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We propose a method for indoor versus outdoor scene classification using a probabilistic neural network (PNN). The scene is
initially segmented (unsupervised) using fuzzy C-means clustering (FCM) and features based on color, texture, and shape are
extracted from each of the image segments. The image is thus represented by a feature set, with a separate feature vector for each
image segment. As the number of segments differs from one scene to another, the feature set representation of the scene is of
varying dimension. Therefore a modified PNN is used for classifying the variable dimension feature sets. The proposed technique
is evaluated on two databases: IITM-SCID2 (scene classification image database) and that used by Payne and Singh in 2005. The
performance of different feature combinations is compared using the modified PNN.
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1. INTRODUCTION

Classification of a scene as belonging to indoor or outdoor
is a challenging problem in the field of pattern recognition.
This is due to the extreme variability of the scene content
and the difficulty in explicitly modeling scenes with indoor
and outdoor content. Such a classification has applications in
content-based image and video retrieval from archives, robot
navigation, large-scale scene content generation and repre-
sentation, generic scene recognition, and so forth. Humans
classify scenes based on certain local features along with the
context or association with other features. This context is
learned by experience (training). Some examples of such lo-
cal features are the presence of trees, water bodies, exterior
of buildings, sky in an outdoor scene and the presence of
straight lines or regular flat-shaded objects or regions such
as walls, windows, artificial man-made objects in an indoor
scene. Also, the types of features that humans perceive from
images are based on color, texture, and shape of local regions
or image segments. In this work, we represent the image as a
collection of segments that can be of arbitrary shape. From
each segment color, texture, and shape features are extracted.
Therefore, the problem of indoor versus outdoor scene classi-
fication is a feature set classification problemwhere the num-
ber of feature vectors in the feature set is not constant, as the
number of segments in an image varies. Also, there is no im-
plicit ordering of the feature vectors in the feature set. This

rules out the use of classifiers that take fixed dimension input
feature vectors for classification. Hence we propose a modi-
fied probabilistic neural network that can handle variability
in the feature set dimension.

The rest of this paper is organized as follows. The follow-
ing section reviews existing work done in the indoor versus
outdoor scene classification. Section 3 discusses the unsuper-
vised segmentation of the scenes using fuzzy C-means clus-
tering (FCM). The extraction of features from segments is
described in Section 4. Section 5 describes PNN and its mod-
ification for scene classification. Section 6 discusses the re-
sults of the proposed technique on two databases. Section 7
concludes the paper and gives directions of future work.

2. REVIEW

The approaches used for scene classification (indoor ver-
sus outdoor) rely on features such as, edges, color, texture,
and shape properties. Saber and Tekalp [1] integrated color,
edge, shape, and texture features for region-based image an-
notation and retrieval. The classifiers used are Bayesian, in-
dependent component analysis (ICA), principal component
analysis (PCA), and artificial neural network (ANN). Payne
and Singh [2] had proposed a technique based on analyz-
ing straightness of an edge in images. They classified images
based on the hypothesis that indoor images have a greater
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proportion of straight edges compared to outdoor images.
They used multiresolution estimates on edge straightness to
improve the efficiency of the technique. Their method failed
when images contain some objects prevalent in both indoor
and outdoor environments. For 872 images they obtained
87.70% accuracy on gray-level image and 90.71% on sub-
sampled image.

Jain and Vailaya [3] proposed an efficient retrieval of im-
ages from large databases exploiting important visual clues
like color and shape content of an image. Experimental re-
sults on a database of 400 trademark images showed that
integrated color- and shape-based feature provided 99% of
the images being retrieved within the top two positions.
Vailaya et al. [4] had shown that high-level classification
problem (city images versus landscapes) can be solved from
simple low-level features trained for the particular classes.
They developed a procedure for measuring the saliency of
a feature towards a classification problem based on intr-
aclass and interclass distance distributions. The procedure
is used to determine the discrimination power of the fea-
tures: color histogram, color coherence vector, DCT coeffi-
cient, edge direction histogram, and edge direction coher-
ence vector. Among them edge direction-based features had
shown maximum discriminative power. For classification, a
weighted k-NN had been used resulting in an accuracy of
93.9% when evaluated on an image database of 2216 images
using leave-one-out strategy. Iqbal and Aggarwal [5] devel-
oped an approach for content-based image retrieval based
on isotropic and anisotropic mappings. Isotropic mapping
is invariant to the action of planar Euclidean group, trans-
lation, rotation, and reflection of image data and hence, in-
variant to orientation and position. Anisotropy mapping is
variant to all these transformations. Isotropic mappings is
represented by structure extraction via perceptual group-
ing and color histogram. The representation for anisotropic
mapping is considered to be a channel energy model com-
prised of even-symmetric Gabor filters for texture analysis.
They used 521 images from a database in which 30 images
were used for training. The achieved retrieval rate is 73.93%.
Iqbal and Aggarwal [6] had exploited the semantic interrela-
tionships between different primitive image features by per-
ceptual grouping to detect the presence of man-made struc-
tures. Their methodology retrieves building images based on
these principles in a Bayesian framework. The system had a
recall of maximum 80% and a precision of 83.72% for the
class of images containing buildings. In content-based image
retrieval system image representation is a challenging prob-
lem.

Attributed relational graph (ARG) [7] can be a power-
ful representation. Yu and Grimson [8] used ARG for image
representation. It is a composition of vertices or attributed
parts (color, shape, e.g.) and edges or attributed relations
such as relative brightness, relative texture change, and rel-
ative positions. A subgraph of an ARG is called configura-
tion which is very efficient for representing contextual infor-
mation in an image. Their framework combined configura-
tional and statistical approaches in image retrieval. Instead
of representing an image by a set of configurations they came

up with a vector-space structure or statistical feature-based
representation deducted from the configurations making the
concept of learning and prediction easier. Thus their method
is enriched with the semantic description power of config-
urations and simple vector-space structure of statistical ap-
proaches.

SIMPLIcity (semantics sensitive-integrated matching for
picture libraries) [9] is an efficient CBIR system, which uses
semantic classification methods, wavelet-based approach for
feature extraction, and integrated region matching based
upon image segmentation. The system classifies images in
categories like textured-nontextured and graph-photograph.
This categorization enhances retrieval by permitting seman-
tically adaptive searching methods and also narrowing down
the search space. A similarity measure is developed using re-
gion matching scheme which integrates properties of all re-
gions in an image. Experimentation results showed that SIM-
PLIcity is a faster, better, and robust method for CBIR. Some
works [10–12] have been done for naturalness classification
or man-made versus natural image classification. In this case,
images are represented by their “spatial envelope” properties,
including naturalness, openness, and roughness. However,
robust indoor versus outdoor scene classification is a chal-
lenging problem in the sense that both kinds of images can
have common man-made objects and content of images are
more unconstrained. Luo and Boutell [10] tried to cope with
this challenge by using over-complete independent compo-
nent analysis (ICA) on the Fourier-transformed image to ob-
tain sparse representation, serving for more accurate clas-
sification. Some approaches [11] used only texture orienta-
tion as a low-level feature to discriminate “city/suburb” im-
ages. In [12], it has been reported that high-level informa-
tion can be inferred from low-level information and also high
classification rate can be obtained from high-level feature
set, whereas low-level feature gives low accuracy with low
computational cost. A two-stage indoor/outdoor classifica-
tion scheme has been attempted by Navid Serrano and Luo
[12] using low-level features like texture and color. Images
are divided into a number (powers of 2) of square blocks.
Each of the blocks passes through color and texture fea-
ture extractor to be classified separately as indoor/outdoor
blocks. And finally another classifier is used to classify the
blocks into indoor or outdoor. The drawback of this method
is that a fixed square blocking is applied to input im-
ages.

The method proposed in our paper segments the image
using FCM based on features obtained using discrete wavelet
transform to generate a set of segments which perceptually
represents an indoor or outdoor image. We have used an un-
supervised classifier (FCM) to segment the images such that
it has no bias towards indoor or outdoor scenes. Unsuper-
vised texture segmentation using FCM, based on features ob-
tained from the two most commonly used multiresolution,
multichannel filters: Gabor function and wavelet transform
are described in [13]. A feature set has been derived from dis-
tinct regions and fed to a PNN (probabilistic neural network)
for classification of the entire scene. The overall flowchart of
the proposed method is given in Figure 1.
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Figure 1: Block diagram of the proposed technique for scene clas-
sification.

3. SCENE SEGMENTATION

In order to extract local features from the scene, the image
is initially segmented using fuzzy C-means clustering [14]
based on wavelet features [15]. We have used an unsuper-
vised classifier (FCM) to segment the images such that it has
no bias towards indoor or outdoor scenes. It is assumed that
humans identify large parts of a scene for object recogni-
tion or scene understanding by analyzing a picture in mod-
ules [16]. Figure 2 shows the steps involved in image seg-
mentation [13]. Each spectral band of the input image is
filtered using discrete wavelet transform (Daubechies 8-tap
and Haar filters). The absolute value of filter responses are
smoothed by a Gaussian function. This is further normal-
ized and the statistical features extracted for each spectral
band (red, green, and blue) are concatenated to form an
augmented feature vector which is used for clustering. The
following subsections elaborate on the extraction of wavelet
features, the postprocessing, and clustering using fuzzy C-
means technique.

3.1. Feature extraction using discrete wavelet
transform (DWT)

The discrete wavelet transform analyzes a signal based on its
content in different frequency ranges. Therefore it is very use-
ful in analyzing repetitive patterns such as texture [15, 17].
The 2D wavelet transform uses a family of wavelet functions
and its associated scaling functions to decompose the origi-
nal image into different subbands, namely, the low-low, low-
high, high-low, and high-high (A, V, H, D, resp.) subbands.
The decomposition process can be recursively applied to the
approximation subband (A) to generate decomposition at
the next level. Figures 3(a) and 3(b) show the level-2 dyadic
decomposition of an image. The filter responses are post-
processed to compute the local energy estimates (as shown
in Figure 4). The absolute value of a filter response h

q
l (x, y) is

convolved with a low-pass Gaussian post filter g(x, y) to yield

Filtering

Nonlinearity

Smoothing

Normalized
nonlinearity

Classifier

Input image

Filter responses

Local energy
function

Local energy
estimates

Feature vectors

Segmented map

Figure 2: Stages of preprocessing for scene segmentation.
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Figure 3: (a) Input image, (b) decomposition at level 2.

a post-filtered energy of the qth subband of lth filter as

e
q
l (x, y) =

∣
∣h

q
l (x, y)

∣
∣∗∗g(x, y), (1)

where

g(x, y) = 1
2πσ22

e−[x
2+y2]/2πσ22 , (2)

∗∗ denotes 2D convolution, and | · | denotes absolute value.
The feature vectors computed from the local window around
a given pixel from the energy estimates are

(1) mean: μ = E[e
q
l (x, y)], of postprocessed A;

(2) variance: σ = E[(e
q
l (x, y) − μ)2], of postprocessed V

and H .

Here the E[·] is the expectation operator. The three wavelet
components A, V , and H , for the green spectral band of the
image shown in Figure 4(a), are shown in Figures 4(b)–4(d).
The corresponding Gaussian postfiltered outputs are shown
in Figures 4(e)–4(g). The final feature vector obtained for
each pixel of an image can be expressed as

x(x, y) =
[

μdAR
(x, y) σdVR

(x, y) σdHR
(x, y)

μhAR
(x, y) σhVR

(x, y) σhHR
(x, y)

]T
,

(3)
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Figure 4: (a) Input image, (b)–(d) approximation, horizontal and
vertical components, respectively, of the input image in (a), (e)–(g)
energy map computed by postprocessing images in (b)–(d).

where x(x, y) is the feature vector, μdAR
(x, y) is the estimated

mean of the energy in the approximation subband obtained
by filtering red spectral band of input image (using 8-tap
Daubechies wavelet filter), and σhVR

(x, y) is variance of the
estimated energy in the vertical subband (using Haar fil-
ter).

Similarly for each spectral band (red, green, and blue)
mean of A and variance of V and H are computed for re-
sponses obtained using two wavelet filters (Daubechies, and
Haar). Thus an eighteen-dimension feature vector is ob-
tained by concatenating all features obtained using these
combinations. Hence each pixel in the image is now repre-
sented by a feature in�18. This is used to segment the image
using an unsupervised method of segmentation, which is de-
scribed in the following subsection.

3.2. Fuzzy c-means clustering

There are already a large number of supervised and unsuper-
vised texture segmentation algorithms existing in the liter-
ature. The difference between supervised and unsupervised

segmentation is that supervised segmentation assumes prior
knowledge on the type of textures present in the image. We
have used here the (unsupervised) fuzzy C-means clustering
(FCM) algorithm [14] which is an iterative procedure. Given
M input feature vectors xm, m = 1, . . . ,M, the number of
clusters C, where 2 ≤ C < M, and the fuzzy weighting expo-
nent z, 1 < z < ∞, initialize the fuzzy membership function

u(0)c,m which is an entry of a C ×M matrix U(0). The following
steps are iterated for increments of b.

(1) Calculate the fuzzy cluster centers vbc with

vbc =
∑M

m=1
(

ubc,m
)z
xm

∑M
m=1

(

ubc,m
)z . (4)

(2) Update U with

ub+1c,m =
⎡

⎣

C
∑

j=1

〈
αc,m
αj,m

�2/(z−1)
⎤

⎦

−1

, (5)

where (αj,m)2 = ‖xm − vbj‖2 and ‖ · ‖ is any inner
product-induced norm.

(3) Compare Ub with U(b+1) in a convenient matrix norm.
If ‖U(b+1)−U(b)‖ ≤ ε (ε = 10−5) stop, return to step 1.

The value of the weighting exponent z determines the fuzzi-
ness of the clustering decision. A smaller value of z, that is, z
close to unity, will lead to a zero/one hard decision member-
ship function, while a larger z corresponds to a fuzzier out-
put. Figure 5(b) shows the segmented output for the image
shown in Figure 5(a). Different shades of gray represent dis-
tinct clusters, where only the four significant (largest based
on area) segments are considered. Figures 5(c)–5(f) show
the bitmasks corresponding to the four major segments from
the segmented image. In this work although the FCM-based
clustering assigns disconnected image segments to the same
cluster we consider disconnected segments of the same clus-
ter as different segments. Regions near the boundary are not
considered for further processing as they are often not com-
pletely available.

4. LOCAL FEATURE EXTRACTION

Local feature extracted from each of the major segment of
the image are color, texture, and shape characteristics. Each
type of feature is normalized and concatenated to form the
augmented feature as

x =
[

xcolor xtexture xshape
]T

. (6)

In the following, each type of feature used for classification is
discussed.

Color

For each segment of the image, the mean color values are
taken as the feature

xcolor =
[

μR μG μB
]T

, (7)

where μ is the mean for the red (R), green (G), and blue (B)
bands.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: (a) Input image, (b) the segmented output, (c)–(f) bit-
masks for different connected image segments indicated by gray
shade.

Texture

A feature vector for each segment is computed by taking
mean of all the features associated with the pixels in a seg-
ment as

μ̃dAR
= 1

P

∑

(x,y)∈ξ
μdAR

(x, y), σ̃dAR
= 1

P

∑

(x,y)∈ξ
σdVR

(x, y),

σ̃dAR
= 1

P

∑

(x,y)∈ξ
σdHR

(x, y),

(8)

where P is the cardinality of the set ξ of pixels in a segment s,
of the image. Similarly, mean features are computed for other
features mentioned in Section 3. The texture feature vector
thus obtained is

xtexture =
[

μ̃dAR
σ̃dVR

σ̃dHR
μ̃hAR

σ̃hVR
σ̃hHR

. . .
]T

. (9)

Shape

Shape has been used as a feature for discriminating object
classes. The Blobworld system [18] computes the area, ec-
centricity, and orientation of each region corresponding to
an object. In this work, we use three shape features: eccen-
tricity, compactness, and Euler number, to represent scene
segments. The shape features are invariant to translation, ro-
tation, and scaling. We consider such invariance important
for obtaining a robust classification. Eccentricity and com-
pactness are used as global parameters for MPEG-7 shape
descriptors [19].

Input
units

Pattern
units

Output
units

Figure 6: Probabilistic neural network architecture.

(1) Eccentricity is the ratio of the length of the longest
chord of the shape to the longest chord perpendicular
on it.

(2) Compactness is often defined as the ratio of squared
perimeter and the area of an object:

xcompactness = (Perimeter)2

Area
. (10)

Compactness reaches the minimum in a circular ob-
ject and approaches infinity in thin, complex objects.

(3) Euler number is used as the topological descriptor de-
fined as the number of connected components minus
the number of holes in the segmented regions.

The above-mentioned shape features are concatenated to
form the shape feature vector

xshape =
[

xeccentricity xcompactness xEuler
]T

. (11)

5. CLASSIFICATION

5.1. Probabilistic neural network

The PNN model is based on Parzen’s results on probability
density function (PDF) estimators [20, 21]. PNN is a three-
layer feedforward network consisting of input layer, a pattern
layer, and a summation or output layer as shown in Figure 6.
We wish to form a Parzen estimate based on K patterns each
of which is n-dimensional, randomly sampled from c classes.
The PNN for this case consists of n input units comprising
the input layer, where each unit is connected to each of K
pattern units; each pattern unit is, in turn, connected to one
and only one of the c category units. The connection from the
input to pattern units represents modifiable weights, which
will be trained. Each category unit computes the sum of the
pattern units connected to it. A radial basis function and a
Gaussian activation function are used for the pattern nodes.

The PNN is trained in the following way. First, each pat-
tern x of the training set is normalized to have unit length.
The first normalized training pattern is placed on the input
units. The modifiable weights linking the input units and the
first pattern unit are set such that w1 = x1. Then, a single
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connection from the first pattern unit is made to the category
unit corresponding to the known class of that pattern. The
process is repeated with each of the remaining training pat-
terns, setting the weights to the successive pattern units such
thatwk = xk for k = 1, 2, . . . ,K . After such training we have a
network which is fully connected between input and pattern
units, and sparsely connected from pattern to category units.
The trained network is then used for classification in the fol-
lowing way. A normalized test pattern x is placed at the input
units. Each pattern unit computes the inner product to yield
the net activation y,

yk = wT
k x (12)

and emits a nonlinear function of yk; each output unit sums
the contributions from all pattern units connected to it. The
activation function used is exp(‖x−wk‖/σ2). Assuming that
both x and wk are normalized to unit length, this is equiv-
alent to using exp((yk − 1)/σ2). As the number of segments
obtained differs from one scene to another, the feature-set
representation of the scene is of varying dimension. There-
fore a modified PNN is used for classifying the variable di-
mension feature sets.

5.2. Modified PNN

In our work, the second layer (i.e., pattern layer) must have

K̃ =
I
∑

i=1
Si (13)

units, where I is the total number of training images for both
indoor and outdoor classes and Si denotes number of seg-
ments in ith image. Here we consider different segments in
training scenes to train our network. To classify a test scene,
each segment of the test image is compared with each unit in
the pattern layer. The distance between feature vector asso-
ciated with the segment(s) of the test image and the weight
vector associated to the pattern unit is computed as

dk = min
∥
∥x(s)−wk

∥
∥, (14)

where dk is the distance between the closest segment (sth seg-
ment) of the test image to the kth weight vector. We find the
closest segment of the test image to each one of the training
segments. The activation function used here is exp(dk/σ2).
The value of σ is found to be 0.07 by trial and error method.
The output layer contains two units, one of them connects
to all the units in the pattern layer containing segments cor-
responding to indoor scene and the other connects to all re-
maining units in pattern layer (units corresponding to out-
door scenes). For an unknown test scene, each output unit
sums the contributions from all pattern units connected to it.
The output unit with the highest value wins. In case of a com-
petition between the two output units, the one with the most
number of closely associated segments (based on dk in (14))
will be considered for obtaining a crisp classifier decision.

6. EXPERIMENTAL RESULTS

The proposed scene classification method is tested on the
IITM-SCID2 (scene classification image database) [22] and

Table 1: Indoor versus outdoor classification accuracy (%) on
IITM-SCID2 and Benchmark-2.

Feature set
IITM SCID2 Benchmark-2

Indoor Outdoor Indoor Outdoor

Shape 63.5 66.5 26.1 89.4

Color 94.0 53.5 79.5 90.7

Texture 94.0 86.9 90.1 82.6

Shape + color 89.2 71.5 75.2 95.7

Shape + texture 90.4 83.8 83.9 89.4

Color + texture 94.0 90.8 89.4 85.1

Shape + color + texture 89.6 83.1 84.5 89.4

Table 2: Comparison of variousmethods for indoor versus outdoor
classification accuracy (%).

Methods
IITM SCID2 Benchmark-2

Indoor Outdoor Indoor Outdoor

Proposed (color + texture) 94.0 90.8 89.4 85.1

Edge straightness (rule-based) 71.0 72.5 85.0 80.0

Edge straightness (k-NN) 65.5 66.5 78.9 87.9

part of the image database provided by the authors in [2] (we
call this Benchmark-2). The IITM-SCID2 database consists
of 902 indoor and outdoor images together, out of which 193
indoor and 200 outdoor images are used for training, and
249 indoor and 260 outdoor images are used for testing. The
Benchmark-2 database consists of around 522 indoor and
outdoor images together, out of which 100 images per class
were used for training and 161 images per class were used
for testing. The features extracted were normalized across the
entire training and testing sets and concatenated to form the
augmented feature vector for each combination. This aug-
mented feature vector is used during training and testing the
modified PNN.

Table 1 shows the classification performance of the pro-
posed method with different combinations of color, texture,
and shape features on the IITM-SCID2 and Benchmark-2
databases. It can be observed that the combination of color
and texture features perform better than all other combina-
tions of features put together for both databases. It can also
be noted that out of the three different types of features used
individually, the textural features perform significantly better
than shape- and color-based features for both databases. The
performance of shape features is particularly good for out-
door scenes in Benchmark-2, but the performance of color
features do not follow a trend for both databases due to the
differences in color variations in both the databases. For in-
door scenes in case of Benchmark-2 the shape features pro-
vide poor results. This leaves the scope of exploring better
shape measures for classification.

Table 2 compares the classification performance of the
proposed method and our implementation of the methods
proposed in [2] on IITM-SCID2 and Benchmark-2. It can be
observed that the proposed method performs significantly
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Figure 7: False acceptance and false rejection rates (FAR and FRR): (a) for the proposed method, and (b) k-NN method, on IITM-SCID2.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Examples of correctly classified indoor images (from IITM-SCID2).

better than both the methods proposed in [2] on IITM-
SCID2 and Benchmark-2. We have obtained 83% overall
classification accuracy on Benchmark-2 using our imple-
mentation of the method proposed in [2], which is near to
that (87%) quoted in [2].

Figure 7 shows the FAR and FRR values for the proposed
method and the method proposed in [2]. It can be observed
that the equal error rate (EER) for the proposed method is
9.4%. This is significantly lesser than EER obtained for our
implementation of [2] which is 35.5%. Figures 8 and 9 show
some of the correctly classified indoor and outdoor scenes,
respectively, from IITM-SCID2. Figure 10 shows the indoor
images that were incorrectly classified as outdoor class from
IITM-SCID2. Thismay be due to the inadequacy of the train-
ing images to provide the variability necessary to correctly

classify the segments of the test image. Figure 11 shows the
outdoor images that were incorrectly classified as indoor
scenes from IITM-SCID2. It can be observed that most of
these images have characteristics similar to indoor images
such as flat-shaded walls with smooth textures and image
segments with straight borders. Figures 12 and 13 show some
of the correctly classified indoor and outdoor scenes, respec-
tively, from Benchmark-2. Figures 14 and 15 show some of
the incorrectly classified indoor and outdoor scenes, respec-
tively, from Benchmark-2.

7. CONCLUSION AND FUTUREWORK

In this paper, we have proposed a method for indoor versus
outdoor scene classification. We have represented the image
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Examples of correctly classified outdoor images (from IITM-SCID2).

(a) (b) (c) (d) (e)

Figure 10: Examples of indoor images misclassified as outdoor scenes (from IITM-SCID2).

(a) (b) (c) (d) (e)

Figure 11: Examples of outdoor images misclassified as indoor images (from IITM-SCID2).

(a) (b) (c) (d) (e)

Figure 12: Examples of correctly classified indoor images (from Benchmark-2).

(a) (b) (c) (d) (e)

Figure 13: Examples of correctly classified outdoor images (from Benchmark-2).
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(a) (b) (c) (d) (e)

Figure 14: Examples of indoor images misclassified as outdoor scenes (from Benchmark-2).

(a) (b) (c) (d) (e)

Figure 15: Examples of outdoor images misclassified as indoor images (from Benchmark-2).

using a feature set with varying number of feature vectors
each describing the local color, shape, and textural properties
of the image segments. In order to classify a variable dimen-
sion feature set, a modified PNN is used to overcome the
problem of varying number of feature vectors, of the feature
set, corresponding to the number of segments in the scene.
We have tested the proposed scene classification technique on
the IITM-SCID2 database and observed that the textural fea-
tures based on the DWT subbands dominates other features
such as shape and color. Future work includes exploring the
use of a richer feature set based on other properties such as
moments, edge ratio, and straightness of the edge. The mod-
ified PNN used in this work can be further extended to scene
matching for image-querying applications.

REFERENCES

[1] E. Saber and A. M. Tekalp, “Integration of color, edge, shape,
and texture features for automatic region-based image anno-
tation and retrieval,” Journal of Electronic Imaging, vol. 7, no. 3,
pp. 684–700, 1998.

[2] A. Payne and S. Singh, “Indoor vs. outdoor scene classification
in digital photographs,” Pattern Recognition, vol. 38, no. 10, pp.
1533–1545, 2005.

[3] A. K. Jain and A. Vailaya, “Image retrieval using color and
shape,” Pattern Recognition, vol. 29, no. 8, pp. 1233–1244,
1996.

[4] A. Vailaya, A. Jain, and H. J. Zhang, “On image classification:
city images vs. landscapes,” Pattern Recognition, vol. 31, no. 12,
pp. 1921–1935, 1998.

[5] Q. Iqbal and J. K. Aggarwal, “Image retrieval via isotropic and
anisotropic mappings,” in Proceedings of IAPR Workshop on
Pattern Recognition in Information Systems, pp. 34–49, Setubal,
Portugal, July 2001.

[6] Q. Iqbal and J. K. Aggarwal, “Applying perceptual grouping to
content-based image retrieval: building images,” in Proceed-
ings of the IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR ’99), vol. 1, pp. 42–48, Fort
Collins, Colo, USA, June 1999.

[7] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision,
Addison-Wesley, Reading, Mass, USA, 1992.

[8] H. Yu andW. E. L. Grimson, “Combining configurational and
statistical approaches in image retrieval,” in Proceedings of the
2nd IEEE Pacific Rim Conference on Multimedia: Advances in
Multimedia Information Processing, vol. 2195 of Lecture Notes
in Computer Science, pp. 293–300, Beijing, China, October
2001.

[9] J. Z. Wang, J. Li, and G. Wiederhold, “Simplicity: semantics-
sensitive integrated matching for picture libraries,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 23, no. 9, pp. 947–963, 2001.

[10] J. Luo andM. Boutell, “Natural scene classification using over-
complete ICA,” Pattern Recognition, vol. 38, no. 10, pp. 1507–
1519, 2005.

[11] M. M. Gorkani and R. W. Picard, “Texture orientation for
sorting photos “at a glance”,” in Proceedings of the 12th Inter-
national Conference on Pattern Recognition (ICPR ’94), vol. 1,
pp. 459–464, Jerusalem, Israel, October 1994.

[12] A. S. Navid Serrano and J. Luo, “A computationally efficient
approach to indoor/outdoor scene classification,” in Proceed-
ings of the International Conference on Pattern Recognition
(ICPR ’02), vol. 4, pp. 146–149, Quebec City, Quebec, Canada,
August 2002.

[13] S. G. Rao, M. Puri, and S. Das, “Unsupervised segmentation
of texture images using a combination of gabor and wavelet
features,” in Proceedings of the 4th Indian Conference on Com-
puter Vision, Graphics and Image Processing (ICVGIP ’04), pp.
370–375, Kolkata, India, December 2004.

[14] M. F. A. Fauzi and P. H. Lewis, “A fully unsupervised texture
segmentation algorithm,” in Proceedings of the British Machine
Vision Conference (BMVC ’03), pp. 519–528, Norwich, UK,
September 2003.

[15] E. Salari and Z. Ling, “Texture segmentation using hierarchi-
cal wavelet decomposition,” Pattern Recognition, vol. 28, pp.
1819–1824, 1995.



10 EURASIP Journal on Advances in Signal Processing

[16] I. E. Gordon, Theories of Visual Perception, Psychology Press,
New York, NY, USA, 3rd edition, 2004.

[17] C.-S. Lu, P.-C. Chung, and C.-F. Chen, “Unsupervised tex-
ture segmentation via wavelet transform,” Pattern Recognition,
vol. 30, no. 5, pp. 729–742, 1997.

[18] C. Carson, M. Thomas, M. Belongie, J. Hellerstein, and J. Ma-
lik, “Blobworld: a system for region based image indexing and
retrieval,” in Proceedings of the 3rd International Conference
on Visual Information Systems, Amsterdam, The Netherlands,
June 1999.

[19] F. Mokhtarian and M. Bober, Curvature Scale Space Repre-
sentation: Theory, Applications and MPEG-7 Standarization,
Kluwer Academic, Boston, Mass, USA, 2003.

[20] D. F. Specht, “Probabilistic neural networks,”Neural Networks,
vol. 3, no. 1, pp. 109–118, 1990.

[21] P. E. H. Richard, O. Duda, and D. G. Stork, Pattern Classifica-
tion, John Wiley & Sons, New York, NY, USA, 2004.

[22] “IIT Madras Scene Classification Image Database (SCID),”
http://vplab.cs.iitm.ernet.in/SCID/.

Lalit Gupta is pursuing his M.S. degree at
the Department of Computer Science and
Engineering, Indian Institute of Technology
Madras. Currently he is working on image-
texture analysis. His research interests in-
clude computer vision and pattern recog-
nition. He has published one paper in na-
tional conference.

Vinod Pathangay received the M.S. degree
from Indian Institute of TechnologyMadras
in 2004 and currently pursuing the Ph.D.
degree there with fellowship from Infosys
Foundation. His current research interests
are computer vision and pattern recogni-
tion. He has published one paper in na-
tional conference.

Arpita Patra is pursuing her M.S. degree
at the Department of Computer Science
and Engineering, Indian Institute of Tech-
nology Madras under the guidance of Dr.
Sukhendu Das. Currently she is working on
face recognition and multimodal biometry.
During her M.S. degree she has completed
a project named “Multimodal biometric-
based secured access system using face and
fingerprint recognition.” Her research inter-
ests include computer vision, image processing, and statistical pat-
tern recognition.

A. Dyana received the M.Tech. degree
from Manonmanium Sundaranar Univer-
sity, Tirnelveli, India in information tech-
nology and currently is pursuing the Ph.D.
degree from Indian Institute of Technology
Madras. Her research interests include com-
puter vision and image compression. She
has published one paper in national confer-
ence.

Sukhendu Das is currently working as an
Associate Professor in the Department of
Computer Science and Engineering, In-
dian Institute of Technology Madras, Chen-
nai, India. He completed his B.Tech. de-
gree from Indian Institute of Technology
Kharagpur from the Department of Electri-
cal Engineering in 1985 and M.Tech. degree
in the area of computer technology from In-
dian Institute of Technology Delhi in 1987.
He then obtained his Ph.D. degree from Indian Institute of Tech-
nology Kharagpur in 1993. His current areas of research interests
are visual perception, computer vision, digital image processing
and pattern recognition, computer graphics, artificial neural net-
works, and computational science and engineering. He has been
in the faculty of the Department of Computer Science and Engi-
neering, Indian Institute of Technology Madras, India since 1989.
He has also worked as a Visiting Scientist in the University of
Applied Sciences, Pforzheim, Germany, for postdoctoral research
work, from December 2001 till May 2003. He has guided one (cur-
rently guiding four) Ph.D. student and severalM.S. (currently guid-
ing eight), M.Tech, and B. Tech students. He had completed several
international and national sponsored projects and consultancies,
both as principle and coinvestigators. He has published more than
50 technical papers in international and national journals and con-
ferences. He has received one best paper and a best design contest
award.

http://vplab.cs.iitm.ernet.in/SCID/

	Introduction
	Review
	Scene Segmentation
	Feature extraction using discrete wavelet transform (DWT)
	Fuzzy c-means clustering

	Local feature extraction
	Color
	Texture
	Shape


	Classification
	Probabilistic neural network
	Modified PNN

	Experimental Results
	Conclusion and Future Work
	REFERENCES

