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also investigated.
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1. INTRODUCTION

Directional analysis of sound fields is determinant in do-
mains such as the study of vibrating structures, source local-
ization, and applications dedicated to the control of sound
fields, like wave field synthesis [1, 2], sound systems based
on spherical harmonics [3], and vector-base amplitude pan-
ning [4]. In the particular case of 3D audio systems, the aim
is to give the listener the impression of a realistic acoustic en-
vironment, which supposes that one is able to capture accu-
rately a particular hall acoustics by the measure. For this pur-
pose, microphone arrays are deployed in practice and some
signal processing is applied in order to extract parameters to
provide a spatial description of sound fields. Recent works
have considered the case of spherical microphone arrays to
estimate the spherical harmonic decomposition of the sound
field to a limited order [5-8].

Another possible spatial description of sound fields is the
plane wave decomposition, and beamforming can be used
to estimate it. Beamforming is a versatile approach to spa-
tial filtering [9]. Indeed, elementary beamforming consists
in steering the sensor array in a particular direction, so that
the corresponding spatial filter only preserves the sound field
component coming from this direction and rejects the oth-
ers. For this purpose, frequency beamforming techniques are

well indicated. Firstly, the Fourier transforms of the time sig-
nals recorded by the microphones are computed. Then, at
each frequency, the Fourier transforms of the microphone
signals are weighted by a set of coefficients, constituting the
tap vector. The tap vector is optimized in order that the re-
sponse of the spatial filter approximates optimally a refer-
ence response. Generally, “optimally” means to minimize the
mean square error between the effective and the reference re-
sponses on a discrete set of incidence directions [10-12]. For
this kind of beamforming, the choice of the discrete set of in-
cidence directions used for the definition of the mean square
error norm is of crucial importance. In this article, a more
difficult path has been chosen to optimize the tap vector, but
it enables to circumvent this problem: the tap vector is still
computed in order that the corresponding spatial filter only
preserves the sound field component coming from a partic-
ular incidence direction, but the criterion implemented to
achieve this objective is evaluated on a continuous set of in-
cidence directions spanning the whole solid angle instead of
a discrete set of incidence directions. This approach has been
enabled by combining some results of linear acoustics theory
and the efficiency of representation of nonuniformly space-
sampled sound fields by the plane wave decomposition.

In previous works, we have already used the plane wave
decomposition to describe the spatial behavior of sound
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fields. In a first article, a method was given to derive opti-
mal analysis windows weighting the measured microphone
signals for bidimensional arrays [13]. Then, the analysis per-
formance was further improved using generalized prolate
spheroidal wave sequences to estimate the plane wave de-
composition for a particular wave vector [14] in the case of
tridimensional microphone arrays. In this article, the presen-
tation of this sound field analysis approach is made clearer
and more complete, by introducing a better description of
the measured sound field. Moreover, a novelty is the use of a
regularization procedure and the study of the robustness of
the analysis to sensor noise, microphone error positions, and
microphone directivity characteristics.

In Section 2, the plane wave decomposition is intro-
duced, and the decomposition of the measured sound field
is linked to that of the initial sound field. In Section 3, the
detailed procedure implemented to compute the optimal tap
vector used for beamforming is derived, and a regularization
procedure used to increase the robustness of the analysis is
presented. Then, several array configurations are compared.
At Section 4, the use of regularization is validated through
simulations concerning the influence of sensor noise and mi-
crophone error positions between the reference and the de-
ployed array. Finally, the influence of microphone directivity
characteristics is also investigated.

2. MULTIDIMENSIONAL FIELDS DESCRIPTION

In this section, the definition of the plane wave decomposi-
tion is first recalled. Then, it is employed to derive general
forms of solutions to the inhomogeneous wave equation. At
the end of this section, the plane wave decomposition is also
used to model the measured sound field, and the correspond-
ing decomposition is linked to that of the initial continuous
space-time sound field.

2.1. The plane wave decomposition

The notations k = [ky, ky, k] and r = [x, y,z] in Cartesian
coordinates or k = [k, ¢x, 0] and r = [r,¢,,0,] in spher-
ical coordinates will be used throughout this article. The
quadridimensional Fourier transform [15] of the field p(r, t),
also known as the plane wave decomposition since the atoms
of the decomposition are the plane waves e/® ™" for all
(k, w) in R*, is defined by the relation

P*ﬂ”:ﬂﬂ<wwmnofﬂﬂww%dt (1)

The inverse quadridimensional Fourier transform ena-
bles to recover p(r, t) from its Fourier transform P(k, w). It is
defined by the following relation

The synthesis operator defined at (2) is able to synthesize
any sound field, whether it is far field or near field, granted
that the integration is performed for (k, w) in R*.

2.2. Thewave equation
Acoustic fields are ruled by the wave equation:
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where ¢(r, t) is a source term. Additional initial and bound-
ary conditions are required to ensure the existence and the
uniqueness of the acoustic pressure field [16]. From the
equivalence between boundary conditions and source term,
we can say that the solution exists and is unique if the source
term is known for every point of space r and every time in-
stant £.
The Fourier transform of the inhomogeneous wave equa-
tion (3) yields
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The acoustic pressure field is analytically given by the for-
mula:

1 Qb ®) erren 43
(2m)4 Hﬂ(k,w)ew k|2 - w2’ ¢lde
(5)

P(l‘» t) =

From (5), it can be deduced that the plane wave decom-
position of the acoustic pressure field is likely to have sin-
gularities in the region of the frequency-wave vector domain
(w,k) when the dispersion relationship w? — ¢?|k|?> = 0 is
satisfied.

2.3. Measured sound field description

The microphone array has My, microphones, located at po-
sitions rmy. In the following, we will assume that the sen-
sors used are perfect omnidirectional microphones, so that
the signal measured by the mth microphone—denoted by
Pmeas,m (1) afterward—exactly corresponds to the value of the
initial sound field p(rm, t) at the microphone position. This is
a simplification of the overall measurement process. A more
precise formula for the sound field measured by a micro-
phone array is established in Algorithm 1 at (11). When us-
ing perfect omnidirectional microphones, this equation re-
sumes to:

Pmeas(r’ t) = Z p(rma t)S(r - l‘m)- (6)

Mimic
m=1

This equation is analogous to that modeling time signals
s(t) sampled at instants t,,,,

M

Ssam(t) = Z S(t)é(t - tm)' (7)

m=1
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The electric signal measured by a microphone can be viewed
as a continuous beamforming output signal [9], because the
microphone is performing a local sort of spatial filtering by
integrating the sound field on the whole surface of its
membrane. This could be modeled by the following
equation:

pmeas,m(t) = (P *y hmic,m) (rm) t)) (8)

where x4 denotes the quadridimensional convolution
product and Amic, is the space-time impulse response of the
mth microphone. To interpret the previous equation, let us
consider the convolution product p *4 e, globally and
not only at the position ry,. Its Fourier transform is given by

Pglo(ka w) = P(k’ w) . Hmic,m(k)w)- (9)

The Fourier transform of the impulse response Hyicm
provides information on the frequency and the wave
number bandwidth of the microphone, and also on the
directivity characteristics of the mth microphone. Granted
that the frequency component of the impulse response is
dependent on electronics and that the wave vector
component is dependent on the microphone geometry, the
microphone impulse response could be fairly assumed to be
separable:

Hpien(k, w) = K(k) - Q(w). (10)

For an ideal omnidirectional microphone, Q(w) = 1, for all
|w| < Wmax, K(kK) = 1, for all |k| < wpna/c and 0 elsewhere.
For a gradient microphone oriented along axis ry;c, the
directivity function is K (k) = cos(k, rmic), for all

|k| < wmax/c and 0 elsewhere, where (k, ry;c) is the angle
between vectors k and rp;..

The sound field measured by the microphone array could be
modeled as

Mmic

pmeas(r> t) = Z pmeas,m(t) . 8(1' - l'm)- (11)
m=1

ALGORITHM 1: Digression on the measurement model.

In our case, the sampling of sound fields is made in the
space domain. Using a well-known property of the multi-
dimensional Dirac delta function, the measured sound field
can be interpreted as the product between the initial sound
field and another function, characterizing the sampling lat-
tice:

Minic

pmeas(r) t) = P(l') t) : Z 6(1’ - rm)l(t)- (12)

m=1

In this equation 1(t) stands for the function, whose value is
1 for all time instants t.

The quadridimensional Fourier transform of the mea-
sured sound field is

Mimic
Preas(k, w) = P(k, w) *4 (5(60) > 6‘“”'“), (13)
m=1

where %, is the symbol used for the four-dimensional con-
volution product.

The frequency component of the measured sound field is
not distorted compared to that of the original sound field. On
the other hand, the wave vector component is distorted by
the convolution with the spatial characteristic function of the
microphone array > Mmic o~ik-tm Thus, the measured sound
field, which is discrete, no longer verifies the wave equation.

The number of microphones used in the array is always
insufficient to enable conditions for the perfect reconstruc-
tion of sound fields compared to the well-known background
of the sampling theory of time signals. Thus, the analysis of
sound fields could only be approximated in practice. All what
can be done is reducing the distortion introduced by the spa-
tial sampling process.

3. BEAMFORMING FOR THE ESTIMATION OF
THE PLANE WAVE DECOMPOSITION

Some signal processing on the measured data can be im-
plemented in order to estimate the plane wave decompo-
sition of the initial sound field, denoted as f’(k,w) there-
after. We will only be interested in estimating this decompo-
sition on the domain defined by the dispersion relationship
w?—c?|k|? = 0, because this is the area of the frequency-wave
vector domain for which the Fourier transform of the ini-
tial sound field P(k, w) is likely to have singularities. It seems
that the restriction of the Fourier domain (k, w) in R* to that
defined by the dispersion relationship w? — ¢*|k|*> = 0—
a cone in four dimensions—is in agreement with the study
performed in [17], which investigates the problem of sam-
pling and reconstruction of the plenacoustic function when
it is observed in the space domain on a line, on a plane, or in
the whole space domain.

The method that we take as a reference afterward di-
rectly estimates the plane wave decomposition from (13),
by computing the quadridimensional Fourier transform of
the measured sound field. In practice, the Fourier transform
for the time variable is firstly computed for every micro-
phone signal, using the discrete Fourier transform, to ob-
tain p,(rm, w,), for a set of pulsations (w,),e1,n,]- The spatial
Fourier transform is secondly computed digitally using

Minic

ﬁ(k,w,) = Z pw(rm,w,)e‘ik'r"‘. (14)

m=1

This reference method is far from being the most ef-
ficient. More degrees of freedom are required in order to
achieve a better estimation of the plane wave decomposi-
tion. This can be done using frequency beamforming tech-
niques. In this case, the first step of the signal processing
remains identical: the Fourier transform of the measured
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signal is computed using the discrete Fourier transform to
obtain p,(rm,w,) for a set of pulsations (w,),e(1,n,]- Then,
for each pulsation w,, and for a particular wave vector ko,
we use a dedicated tap vector w(ke, w,) = [w;(ko,w;),...,
war.. (ko, w,)]" to weight the spatial samples:

k():wr Z kO Wy Pw(rmawr) kot (15)

Thus, the reference method is retrieved by applying uni-
form weights w,, = 1. The objective of next sections is to pro-
vide a criterion to compute an optimal tap vector w(ko, w;).

3.1. Spatial filter and spatial aliasing

Equation (15) gives the method to compute digitally the es-
timation of the plane wave decomposition for a given pulsa-
tion w, and wave vector ko, but does not provide a method
to compute the associated weights. For this purpose, we start
from (12), equivalent to (6), but we introduce the weights w,,
which differentiate the analyzed sound field from the mea-
sured sound field. The expression of the analyzed sound field
is defined as

Mimic

Pana(r> t) = P(l'> t) - Z Wm(S(I' rm)l(t)- (16)
m=1

The quadridimensional Fourier transform of the previ-
ous equation is

Mimic
Pana(k, ) = P(k, ) *4 (6(w) > wmeik"m>. (17)

m=1

Let us explicit this convolution product. The convolution
with §(w) is omitted because convolving with the Dirac delta

function is identity:
1
(2m)3 ,[Hklenv P, @

Mmic
. ( Z Wmei(kkl)'fm> dKk,.

m=1

Pina(k, w) =

(18)

With the previous equation, the analyzed sound field is
still dependent of the wave vector k, whereas the output of a
frequency beamforming technique has to be a number. This
requires to evaluate (18) for a specific wave vector k. Granted
that we want to design a good estimator of the spatial Fourier
transform for a given wave vector ko at a given pulsation w;,
we choose the output signal of the beamformer to be that
obtained by evaluating (18) for wave vector k¢ and pulsation
wy, according to (15),

ﬁ(kO) wr) é Pana(kO) (U,—). (19)

The estimation of the Fourier transform P(k, w,) intro-
duced at (19) is computed using the spatial filter defined as

Mmic
h(k) = ( S wmef<k-ko>-rm>. (20)

m=1
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FIGURE 1: Slice of the 3D representation illustrating the optimiza-
tion procedure: the power of the spatial filter is maximized in the
sphere centered on ko (gray disk) and minimized elsewhere in the
spherical crown included between radii kg — kyes and ko + Kyes-

If it was perfect, then the response of the beamformer
(19) to an input plane wave e/®**) should be null for every
plane wave except for the plane wave of interest ei(ko-rert)

(27)*8(w — )8 (k — ko). (21)

In fact, the response of the ideal beamformer is nothing
else than the Fourier transform of the concerned plane wave.
However, the effective response of the beamformer to an in-

put plane wave ek-r+e) jg

218 (w — w, ) h(k). (22)

Thus, combining the last two equations, we can say that
an ideal beamformer has to achieve the identity

h(k) = (27)*8 (k — ko). (23)

Spatial aliasing occurs as soon as the response of the spa-
tial filter differs from this ideal response. Unfortunately, the
response of the corresponding spatial filter in the space do-
main is e'ko'T, requiring the observation of the sound field
on the whole space domain. Thus, it is impossible in practice
with a finite number of microphones that the response of the
spatial filter—(20)—should be that of (21), so that spatial
aliasing inevitably occurs.

In some way, the effective response of the beamformer
has to approximate the ideal one: it has to be maximal for
k = ko and minimal elsewhere. We can further improve what
elsewhere means when the fields analyzed are sound fields:
at pulsation w,, the interesting area of the wave vector do-
main is the sphere of radius |k| = w,/c. Granted that we
want to estimate P(ko, w;), a good strategy consists in focus-
ing the power of the spatial filter in the neighborhood of the
wave vector kg and minimizing the global power of the spa-
tial filter on the sphere defined by the dispersion relationship
(see Figure 1). The tap vector optimizing the estimation of
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the Fourier transform for wave vector kg and pulsation w, is ~ previous equation to
the solution of the following equation: )
M W) |” &k
k Kres
‘_'V(kO) (Ur) =Sl :
2 Miic Mmic
- f”ke&(ko,km) h(k) | Bk (24) Z Z W_[ J’I[I’ ek (tm—1a) 33 k]
! ’ 1 n= keS(0,kres
e s JEEE [0 gtk |00 * K =1 on= 30k
= ﬂHTesﬂ
In this equation, 4§ (ko, k) indicates the sphere with cen- (27)

ter kg and of radius ks, while C (0, ko — kyes, ko +kres) indicates
the interior domain delimited by the two spheres with center
0 and with radii kg — kres and ko + kres, respectively.

Before going through the details of the computation of
the tap vector solution of (24), we will explain why this tap
vector is a good candidate for the weights of the spatial filter
h(k). The response of the spatial filter (20) is constituted of
a main lobe and also from many side lobes. The tap vector
solution is such that it focuses the maximum of the power of
its main lobe inside the sphere of resolution 4 (ko, kes) while
attempting to place side lobes with the minimum of power
inside the spherical crown C(0, ko — kyes, ko + kres). To sum-
marize, the tap vector solution of (24) is the one minimizing
spatial aliasing, regardless of the microphone array geometry.

With the remarks made at the last paragraph, ks in (24)
appears as a key parameter to control the resolution of the
analysis. It is linked to the angular resolution by the means of
the relation

y = arcsin %}s (25)

The next paragraph deals with the computation of the
two integrals of (24).

3.2. Tap vector computation

This section deals with the problem of the tap vector compu-
tation, and differentiates our approach from traditional ap-
proaches: rather than optimizing the tap vector over a dis-
crete set of incidence directions, such as in [10-12], the op-
timization is applied over a continuous set of directions. As
we will see, this optimization can be formulated analytically
by using the development of a plane wave into spherical har-
monics.

3.2.1.  Kernels computation

We begin by expanding the numerator of (24):

JJLE*(ko,kres) | h(k) |2 &’k

Mimic Mmic

= ﬂj Z Z Wyye ikko) (rm-ra)yy, 43 |
ke S (ko kres)

m=1 n=1

(26)

The weights, independent of the integration variable k,
can be put aside from the integral. Moreover, we change the
integration variable to be k — kg instead of k, resuming the

The resolution kernel matrix T is defined by its elemen-
tary term

(rrres)(m)n) = ,[[[ke,g(()k )efik-(l‘mfrn) d3 k (28)

Secondly, we continue by expanding the denominator of
(24),

Il h()|* Pk
ke C(0,ko —kressko+kres )
Maic Mnic

-3 S

| ek (Em—ra) Jﬂ ik mr) 3¢
kE@(O,ko _kresvk0+kres)

= wTpw.
(29)
The optimization kernel matrix 75, is defined by its ele-
mentary term

iko: (rm—1n)

(%Pt) (myn) = €

) IH o ikt ta) PP |
ke 8(0,ko+kres)
3 Jﬂ ok P |
KE8(0,ko—Knes)

To evaluate the optimization and resolution kernel ma-
trices, it is necessary to be able to compute the following in-

tegral:
JH ekrdik (31)
ke$(0.K)

Granted that the integration domain is a sphere, we ex-
press the above integral using the elementary volume de-
scribed in the spherical coordinate system

d*k = k* dksin 6 d 6 d ¢k, (32)

where [k, ¢k, O] indicate the radius, azimuth, and colatitude
in the spherical coordinate system. For this purpose, we use
the series development of a plane wave into spherical har-
monics:

(30)

e 4nZ Z(_I)Jz(k”)Ym(Sbr» )Y (ks Ok

1=0 m=-1

(33)
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Introducing (33) into (31) yields

JJJ eik-r d3 k
ke4$(0,K)

K
=4an SRS S (i

1=0 m=—1
' J Jek "(r

From the orthogonality property of the spherical har-
monics, only the term with [ = m = 0 is nonnull. The in-
tegral finally resumes to

K
m kT @k = 4nJ io (k) dk
ke4(0,K) k=0

Ym (¢k, 0r) d ¢ sin Oy d Ok
(34)

4 _ sin(Kr) B cos(Kr)
=5k 3[ (Kr> — (Kr) ]
=S %nl@jinc(Kr).

(35)

The jinc function is analog to the jinc function in op-
tics, which appears when dealing with the computation of the
Fourier transform of a circular aperture. The jinc function is
the tridimensional Fourier transform of a spherical domain.
It tends to 1 when its argument tends to 0. From these re-
sults, the expression of the resolution and optimization ker-
nels becomes, using the notation tm — rn = [74m> ¢r,,,» Or,, | in
spherical coordinates,

— 4 ..
(Jres)(m,n) = gﬂkfes]lnc(kresrmn) (36)
(%Pt)(m,n) _ eiko'(rm—rn)

X [%ﬂ(ko + kres)3jinc[(ko + kreS)rmn]

_ %n(ko — kves) i (Ko — kres)rm,,]].
(37)

Finally, the criterion (24) could be expressed into matrix
form:
W Tresw

w(ko, w,) = max ==, 38
_( 0> r) [ < CMmic ﬂH%ptﬂ ( )

mic )€

The optimal tap vector which maximizes (38) is also
the eigenvector corresponding to the most powerful eigen-
value of the generalized eigenvalue problem of (39), as stated
by Bronez in a work on spectral estimation of irregularly
sampled multidimensional processes by generalized prolate
spheroidal sequences [18]. The principle is the same in our
approach, which only differentiates from [18] by a different
choice of kernels: in [18], the fields were supposed band-
limited inside a parallelepiped, while we suppose fields band-
limited inside a sphere,

‘Tresﬂ(kOa wr) = U%ptﬂ(km wr)~ (39)

This gives a method to compute the optimal tap vector.
The performance of this tap vector is characterized by the
power focusing ratio

wH Tiesw
PER = . 40
wHTpw (40)

It gives the amount of power focused in the resolution
sphere compared to the power in the neighborhood—in the
spherical crown—of the sphere defined by the dispersion re-
lationship (see Figure 1).

The tap vector is undetermined to a complex coefficient,
so that an amplitude and phase normalization are applied.
The amplitude normalization is made, so that the power
inside the resolution sphere is unitary w/ 7w = 1. The
phase normalization is made, so that the sum of the weights
S Mric 4, is a real number: thus none phase distortion is in-
troduced by the spatial filter for wave vector ko, as seen in
(20).

3.2.2. Regularization

Beamforming algorithms could be prone to noise amplifica-
tion, mainly at low frequencies. Generally, the amplification
of noise is characterized by the white noise gain [8]. This cri-
terion has to be modified in the context of nonuniform mul-
tidimensional sampling. If sound fields are supposed to be
band-limited in the wave vector domain inside the sphere of
radius |k| = kmax = Wmax/¢, and if the noise spectral density
is assumed to be flat inside this sphere, then the noise am-
plification is characterized by the power of the spatial filter
inside this sphere. Using an analogous reasoning as that used
to compute the power of the spatial filter inside the optimiza-
tion zone (29), the expression of the white noise gain (WNG)
is

WNG = w' T, (41)
load A ik()-(l'm*l'n)4 3 11
(Thot) (mmy = € gnkmax]mc(kmaxrmn). (42)

Thoi 1s the noise kernel matrix. Equation (41) computes
the power of the spatial filter h(k) inside the sphere of radius
|k| = kmax-

It is possible to reduce the white noise gain during the
tap vector computation procedure by adding a regularization
step. The criterion (38) is updated in the following manner:

W J,esw
]€CMmic WH[(I - A)Jopt +/1.]n01:|

ﬂ(kO)wr) = ma

[wr,..

Mmic

(43)

The optimal tap vector of the regularized criterion is the
eigenvector corresponding to the most powerful eigenvalue
of the generalized eigenvalue problem:

‘Tresﬂ(kOr wr) = 0[(1 _A)%pt )Ljn01] (k0> wr) (44)
The white noise gain depends on the value of the regular-

ization parameter A: increasing values of the regularization
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parameter from 0 to 1 decreases the white noise gain and un-
fortunately also decreases the power focusing ratio. A trade-
off between the power focusing ratio and the white noise gain
must be made.

The power focusing ratio and the white noise gain are
displayed on Figure 2 for several values of the regulariza-
tion parameter A = [1079,1078,1077,107°]. Moreover, the
power focusing ratio and the white noise gain using uni-
form tap vectors—reference method—are also represented.
The PFR and WNG represented have been averaged on a
set of wave vectors (kn)uc[1,n,] at each pulsation w,. Figure 2
has been obtained using the “icodt” geometry for the micro-
phone array, which is described in Section 3.3.

The best PFR corresponds to A = 0 (no regularization)
but using these tap vectors amplifies the sensor noise of 40 dB
at low frequencies and approximately 20-25dB in the mid
frequencies. The figure confirms that the WNG decreases
when the value of the regularization parameter increases. The
value of A = 1077 achieves a good tradeoff between the power
focusing ratio and the white noise gain. It is this value of the
regularization parameter which we will be referring to there-
after when indicating that we are using a regularized analy-
sis.

3.3. Array geometry optimization

The two global parameters having an impact on the qual-
ity of beamforming are the choice of the tap vector weights
and the location of the microphones. In Section 3.1, we have
optimized the weights of the tap vector regardless of the mi-
crophone array geometry. In this section, the problem of the
optimization of the microphone array is addressed. The use
of 1D microphone arrays to perform a 3D sound field anal-
ysis is the worst configuration because it introduces a strong
form of spatial aliasing. Indeed, if the antenna is located on
the (Ox) axis, the antenna is only able to analyze the k, com-
ponent in the wave vector domain. If the parameter k, of a
plane wave is correctly estimated, it nonetheless leaves an in-
determination: all couples of parameters (ky,k;) satisfying
k; + ki = (w?/c*) — ki are possible solutions for the two
remaining components of the wave vector k: this is a phe-
nomenon comparable to that of the cone of confusion ap-
pearing in the estimation of the incidence direction from the
knowledge of interaural time delays (ITDs). The use of 2D
microphone arrays reduces spatial aliasing. Indeed, if the an-
tenna is located in the (Oxy) plane, it enables to analyze the
k. and k, components in the wave vector domain. Thus, if
the parameters k. and k, of an incoming plane wave are cor-
rectly estimated, the two possible solutions for the last pa-

rameter k; are *,/(w?/c?) — ki — kj: the ambiguity lies in the

confusion between up and down. The use of 3D microphone
arrays enables to remove this form of spatial aliasing.

The other form of spatial aliasing is due to the spacing be-
tween microphones. Using uniform spacing between micro-
phones enables to perform a correct sound field analysis until
the Nyquist rate, that is, at least two samples per wavelength.
Above the frequency corresponding to this wavelength, there
is another form of strong aliasing due to the apparition of
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FIGURE 2: Power focusing ratio (PFR) and white noise gain (WNG)
for several values of the regularization parameter A and for uniform
weighting.

replica—it can be interpreted as side lobes with power com-
parable to that of the main lobe—in the spatial spectrum,
degrading substantially the power focusing ratio. The use
of nonuniform spacing, and especially logarithmic spacing,
attenuate these replicas. The use of nonuniform microphone
arrays has already been emphasized in [13] for 2D micro-
phone arrays: compared to uniform arrays, such as cross-
or circular arrays, they enable to analyze the sound field in
a large frequency band using the same number of micro-
phones.

In this section, we will focus on the study of 3D micro-
phone arrays, and several geometries will be compared using
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idcot

icodt

(d)

F1GURE 3: Microphone array geometries used for comparison: logarithmically spaced radii spherical array “idcot” (a) and “icodt” (b), regular
spherical array (c) and double-height logarithmically spaced radii circular array (d).

the criteria of the power focusing ratio and white noise gain.
The array geometries tested in simulation share common
characteristics: they are all inscribed in a sphere of radius
0.17 m, and the number of microphones used is 50 = 1 mi-
crophones. Here are the descriptions of the geometries used,
shown on Figure 3.

(i)

(ii)

A spherical array of radius 0.17 cm using a uniform
mesh using 10 microphones for the azimuth variable,
and 7 microphones for the elevation variable. Thus,
the array is constituted of 52 microphones (the two
poles are counted only once).

Four circular arrays constituted of 6 microphones reg-
ularly spaced, with radii logarithmically spaced from
0.007 m to 0.17 m, and another microphone at the cen-
ter of these circles. This subarray is duplicated twice in
the planes defined by their equations z = +0.0025 m.
The global array is thus a “double-height logarith-
mically spaced radii circular array” made up with 50

microphones. The acronym used in the legend for this
array is “cl”

(iii) Two arrays constituted of several Platonic solids: the

tetrahedron, the octahedron, the cube, the icosahe-
dron, and the dodecahedron which, respectively, have
4, 6, 8, 12, and 20 vertexes. These Platonic solids are
inscribed in spheres with radii logarithmically spaced
between 0.007 m and 0.17 m. The first array uses the
order icosahedron, dodecahedron, cube, octahedron,
and tetrahedron (“idcot” in the legends thereafter),
while the second uses the order icosahedron, cube,
octahedron, dodecahedron and tetrahedron (“icodt”
in the legends) for increasing values of the radius.
Finally, a last microphone is positioned at the ori-
gin. These two antennas are made up with 51 ele-
ments.

(iv) The last array uses a randomly distributed configu-

ration of microphones (“random” in the legends).
These microphones are uniformly distributed for
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FIGURE 4: (a) Power focusing ratio (PFR) and (b) white noise gain
(WNG) of several microphone arrays.

the azimuth and elevation variable, while it is the
logarithm of the radial variable which is uniformly
distributed. This array has also 51 microphones.

The power focusing ratios and the corresponding white
noise gains of these 5 types of arrays are represented on
Figure 4, using optimal nonregularized tap vectors. It is seen
that the spherical array is well dedicated to the analysis of
sound fields in the band of frequency around 1kHz. At this
frequency, the wavelength is 0.34 m, corresponding to the
diameter of the spherical array. The power focusing ratio
is largely lower for higher frequencies, because the micro-

phone array does not sufficiently have closer microphones.
This default is avoided by using the other kinds of micro-
phone arrays, which have good performance on the whole
frequency bandwidth of sound fields. Concerning the two
Platonic arrays, the maximum power focusing ratio hap-
pens at the frequency corresponding to the wavelength 1.3 R,
where R is the radius of the dodecahedron, namely 3.3 kHz
for the “icodt” antenna, and 16 kHz for the “idcot” antenna.
The distance 1.3 R is the mean distance between one vertex of
the dodecahedron and the others. The random array is a little
less efficient than the “icodt” array, in particular at high fre-
quencies. The double-height logarithmically spaced radii cir-
cular array—quasi-bidimensional—is less efficient than true
tridimensional arrays. Concerning the white noise gain, the
logarithmic arrays present similar behaviors, the “icodt” hav-
ing a slightly better trend. The minimum white noise gain
of the spherical array happens at 1.7 kHz which corresponds
approximately to the wavelength equal to the mean distance
between microphones.

As a conclusion on the array geometry optimization,
we can say that good array geometries combine both a do-
main with a high density of microphones, well dedicated
to the study of small wavelengths—high frequencies—and
also some distant microphones, dedicated to the to study
of large wavelengths—low frequencies. To obtain a signif-
icant power focusing ratio in the low frequencies without
amplifying too much the noise, some distant microphones
are required. Thus, the use of logarithmically spaced micro-
phones for the radial variable and uniformly spaced for the
angular variables gives satisfactory results. In practice, the
array geometry “icodt” has been retained for the following
simulations.

4. SOUND FIELD ANALYSIS

In this section, we propose to detail a signal processing mod-
ulus able to perform a global sound field analysis from data
recorded by a microphone array. This sound field analy-
sis modulus uses the implementation of the beamformer
presented at Section 3 to perform the spatial filtering re-
quired to achieve the spatial analysis. Here are the tasks se-
quentially carried out by the sound field analysis modu-
lus.

(i) First, the Fourier transforms of the microphone data
are computed using the FFT.

(ii) Then, at each pulsation w,, we use a spherical mesh
of the sphere defined by the dispersion relationship
k = w,/c. For each wave vector k, of this spherical
mesh, we use the optimal tap vectors w(ky, w,) com-
puted from Section 3.2 to estimate the Fourier trans-
form of the initial sound field ﬁ(kn, wy).

(iii) Finally, we represent the cartography of the sound
field at a given frequency on a flattened sphere, with
azimuth on the x-axis and elevation on the y-axis.
The modulus of the estimated Fourier transform is
displayed using a colored-dB scale with 15dB of
dynamics.
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All sound field cartographies represented in this section
have been computed from simulated data for the micro-
phone array. A source in free field emits a low-pass filtered

Dirac delta impulse 8, so that the formula used to compute
the signal recorded by a microphone of the array is

g(t_ ||rm _TSH/C)

||rm_r5||

Smic(t) = > (45)
where rg and rpy, respectively, indicate the position of the
source and the microphone.

The low-pass filtered Dirac delta impulse is a sinc func-
tion multiplied by a Kaiser-Bessel window [19],

I()((X 1- t2/T2)
To(a)
0 if [t]| > T,

. ife < T,
8(¢) = sinc(2 fnast) - iffe] =

(46)

with fmax = 20kHz, @ = 12, to have a relative side lobe at-
tenuation of 90 dB, and T' = 963 us. It is the same simulation
method as in [17].

4.1. Sound field cartographies

Two examples of sound field cartographies are represented
on Figure 5. The initial source is located at [r = 1m, az =
148dg, el = 0dg] in spherical coordinates. The sound field
cartography has been represented at the frequency f =
2756 Hz using either uniform tap vectors or optimal tap vec-
tors. The optimal tap vectors have been computed for an an-
gular resolution (25) of 23.5 dg.

In both cases, there is a maximum of power for the inci-
dence direction of the source, that is, for az = 148 dg and
el =0dg. But the sound field obtained using uniform tap
vectors is very blurred: the source is not well localized us-
ing the 15-dB extent of dynamics. On the other hand, the
source is well localized using optimal tap vectors: there are no
other visible side lobes, meaning that their amplitude is be-
low 15 dB compared to the main lobe. We verify on the sound
field cartography computed with optimal vectors that the an-
gular resolution of the analysis is approximately 25 dg in this
case, corresponding to the value of k. fixed during the opti-
mal tap vectors computation procedure. For this resolution,
the average power focusing ratio is 35% compared to 10%
using uniform tap vectors at 2756 Hz. Smaller resolutions
would have led to a smaller power focusing ratio, and larger
resolutions would have led to higher a power focusing ratios.

4.2. Influence of sensor noise and position errors

Two factors degrading the quality of the sound field analysis
are the sensor noise generated mainly by the electronic part
of the global electro-acoustic chain used in the microphone
array and the errors of position between the reference array
and the ad hoc deployed array. The sensor noise impairs the
analysis mainly at low frequencies, where the amplification
of noise is likely to be important. The position errors degrade
the analysis mainly at high frequencies, where the magnitude
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FIGURE 5: Sound field cartographies for a point source located at
[r = 1m, az = 148dg, el = 0dg], at frequency 2756 Hz, using
uniform tap vectors (top) or optimal tap vectors (bottom).

of the position errors becomes comparable with the wave-
lengths analyzed. In this paragraph, we will investigate these
two considerations using simulations and will show that the
use of regularization improves the robustness of the analysis
to these two factors.

We are first considering the case of sensor noise. To high-
light its influence, we are considering the analysis of a point
source located at [r = 1.5m, az = 52dg, el = —46dg] in
spherical coordinates at frequency f = 345Hz. The sound
field cartographies obtained are represented on Figure 6, us-
ing either a regularized or nonregularized analyzer. On this
figure, the cartography of the sound field is represented on
the left, while the cartography of the noise is represented on
the right. The initial data recorded by the microphone ar-
ray were corrupted by an additive white noise, with signal-
to-noise ratio equal to 30dB. The regularized analysis is
represented at the top of Figure 6, while the nonregular-
ized analysis is represented at the bottom. It is seen that the
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FiGure 6: Influence of sensor noise on sound field cartographies for a point source located at [r = 1.5m, az = 52dg, el = —46dg], for

frequency 345 Hz, with initial SNR = 30 dB. Sound field regularized (a), error sound field regularized (b), sound field nonregularized (c),

and error sound field nonregularized (d).

maximal value of the estimated spatial Fourier transform of
the sound field is —3 dB, while the maximal value for the
noise is —33 dB in the regularized case. Thus, the analysis us-
ing regularized tap vectors keeps approximately constant the
signal-to-noise ratio in the frequency-wave vector domain
compared to the time-space domain. On the other hand, the
maximal value for the noise using nonregularized tap vec-
tors is —8 dB, a difference of 25 dB with the regularized case,
which corresponds to the difference between the two curves
on Figure 2 at frequency 345 Hz. Thus, the sound field us-
ing regularized tap vectors keeps the same quality because
the extent of dynamics used for representation is only 15 dB
while the SNR is 30 dB. On the other hand, the noise is am-
plified when using nonregularized tap vectors, and this effect
becomes visible at the bottom left of Figure 6. Thus, it is de-
sirable to use the regularization to limit the degradation due
to the presence of sensor noise.

We will now investigate the effects of position errors on
the sound field analysis. For this purpose, position errors are

assumed to create an additional noise on the microphones.
This noise is defined as the difference between the signal re-
ally measured and the one that would have been measured if
the microphone was located at the right place. On Figure 7,
the corresponding signal-to-noise ratio is represented along
frequency for several values of the uncertainty in the posi-
tionings: =0.5, =1.5, £2.5, and +5mm. It is seen that the
global trend is in 1/f because the slope of the curves is ap-
proximately —20dB/dec. At a given frequency, the error is
also 20 dB higher when the error increases by a factor 10 (see
the curves related to 1 and 10 mm). Thus, the noise generated
by position error affects the performance of the analysis at
high frequencies. When the SNR is about 0 dB, the slope of
the curve is no more 20 dB/dec, because the error cannot be
superior to the signal power in mean. The boundary between
these two parts of the curve happens approximately when the
uncertainty is equal to the quarter of the wavelength, that is,
17 kHz for the uncertainty =5 mm, this is slightly visible on
Figure 6.
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FiGure 8: Influence of position errors on the power focusing ratio
(PFR), with or without regularization. The position errors are uni-
formly distributed between [—2.5,2.5] mm.

The position errors induce a fall of the power focusing
ratio. This is shown on Figure 8. The power focusing ratio of
the analyzer has been computed using the tap vectors com-
puted for the reference microphone array, but used on the
real deployed array, with uncertainty of position of +£2.5 mm,
in two cases: using regularized or nonregularized tap vectors.
The reference PFR (without position errors) have also been
displayed in three cases: using regularized, nonregularized or
uniform tap vectors. Once again, the use of regularization
improves the robustness of the analysis: it is seen that the
PFR obtained using regularized tap vectors is always superior

to the PFR obtained using uniform tap vectors, contrary to
the PFR obtained using nonregularized tap vectors. The dif-
ference between the reference PFR and the real one using reg-
ularized tap vectors is small until 3.4 kHz, compared to a few
hundreds Hz using nonregularized tap vectors.

To conclude on the influence of position errors, a sound
field cartography is represented on Figure 9 at f = 3618 Hz
for a source located at [r = 1m, az = 270dg, el = 31dg],
with or without the use of regularization, for an uncertainty
of £5mm in the microphone positions. It is seen that the
sound source is well resolved in the regularized case and not
resolved in the other case.

4.3. Influence of the directivity of microphones

In the development made at Section 3, the microphones were
assumed to be perfectly omnidirectional in order that (12)
holds. If the directivity of the microphone differs from this
ideal one, we can still compute by simulation the measured
microphone signals using (8). Thus we can study the influ-
ence of the microphone directivity on the sound field analysis
when still using the same analyzer as in the case of omnidi-
rectional microphones.

Two examples of sound field cartographies are repre-
sented on Figures 10 and 11 for a source with coordinates
[r = Im, az = 180dg, el = —58dg], at the frequencies of
689 Hz and 6202 Hz. The sound field cartographies are rep-
resented in two cases: using either omnidirectional micro-
phones (top of Figures 10 and 11) or cardioid microphones
oriented to the origin, towards the exterior (bottom of Fig-
ures 10 and 11).

The sound field cartographies at these two frequen-
cies (and also for other frequencies) are noisier using car-
dioid microphones instead of omnidirectional microphones,
but the direction of incidence is still correctly estimated.
These cartographies have been computed using the regu-
larized analyzer. Thus, we can say that it is better to use
omnidirectional microphones with the analysis presented in
this article.

5. FUTURE WORK

The main focus of this article has been to present a new
method to perform spatial filtering: analytical beamforming.
Throughout this article, we have mentioned three methods
to estimate the plane wave decomposition: using uniform
tap vectors in (15), which is the method we took as a refer-
ence, using a tap vector optimized over a discrete set of inci-
dence directions, as in [10-12], or using the tap vector opti-
mized over a continuous set of incidence directions, solution
of (24). The comparison of the two last methods of optimiza-
tion is a sufficiently important task, requiring some extra re-
search effort to dedicate a future complete article. The cor-
responding spatial filters have to be compared with regard to
their performance—using criteria such as the power focusing
ratio and the white noise gain—and their computation com-
plexity. Moreover, a crucial point in the discrete approach is
the wave vector mesh used for the optimization procedure,
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FIGURE 9: Sound field map obtained with measured data (mean po-
sition error of 5 mm) with regularized tap vectors (a) or nonregu-
larized (b) tap vectors at frequency 3618 Hz for a source with coor-
dinates [r = 1 m, az = 270dg, el = 31dg].

mainly for high wavelengths: indeed, the response of the cor-
responding spatial filter is likely to diverge apart from the
wave vectors used for the optimization if the mesh is too
sparse.

6. CONCLUSION

In this article, an analytical beamforming algorithm has been
presented. Contrary to traditional beamforming algorithms
which compute the coefficients weighting the measures by
minimizing the mean square error on a discrete set of inci-
dence directions, our algorithm does not use a discrete but a
continuous set of incidence directions for the minimization.
Thus, our algorithm avoids potential errors linked to the set
of incidence directions used during the computation of the
tap vector when using traditional methods.

The strategy used to compute the optimal tap vector for
a particular incidence direction is to maximize the power of
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FiGure 10: Sound field cartographies for a point source located at
[r = 1m, az = 90dg, el = —31dg], at frequency 689 Hz, using
omnidirectional (a) or cardioid (b) microphones.

the sound field coming from the neighborhood of this di-
rection and minimize the power of the sound field coming
from other directions. The optimization criterion originally
combines some results of linear acoustics theory with the ef-
ficiency of the quadridimensional Fourier transform to rep-
resent nonuniformly space-sampled fields.

The effectiveness of this algorithm has been demon-
strated: it improves substantially the power focusing ratio
compared to the reference case using a uniform tap vector.
The amplification of noise can be kept to a level comparable
to the reference case by using a regularization procedure. A
tradeoft between the power focusing ratio and the amplifica-
tion of noise has to be made. Then, several microphone array
setups have been compared. It appears that good array ge-
ometries are those combining both a zone with a high density
of sensors and also some distant microphones, such as tridi-
mensional microphone arrays with logarithmically spaced
microphones.
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FiGure 11: Sound field cartographies for a point source located at
[r = 1m, az = 180dg, el = —58dg], at frequency 6202 Hz, using
omnidirectional (a) or cardioid (b) microphones.

Then, the robustness of the analysis to several factors
known to degrade the quality of the analysis has been tested.
These ones are the sensor noise, the position errors between
the reference and the deployed microphone array, and the di-
rectivity characteristics of the microphones. The use of reg-
ularization is highly recommended and has been validated
through simulations concerning the robustness of the analy-
sis to sensor noise and position errors. Concerning the direc-
tivity characteristics of the sensors, the analysis is distorted
when the directivity differs from the omnidirectional case.
This is normal because the microphones were assumed to be
omnidirectional for the derivation of the optimal tap vector
criterion.

Some further work is needed to take into account more
complex directivity characteristics for the optimal tap vector
computation step, but the approach presented in this article
is already particularly well indicated for sound field analysis
dedicated to sound reproduction systems.
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