmia. (WWPRD,,, WWPRDj,, and PRD expressed in %, RMS
expressed in ¢V and bit rate in bps).

TaBLE 3: Results when guaranteeing WWPRD), in MIT-BIH com-
pression. WWPRD;,, WWPRD,,, and PRD expressed in %, RMS ex-
pressed in ¢V and bit rate in bps).

ECG with baseline ECG with baseline
Target 5 10 20 Target 3% 6% 9%

WWPRD,, | 499 +0.01 9.95+0.05 19.85+0.14 WWPRD;, | 497 +£0.03 991 +0.09 19.75+0.24
WWPRDy, | 6.95+1.09 13.55+2.08 26.08 = 3.62 WWPRD,, | 536 £0.68 10.47 +1.24 19.93 +2.27
Lead 1 PRD 278+04 577+0.65 1318 £ 1.06 Lead 1 PRD 333065 6.64+1.15 14.01 2.2
RMS 143 +£3.26 30.52+6.61 69.76 = 14.08 RMS 9.36 + 1.65 18.77 £3.09 40.05 =+ 6.53

Bit rate 590 = 115 32079 168 + 37 Bit rate 530 + 67 298 =45 167 +27
WWPRD,, | 499 =0.01 9.97 =£0.04 19.88 = 0.13 WWPRD;, | 498 £0.03 9.93+0.07 19.75+0.23
WWPRD,, | 6.16 + 1.47 12.77 + 3 25.63 + 5.47 WWPRD,, | 552 +0.84 10.62+1.57 19.46 +2.68
Lead 2 PRD 2.73+0.57 5.07 +0.82 11.13 £ 1.3 Lead 2 PRD 3.08+0.7 584+124 11.99=x23
RMS 9.34+3.31 19.09+7.09 43.98+16.09 RMS 6.83 +1.23 13.23+239 27.74+5.01

Bit rate 816 + 148 491 =123 244 + 77 Bit rate 591 + 76 330 +51 178 + 28

ECG without baseline ECG without baseline

WWPRD,, | 499 +0.01 9.97 +0.03 19.89 = 0.12 WWPRD;, | 497 +£0.04 9.93+0.07 19.75+0.23
WWPRD,, | 442 +0.48 8.84 +0.91 18.26 =+ 1.76 WWPRD,, | 6.56 +0.61 12.65+1.06 23.3+1.75
Lead 1 PRD 2.89+0.49 5.59+0.83 12.51 =+ 1.34 Lead 1 PRD 4.17 £ 0.66 8.15+0.97 16.59 = 1.58
RMS 8.97 £ 1.98 1798 +3.97 40.59 + 8.02 PRD 8.87 £ 1.53 17.66 291 36.69 +6.11

Bit rate 801 =127 459 + 97 227 =49 Bit rate 551 =65 311 =46 174 + 29
WWPRD,, | 499 +0.02 9.98 +0.02 19.92 = 0.09 WWPRD;, | 497 +0.03 9.93+0.07 19.77 £0.21
WWPRD,, | 3.73+£0.57 7.61 +1.11 16.06 = 2.29 WWPRD,, | 7.26 £0.79 1391 +1.43 24.82+2.13
Lead 2 PRD 3.72+0.75 5.81 +£1.03 11.38 = 1.59 Lead 2 PRD 4.42+0.77 8.14=*x1.16 16.11 £1.82
RMS 6.58 = 1.68 11.92+3.56 25.85=+7.82 RMS 6.53 £ 1.16 1257 £2.26 26.02 + 4.67

Bit rate 1035 £ 120 712 £ 121 387 = 88 Bit rate 610 =71 342 + 51 181 =30

very well because of two factors: the magnitudes of the last
bits are low and there are many bits available with low mag-
nitude. On the contrary, as the threshold increases, so does
the magnitude of the bits being discarded, making it more
difficult to adjust exactly the distortion. In order to clarify
this explanation, let ori = [127, 60, 55, 5,4, 3, 3, 2] be a vector
containing the hypothetical WT coefficients of a subband of
8 samples. Let us also simplify the coding process assuming
that bits are only dedicated to code amplitudes (we do not
take into account bits to code other parameters in the algo-
rithm). If we use one bit to code this vector, we would obtain
cod = [64,0,0,0,0,0,0,0] as coded coefficient vector. The
WWPRD; error for this subband between ori and cod vectors
is 68.3. If we increase the number of bits used one by one, and
the RMS error is calculated, we would obtain the sequence of
possible errors that would be obtained when coding this hy-
pothetical WT coefficients vector. This error sequence vector
is shown here

[68.31bit 57'92bits 46.03bits 32.04bits 26'55bit5
20'56bit5 1457 bits 1168 bits 8.89’10bits 7.7llbits

7'312 bits’ 6.013 bitsj 5'014 bits) 4'215 bits’ 3.816’17 bits) (12)
3'318,19,20 blts) 2'721 bltS’ 2.022 blts) 1'523 blts) 1.324,25 blts’

26 bi 27,28 bit 29 bits 130,31,32 bi
1,126bits,0,927:28bits, g 729bits ],

Superindices indicate the number of bits used to code the
coefficients that have led to the shown error. It can be clearly
seen how gaps between high values are higher than gaps be-
tween low values, explaining why it is possible to adjust better
low error values.

One interesting result which can be analyzed on these
tables is the effect of the baseline wandering in ECG com-
pression. When WWPRD), is guaranteed in ECGs with base-
line, the rate is lower than the rate without baseline for the
same WWPRD),. On the other hand, this increase in the rate
is much higher when guaranteeing WWPRD,,. Since both
WWPRD), and WWPRD,, are normalized by the energy of
the subband, if baseline wandering is high, the energy of the
lower subband will be high, provoking that both WWPRD
thresholds can be achieved using a lower amount of bits. The
reason why WWPRD,, suffers a higher increase compared
with WWPRD), is related to the way the weights are calcu-
lated for each index. Baseline frequencies are placed in A5
subband. When guaranteeing WWPRD),, A5 subband weight
is constant and takes a value of 6/27. On the other hand,
when guaranteeing WWPRD,,, A5 subband weight depends
on the energy in the subband. If baseline is present, the en-
ergy of A5 subband will increase, compared to the energy
when baseline is removed. Thus, A5 weight will increase its
value when guaranteeing WWPRD,, and baseline is present.
Since A5 weight will represent an important percentage of all



EURASIP Journal on Advances in Signal Processing

TaBLE 4: Results when guaranteeing WWPRD,, in MIT-BIH com-
pression. WWPRD,,, WWPRD},, and PRD expressed in %, RMS ex-
pressed in ¢V and bit rate in bps).

ECG with baseline
Target 5 10 20

WWPRD,, | 498 +£0.01 9.94+0.05 19.81 +0.15
WWPRD,;, | 479 +0.69 9.72 +1.36 20.31 + 2.8
Lead 1 PRD 3.09+£0.37 6.26 =0.64 13.8 = 1.11
RMS 894 +1.73 18.27+3.53 40.34+75

Bit rate 558 =77 313 =57 169 + 32
WWPRD,, | 498 +0.01 9.95+0.04 19.81 £0.17
WWPRDy, 49+0.89 10.17 +1.86 21.63+3.78
Lead 2 PRD 2.78 £0.41 543+0.72 12.12+1.23
RMS 6.68 +1.42 13.49+3.09 30.4+6.84

Bit rate 623 =92 350 =72 175 + 37

ECG without baseline

WWPRD,, | 498 +£0.01 9.95+0.04 19.84+0.13
WWPRD,, 3.87 0.4 7.97 £0.73  16.81 = 1.41
Lead 1 PRD 3.28 = 0.47 6.4 +0.76 13.76 = 1.26
PRD 7.3+138 14.63 +2.81 31.84 +£5.95

Bit rate 655 + 69 396 = 59 210 = 36
WWPRD,, | 498 +0.01 9.96+0.04 19.86+0.12
WWPRD,, | 3.53 +0.43 7.31 +£0.82 15.62 = 1.66
Lead 2 PRD 329+0.52 596+0.85 12.43+1.42
RMS 528 £ 1.1 10.2 £2.31  22.13 +£4.96

Bit rate 746 = 80 478 +£ 74 250 + 45

weights, the effect of baseline wandering increasing the en-
ergy and lowering the number of bits required to guarantee a
desired distortion will be amplified thus provoking a higher
increase in rate when guaranteeing WWPRDj,, where the
weight is constant. These effects are clearly shown in Figures
2 and 3 for WWPRD;, and WWPRD,,, respectively. Figures
2(a) and 3(a) present the same original ECG signal. It has
been included two times for clarity. They represent the first
4 blocks (512 samples per block) of record 1293601 from
MIT-BIH compression database. Figures 2(b) and 3(b) show,
respectively, the reconstructed signal when the WWPRD,,
and WWPRD,, target distortions are selected to be 10%. For
each block, the number of bits needed to obtain the desired
goal is shown. In Figures 2(c) and 3(c), the reconstructed sig-
nals when the baseline has been removed before compression
are presented when guaranteeing WWPRD;, and WWPRD,,,
respectively. It can be noticed how the bit rate needed to
guarantee both WWPRD;,, and WWPRD,, decreases as the
variations of the baseline wandering increase when baseline
is not removed although this effect is more acute when guar-
anteeing WWPRD,, as discussed earlier. This could be dam-
aging for the clinical quality of the reconstructed signal since
the quality decreases for the same WWPRD. On the other
hand, if the baseline wandering has been removed prior to

Amplitude (mV)

n
|-

- WWPRDy, =|10% - -
535 bits 477 bits

Amplitude (mV)

460 bits 485 bits

(b)
—1 - WWPRDy; =|10%- -
526 bits 556 bits

Amplitude (mV)

548 bits

512 bits

(c)

FIGURE 2: Effects on compression quality due to baseline wander-
ing. (a) Original signal. (b) Reconstructed signal with baseline wan-
dering. Target WWPRD), = 10%. (c) Reconstructed signal without
baseline wandering. Target WWPRD;, = 10%.

compression, the clinical quality of the signal is higher block
to block (see Figures 2(c) and 3(c)). Because guaranteeing
PRD is less bit demanding when the baseline wandering is
high (as it happens in blocks three and four), this is trans-
lated into a loss of quality in the reconstructed signal for the
same WWPRD. Decreasing the distortion threshold to assure
a higher quality in order to avoid the effects of the baseline
wandering is not an optimal solution since the increase in
bit rate in those blocks with low baseline wandering would
not be justified if with less bits an acceptable quality can be
achieved. Guaranteeing WWPRD when compressing a signal
with baseline has a negative effect because the real fact is that
the quality is not uniform through the blocks, being lower
when the baseline wandering is high, as it has been shown
both in Figures 2 and 3. This effect is much more acute when
guaranteeing WWPRD,,.

Another interesting found fact is the bit rate variability
of the transmission rate compared with the variability of the
error. This is shown in Figures 4(a) and 4(c) which repre-
sent the error obtained block to block for lead 1 of record
101 from MIT-BIH Arrhythmia database when guaranteeing
WWPRD), (target 10%) and WWPRD,, (target 10%) with-
out baseline, respectively. It can be seen, as expected, that
the achievement of the goal is very accurate. Figures 4(b)
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FiGure 3: Effects on compression quality due to baseline wander-
ing. (a) Original signal. (b) Reconstructed signal with baseline wan-
dering. Target WWPRD,, = 10%. (c) Reconstructed signal without
baseline wandering. Target WWPRD,, = 10%.

and 4(d) show the evolution of the rate block to block when
guaranteeing WWPRD), (target 10%) and WWPRD,, (target
10%), respectively. In both cases, the variability of the rate
is high but it can be appreciated how this variability when
guaranteeing WWPRD,, is higher than when guaranteeing
WWPRD),. Variability in block energy explains the variabil-
ity in the rate achieved for both WWPRD;, and WWPRD,,.
Blocks with high energy (e.g., those where two QRS are lo-
cated) need more bits to guarantee the desired quality com-
pared with those blocks with low energy. The higher vari-
ability in WWPRD,, compared with WWPRD), is explained
taking into account the way the weights are calculated. Fixed
weights used in WWPRD}, compensate the effects caused by
energy variability, thus lowering the variability in transmis-
sion rate. On the other hand, energy-dependent weights used
in WWPRD,, amplify these effects thus provoking a high
transmission rate variability. Besides the natural variability
of the signal energy there exists another source of energy for
a block; noise. Record 101 presents blocks with a high noise,
which can be easily recognized in Figures 4(b) and 4(d) due
to their high transmission rate. Thus, the high increase in
transmission rate is dedicated to code the extra energy in-
troduced by noise. To prevent this problem, in [15] an au-
tomatic compression system that adjusts its threshold to the
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FIGURE 4: Quality results for record 101 of MIT-BIH Arrhythmia
database is expressed block to block. (a) Target WWPRD), = 10%.
(b) Rate for target WWPRD;, = 6%. (c) Target WWPRD,, = 10%.
(d) Rate for target WWPRD,, = 10%.

noise energy was introduced. It was based on a beat segmen-
tation strategy instead of block segmentation. Clinical evalu-
ation showed that the method provides very good quality in
the reconstructed signals from a clinical point of view while
preventing the data rate to increase dramatically due to noise.

When evaluating a compression methodology it is very
important to evaluate the compressed signals from a clinical
point of view. For this reason, we have carried out a simple
simiblind test taking into account 10 records selected from
each ECG database randomly, where cardiologists were asked
to compare the compressed signals at different WWPRD
values with the original ones. The values selected for both
WWPRD), and WWPRD,, were 5%, 10% and 20%. Figures 5
and 6 show an example of original and compressed signals
when guaranteeing record 12936_01 from MIT-BIH com-
pression database for WWPRDj, and WWPRD,,, respectively.
Cardiologists expressed that they would choose a threshold
of 10% in both WWPRD indices in order to give the same di-
agnosis and to feel comfortable working with the compressed
signals.

To evaluate the execution times of the coding and de-
coding processes we have used 8-lead ECG records since
usually the maximum number of leads an ECG signal can
present is 8 (extra leads are calculated from the original 8).



(d)

FIGURE 5: (a) Original signal. (b) Reconstructed signal when guar-
anteeing WWPRD), = 5%. (c) Reconstructed signal when guaran-
teeing WWPRD;, = 10%. (d) Reconstructed signal when guaran-
teeing WWPRD), = 20%.

TABLE 5: Maximum execution times for the coding and decoding
processes in different PCs.

PC characteristics Coding | Decoding
Pentium IV 2.8 GHz 1 GB RAM 8 ms 3ms

Pentium II 300 MHz 256 MB RAM 90 ms 29 ms

We have created 8-lead records from those of the MIT-BIH
Arrhythmia replicating both leads 4 times. Each record of the
database was coded/decoded separately as it would be done
in a real-time operation. Target distortion was set up to 0 be-
cause it represents the most operation demanding case. Av-
erage execution times were obtained for the database and the
maximum times among them are reported in Table 5. Results
are given in milliseconds required to code 1 second of origi-
nal signal.

Results of Table 5 clearly show that even for a PC with
a Pentium II 300 MHz processor with 256 MBytes of RAM
there is no problem for achieving real-time functionality. The
programming language used for the coder was C because of
its efficiency.
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FiGure 6: Original signal. (b) Reconstructed signal when guaran-
teeing WWPRD,, = 5%. (c) Reconstructed signal when guarantee-
ing WWPRD,, = 10%. (d) Reconstructed signal when guaranteeing
WWPRD,, = 20%.

7. CONCLUSIONS

In this paper, a simple and efficient method for guaranteeing
reconstructed ECG quality in real time has been presented.
Compression is based on performing the wavelet transform
to blocks of the original ECG signal and wavelet coefficients
are efficiently coded using the SPTHT algorithm. The list of
significant coded coefficients (LSCCs) is introduced to the
original algorithm so as to control the quality in an easy man-
ner. Extensive tests have shown the accuracy of the method
not only obtaining the desired target in mean but also with
a low standard deviation value. It has also been shown that
baseline wandering could produce a disturbing effect in real
quality when guaranteeing WWPRD due to the normaliza-
tion performed by the signal energy in the calculation of this
index. These effects are much more acute when guaranteeing
WWPRD,, rather than WWPRD), due to the way the weights
are calculated. Hence, it is recommended to remove base-
line wandering before compression. Noise in ECG signals in-
creases the bit rate due to the extra energy introduced. In or-
der to prevent this effect, an adaptive approach that varies
the threshold should be used. Cardiologists reflect that they
will feel comfortable working with a WWPRD of 10%. Real-
time tests performed have shown that the algorithm is very
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fast thus having no problem to work in a real-time environ-
ment. Even for a low-capacity PC, execution times keep be-
low 100 ms per second for an 8-lead ECG signal.
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