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In a tracking system, an object of interest is monitored continuously in a sensor network. Information about the object is kept in
the sensors and sensors transmit the information upon request. In this paper, we consider the scenario where all sensors around
a targeted object capture images of it and these pictures will be sent to a mobile agent upon request. Due to the size and energy
limitations in sensors, images kept in sensors are often small and highly compressed. We describe a framework to facilitate a mobile
agent in the sensor network to request images of the object of interest. As sensors are limited in energy, it is desirable to reduce
the energy used in transmitting the images. We observe that, in a sensor network that is sufficiently dense, images from neighbor
cameras would likely overlap, and therefore intermediate sensors can process and combine overlapping portions so as to reduce
the energy spent on image transmission. We develop a protocol for involved sensors to determine how to transmit the images they
have kept to the mobile agent in an energy efficient manner. Our protocol is truly distributed and does not require any global
information. We evaluate our protocol through extensive simulations.
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1. INTRODUCTION

A wireless sensor network consists of thousands of sensors
that span a large geographical region. Research and develop-
ment in wireless sensor networks are becoming increasingly
widespread due to their low cost and low maintenance in de-
ployment [1]. These sensors are able to communicate with
each other to collaboratively detect objects, collect informa-
tion, and transmit messages. Sensor networks have become
an important technology especially for environmental moni-
toring, target tracking, military applications, disaster man-
agement, and so forth [2, 3]. A sensor is a very small de-
vice and the battery inside is not likely to be rechargeable.
This limitation in energy puts extra constraints in the oper-
ations of a sensor. In order to prolong its lifetime, a sensor
should carefully utilize its energy. Message transmission has
been shown to be the major source of energy dissipation. To
save energy used in transmission, the size of the messages and
the number of messages to be transmitted should be mini-
mized. In this paper, we study how images can be processed
and transmitted efficiently in terms of energy in a visual sen-
sor network.

We consider a tracking system where objects of interest
are traced. All sensors are equipped with cameras and they

can take images of a target while it moves inside the sensor
network. The images captured are kept in the local memory
of the sensors. As sensors are limited in size and therefore
have only a small field of view, a camera often can only take a
snapshot of a portion of a targeted object. In other words,
to get a full view of an object, images captured by several
sensors have to be combined before the images can be an-
alyzed. In some applications, images of objects in different
locations have to be examined at the same time. To reduce
the energy consumption in sensors, the analysis will be car-
ried out in some powerful nodes instead of in the sensors
locally. Traditionally, these powerful nodes are assumed to be
fixed servers wired with power cable sitting at the rim of the
sensor network. An image is sent to these fixed servers in a
hop-by-hop manner. As a server is at a peripheral position,
the paths from the sensors in the central area of a network
can be very long, especially when the sensors span a large ge-
ographical area. This is not energy efficient since images are
large in size and several images are needed for a single ob-
ject.

Recently, the benefits of using mobile relays have been
studied [4]. It is reported that using a mobile node as a sink
to collect information can prolong the lifetime of a sensor
network. We adopt this approach in our studies. Instead of
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sending images to a fixed server, sensors relay their pictures
to this mobile sink. There are several issues that have to be
addressed when data are sent to a mobile node instead of a
fixed one. First, since the sink is now mobile, it also has en-
ergy concern. That is, if we keep on sending pictures to the
sink, the sink may get overwhelmed and some pictures will be
lost due to insufficient energy or memory. Second, when the
sink is fixed, sensors can be preconfigured with its location
and every sensor will know where to send its images. This
does not apply when the sink becomes mobile. A mechanism
that allows a sensor to locate the sink is needed.

To solve the two problems, we take an on-demand re-
quest approach. The mobile sink sends out requests to sen-
sors when it wants to collect the images. In this way, the
mobile sink can estimate how much information it can han-
dle and makes requests accordingly. The possibility of over-
whelming is highly reduced. On the other hand, the mo-
bile sink should also put its location in the request messages.
Sensors can then know where to send their pictures without
much extra overhead.

After receiving a request, sensors that have images of the
same target will send their images to the mobile sink. Since
they may overlap with each other, intermediate sensors on
the path from the cameras to the mobile sink can combine
images of overlapping regions so as to reduce the size of the
images. Different paths may have different hop counts and
images can be combined in different ways. In this paper, we
investigate how to optimize the energy resources in transmit-
ting images on demand to a mobile node through selecting
appropriate paths. We develop a distributed protocol that
helps to reduce the total transmission energy. We evaluate
our protocol through extensive simulations and the simula-
tion results show that our protocol, when compared to send-
ing images individually, can achieve a significant reduction
in energy usage without any additional computational cost.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 describes the network
model. Section 4 describes the protocol, and the simulation
results are shown in Section 5. We finally conclude our paper
in Section 6.

2. RELATED WORK

A sensor node can reduce the energy spent in transmission
by combining the data it receives from neighbors together
before transmitting it out. For example, if the sensors are
transmitting the average temperature of the area they reside
in, when a sensor receives two averages Al and A2 from two
neighbors, it can calculate (A1 + A2)/2 and send it out. Two
or more messages can be “combined” into one message and
transmission energy is saved. The process of combining sev-
eral messages into one is called data aggregation. The prob-
lem of finding optimal data aggregation has been proved to
be NP-hard [5, 6]. Some mechanisms have been developed to
aggregate simple scalars [7-10], but only a few of them study
the employment of aggregation of more complex data types.

Data aggregation can also be applied to visual sensor net-
works, but the multimedia nature of the data presents extra

challenges in designing a proper mechanism for aggregation.
Several recent studies tackle various aspects of this problem.
Reference [11] shows that applying maximum compression
before transmission does not necessarily minimize the to-
tal energy used. The authors then develop a heuristic for
selecting a good compression level based on global infor-
mation. Yu et al. [12] develop a mechanism for transmit-
ting JPEG2000 images in one hop. Given an expected im-
age quality, the algorithm’s objective is to minimize the en-
ergy spent in processing and transmission. Reference [13]
studies distributed image compression, where the compu-
tation in wavelet transform and quantization of subbands
in JPEG2000 are shared among different groups of sensor
nodes. This approach does not aim at decreasing the total
energy needed, but because each sensor only accounts for
a part of the computation, the maximum energy needed in
a sensor is reduced. Reference [14] also studies distributed
image compression, but from a different perspective. In this
setting, each sensor captures a low-resolution image of the
object, and assuming that overlapping areas across images
from different sensors can be identified, super-resolution of
these low-resolution images is performed at the receiver. The
approach in [15] uses geometrical information to estimate
the correlation of visual images of the same object and to
determine how to compress the images. Reference [16] de-
scribes a camera network where sensors are organized hier-
archically into several tiers. Lower power cameras are at the
bottom and they are capable of taking low-resolution im-
ages. When an object of interest is identified, these sensors
can trigger cameras in a higher tier on demand to get better
images.

None of the work mentioned above considers the effect
of using different paths in transmitting the images. SPIN-
IT [17] is a routing protocol for retrieving an image based
on metadata of images. It focuses on how a node iden-
tifies the sources of an image requested but not the im-
age transmission issues. In our earlier work [18, 19], we
demonstrate that when there is overlap in the scene cap-
tured by the cameras, and intermediate processing is pos-
sible to combine the images, the image transmission strat-
egy is nontrivial. Under different ratios of transmission and
compression energy, we develop guidelines that stipulate dif-
ferent routes for transmitting images in order to minimize
the overall energy used in the system. We assume that the
server is fixed and only a few sensors can aggregate images
in [18]. In this paper, we consider a more general problem
that images are sent to a mobile sink and all sensors are
equal in that they all can capture, aggregate, and transmit
images.

3. NETWORK MODEL

We consider a sensor network where sensors are uniformly
distributed in a large area. Sensors are static. Each sensor
knows its physical location by means of GPS or a localiza-
tion algorithm [20]. Each sensor n can communicate with the
sensors within its transmission range. These sensors are the
neighbors of 1, and n has the location information of these
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FIGURE 1: A simple network.

neighbors. All sensors are identical in terms of their capabil-
ities in handling the images.

3.1. Tracking and image capture

In our system, the main task of the sensors is to take images
of a certain targeted object and transmit them to a mobile
sink upon request. The object of interest moves around in
the sensor network. When a sensor detects that the object
is nearby, it determines whether to take a picture of it or
not. Since a sensor network is dense, many sensors can sense
the same object simultaneously. We let these sensors coordi-
nate with each other to take pictures at about the same time.
Time synchronization can be done through GPS or a clock
synchronization algorithm [21]. On the other hand, as these
sensors are collaborating to track the object, a sensor should
also realize whether its image overlaps with its neighbor’s im-
age and to what extent. It is possible that images captured do
not overlap. It is also possible that some images contain over-
laps but some do not. Whether the sensors want to capture
overlapping images depends on the application requirement.
Our protocol works for situations that may contain overlap-
ping and nonoverlapping images.

Referring to the network in Figure 1 where the object of
interest is represented as “+,” the white nodes are the sen-
sors that will capture images of the object. In a typical track-
ing system, the sensors should also record the time that the
pictures are taken and the object involved. The images cap-
tured are kept in the local memory of sensors. Upon request,
the images are then sent to the mobile sink. As the mobile
sink may not request images frequently, a sensor may have
taken pictures of several different targets before the mobile
sink makes a request. To reduce the size of the images, images
are compressed and saved in the local memory of a sensor. In
our system, we use JPEG compression, but we also note that
JPEG2000 and other proprietary schemes may also be used
in similar settings.

3.2. Mobile sink

A mobile sink is a mobile node in the network that collects
images on demand. It can appear in different locations to col-
lect information. When it decides to collect images, it sends
out a request that specifies what images it wants. For exam-
ple, in a wild life surveillance application, the request can be

“Please give me the pictures of a tiger captured at 1:00 AM
today.” This request also contains the information about the
mobile node and a hop count (hc¢) field to keep track of how
far this request has traveled. hc is initialized to 1. Since the
mobile sink does not know which sensors have the informa-
tion it wants, this request is flooded to all the nodes in the
network. To simplify our discussion, we assume that the mo-
bile sink will remain static until the requested images are re-
ceived or the mobile sink foresees that there will be no re-
ply. Since the mobile sink should not be a fast moving node,
if it moves after sending out the request, the nodes near its
original location can collect the images and send them to the
new location of the mobile sink, which should not be very far
away.

3.3. Request handling

A request is flooded to all the nodes in the network. There-
fore, every sensor would receive the request at least once.
Nodes that possess the required images should therefore send
their stored images to the mobile sink. The image transmis-
sion will be described in Section 4 in detail. In this section, we
focus on discussing how nodes handle the request messages
for developing forwarding paths towards the mobile sink.
When a node n receives a request for the first time, it
should record how far away it is from the mobile sink in
terms of hop count. hc carried in the request specifies how
many hops 7 is from the mobile sink. 7 also keeps track that
the hop count from the mobile sink to the neighbor is hc. n
then increments hc by one and sends the request to its neigh-
bor. It is possible that # receives the same request more than
once since more than one of its neighbors send out the re-
quest. If n receives another copy of the request from neigh-
bor b and the hop count in the request is hc(b), it records
this information in the database. It does not resend the re-
quest again. After all the copies are handled, # should know

(i) the location of the mobile sink,
(ii) its distance, in terms of hop count, to the mobile sink,
(iii) for each neighbor b, the distance between the mobile
sink and b.

As the mobile sink does not station in a location forever, the
record about a request should be cleared after some time.

4. PROTOCOL

Apart from updating the hop count and neighbor informa-
tion, a node should also note whether it possesses the image
requested. In this section, we will describe how sensors trans-
mit the requested images to the sink. We first go over some
notations.

4.1. Notations

To facilitate our discussion, we adopt the following notations
and Figure 2 illustrates some of them.
I;  JPEG compressed image kept at camera i.

Il j The portion of I; that overlaps with I;.
I j The portion of I; that overlaps with I;.
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L1 The portion of I; that does not overlap I I
"0 with I : T
LUT Resultant image after stitching I; and I; i !
"7 if they overlap. : |
1] Size of imagel. T
E Energy needed in transmitting unit byte I
‘ to a neighbor. :
B Energy needed in compressing/decompressing L—I oI
¢ unit byte. Yo
E Energy needed in performing image alignment '
a
he(n) pHespr(t)int of node 1. FiGure 2: Illustration ofI{nj and I; — I{mj.

NB(n) Neighbor set of node #.

4.2. Determination of overlapping portions

By making use of an image-based localization algorithm such
asin [22, 23], the physical locations and orientations of cam-
era nodes can be known. We take the viewpoint of these pa-
pers that the overlapping portions among images can be de-
duced geometrically [24], and the energy involved in identi-
fying the overlapping regions is small compared to the other
processes in the sensor network. If the two images differ in
scale, angle, or other parameters, we would need further im-
age alignment on these visual data [25], that is, establishing
the mathematical relationships that map pixel coordinates
from one image to another, before performing data aggre-
gation.

In sensor networks, the camera nodes are reasonably
close to each other. We may assume that the magnifications
and points of view among neighbor images are similar. The
number of parameters involved in image alignment is thus
small, and the energy consumption needed in performing
image alignment would be manageable for a sensor node
[26]. In truly random distribution of sensor nodes in 3D, the
image alignment would be much more complicated. To facil-
itate our discussion, we consider the simpler scenario.

4.3. Transmission of two neighboring images

Consider that cameras i and j are neighbors and they both
want to send their images, I; and I}, to the mobile sink, S. If
I; is transmitted individually to S in a hop-by-hop manner,
the transmission load needed is hc(i) x |I;|. If both I; and I;
are sent independently, the total transmission load (number
of bytes to be transmitted) Tgum required is

Tdum:hC(i)X |Iz| +hC(])X |I]| (1)

In a dense network, it may happen that I; overlaps with
several other images captured in other cameras. Since the
cameras take images in a collaborative manner, we can as-
sume that each portion of I; overlaps with at most one more
neighbor image. That is, each portion can aggregate with at
most one other image. In other words, we can partition I;
into several regions where some regions can be aggregated
with exactly one neighbor image while some regions do not
overlap with any image. For example, in Figure 2, I, j s

the portion of I; that overlaps with I; and (I; — I, j) is the

nonoverlapping region of I;. These regions will be sent inde-
pendently. ‘
Suppose that I; and I; overlap with each other, so Ij,; #

@ and I, j # @. After receiving the images, it could be ad-
vantageous for S to decompress the overlapping region in
both images, average them, and recompress the region, in or-
der to save on the amount of image data needed for further
transmission. The averaging is performed to reduce the re-
sulting amount of noise; if the captured images already pos-
sess good signal-to-noise ratios (SNR), we may not need the
averaging but only choose to send one of the two copies of
the same scene. We denote the raw image of an JPEG image
I to be R(I). Let C be the decompression/compression load
and let A be the image alignment load of performing data
aggregation. We have

C=|RU)|+IRE 0 j)] +[RTEN)],

. (2)
A= |R(Illﬁ]) |)

where I is the overlapping region after averaging. Note that
IR(I} )| = IR, )1 = IR(Tinj) .

Since all sensors are able to perform image processing
functions, transmission energy can in fact be reduced by al-
lowing intermediate sensors on the path to combine the over-
lapping region. For example, if i and j both send their images
to neighbor node k towards S as shown in Figure 3, k can

also decompress I, jand I j to form Iin;. The energy spent
is exactly the same as the operation done in S. Nevertheless,
we save transmission energy. Suppose that he(i) = he(j) =
he(k) + 1, the total transmission load T now is

T:|Ii|+|lj|+hc(k)X|IiUIj|. (3)
We can see that

Taum = he(k) x| L + | L] +he(k) % |I; | + |1

(4)
> he(k) x |I,UI]| + |L| + |I]| =T.
In other words, energy is saved as we apply image aggre-
gation in intermediate sensor nodes when images overlap.
Due to the randomness of the network topology, hc(i)
may not always be the same as hic(j) and i and j may not have
a common neighbor leading towards S. There are altogether
three possible configurations.
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FIGURE 3: Aggregating images at a common neighbor.

(1) he(i) = he(j)

i records hc(i) when it receives a request sending from its
neighbor k where hc(k) = he(i) — 1. k is also a neighbor lying
on the shortest path towards S. There are two subcases.

(a) There exists a node k which is the common neighbor
of i and j; in other words, k € NB(i) n NB(j) and
he(k) = he(i) — 1.

(b) There does not exist a node k such that k € NB(i) n
NB(j) and he(k) = he(i) — 1. In this case, the next hop
neighbors lying on the shortest paths to S for i and j
are different. We label them k; and k;.

(2) he(i) # he(j)

In this case, hc(i) and he(j) can differ by at most 1 since i and
j are neighbors. Without loss of generality, we assume that
he(j) = he(i) — 1. Note that j can be a next hop neighbor of
ileading to S.

We now describe the most energy efficient way to ag-
gregate images that take into account the 3 scenarios. An
important feature of our mechanism is that it does not re-
quire global information and both 7 and j can make decisions
based on its own information in a distributed manner.

Case 1. This is the situation depicted in Figure 3. i and j
should send their images to a common neighbor k and k
stitches them to form I; U I;. To identify k, i should check
for each b € NB(i) where hc(b) = hc(i) — 1, whether b is
in NB(j) as well. Since i knows its neighbors and their hop
counts from S, i can find out {b | b € NB(i) and hc(b) =
he(i) — 1} easily. To determine whether b € NB(j), i com-
putes the physical distance between b and j using their loca-
tions. If the distance is smaller than the range of transmis-
sion, b is also a neighbor of j. It is possible that there are sev-
eral neighbors satisfying the conditions but i and j should se-
lect the same one to send their images. A simple tie breaking
mechanism is to use energy level. The neighbors with highest
energy level are selected as k. Node k is then responsible for
performing image alignment and data aggregation.

Il

inj

FIGURE 4: Aggregating images at node j.

MAIN

1: if (he(i) = he(j))

2 {ifk € NB(i) n NB(j) AND hc(k) = he(i) — 1
3

4: I; — k from i;
5: I — k from j;
6 I; Ul — Sfromk;
7

8 else{

9: SEND2(i, j);
10: }

11: endif;

12: }

13: else

14: {if (he(i) > he(j))
15:

16: SEND2(i, j);
17:

18:  else SEND2(j, );
19:

20: endif;

ALGORITHM 1

Case 2. iand j know whether they have any common neigh-
bor k where he(k) = he(i) — 1 by using the same mechanism
as described in Case 1. Since k does not exist, if i and j sim-
ply send their images to a next hop neighbor leading to §, it
is not guaranteed that I; and I; can be aggregated. Therefore,
our protocol requires either i or j to send its overlapping re-
gion to the other node. That is, if i is of lower energy level,
i sends Ij.; to j and sends I; — Ij,; to k;. This is shown in
Figure 4. Node j is responsible for performing image align-
ment and data aggregation.

Case 3. Without loss of generality, we let he(j) = he(i) — 1. i
should send Ifﬁj to jand send I; — I,-iﬁj to another neighbor k;
if he(k;) = he(j). In fact, the energy spent here is the same as
sending the whole I; to j. We break I; into two portions and
use different paths because we can reduce the transmission
energy used in j. This is also depicted in Figure 4.

The pseudocode in Algorithms 1 and 2 summarizes the
overall protocol.
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6
SEND2(3, j)
I:I,-iﬁ]- — j from i
2: 1, - IL; — S from i

inj

3 Iinj + (I —Iijﬁj) — S from j;

ALGORITHM 2

4.4. Transmission energy and computational energy

The transmission load T, compression/decompression load
C, and image alignment load A of different cases are the fol-
lowing.

Case 1
T = |L| + |I]| + |I,UI]| XhC(k),
C=3x%x |R(I,‘mj)|, (5)
A = |R(Iinj) |
Cases 2and 3

T = ||+ |Li= I | X he(i) + |Iin; U I | X he(j),
C=3x%x |R(Lm])|,
A = |R(Linj) |
(6)

4.5. Example

Suppose the area covered by the network is divided into
m X m grids and the location of each grid is represented as
(row, col). The camera nodes are distributed randomly in the
network and each grid contains at most one node. For ex-
ample, in Figure 5, the “+” represents the object of interest
and the numbers indicate the hop count of each node. Only
those inside the dashed rectangle will capture the images of
the object. In this scenario, the object of interest is located at
(11,13) and there are 13 nodes that are responsible for cap-
turing images. They are divided into 8 groups as circled in
Figure 5. For the group of nodes at (11,11) and (10, 11), the
hop counts of both nodes are 4. We want to find a node k
such that k € NB(i) n NB(j) and hc(k) = hc(i) — 1. By
searching in the network, we can identify several neighbors
that satisfy this condition and the neighbor with the highest
energy level is selected as k. In this case, k is located at (9, 10)
with hc(k) = 3. Let the nodes at (11,11) and (10,11) be i
and j, respectively, and the corresponding images be I; and
I;, iand j will send their images to k and then k will perform
image alignment and stitch them to form I; U I;. The total
energy consumption nggal for this group will be

T=|L|+|I;| +3x |Luljl,
C =3x|R(Iinj) |,
A= |R(Linj) |
EPtl — T 5 E, + Cx E. + A X E,.

pro

(7)

8 3 4 4 5 5 6
w0 4\« |t |G s)
1 4] | (sl s
12 5 \i’ ? 6
13 (5 |5 )I(s |6 )l s
14 6 6

FIGURE 5: Object of interest.

F1GURE 6: Neighbor nodes of S.

5. SIMULATION

In this section, we present our simulation results that show
that the protocol is beneficial in reducing the total transmis-
sion energy. The simulation results are generated using MAT-
LAB. Network topologies are generated randomly. The whole
area is divided into N x N grids. There is at most one sensor
in each grid and the probability that a grid has a sensor de-
pends on the density and is generated randomly. The mobile
sink S can appear anywhere in the network. The transmis-
sion range is 3.535, which covers the neighboring 5 x 5 grids.
For example, any nodes inside the window with S as center
are the neighbors of S, and the hop count of those neighbor
nodes are one, hc(n) = 1. Similarly, the neighbor nodes of
node n with he(n) = 1 will have hop counts equal to two.
The hop counts of all the nodes in the network are assigned
in this manner. In the example shown in Figure 6, S indicates
the mobile sink and the numbers indicate the hop count of
each node.

The object of interest can be anywhere within the net-
work. Suppose any nodes inside a certain a X a window with
the object of interest as the center are the sensors that will
capture images of that object. These sensor nodes will be di-
vided into groups according to their overlapping with the ad-
jacent nodes. We assume that the sensor knows whether its
image overlaps with its neighbor’s image and to what extent.
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TaBLE 1
Density Probability of a sensor found in a grid
Sparse 0.3
Moderate 0.6
Dense 1

It is also possible that the image does not overlap with any
other image. In this case, the sensor will send its image di-
rectly back to the mobile sink along the shortest path. For
the grouped nodes, they will send their images according to
the protocol proposed in the previous section.

In our simulation, the network size is set to be a 50 X 50
grid, the mobile sink and the object of interest can be at any
grid. Let D be the distance between the object of interest and
the mobile sink. We consider five different cases:

(1) 0=<D<5,

(2) 5<D<10,
(3) 10 < D < 15,
(4) 15 < D < 20,
(5) 20 < D < 25.

Each case is simulated with three different densities of
nodes: dense, moderate, and sparse. The relationship be-
tween density and probability that a grid has sensor is as
shown in Table 1. There are 3 different densities and 5 dif-
ferent ranges of distance, so 15 combinations can be formed.
Each combination is simulated 20 times to calculate the av-
erage reduction in transmission energy.

The total energy consumed in each case is compared with
the dummy case, that is, each node sends the image indepen-
dently along its shortest path. Let ET"tal be the total energy
consumed in tested case, let E0% be the total energy con-
sumed in the dummy case, and let E4ff be the energy differ-
ence.

If we assume the mobile sink will perform data aggrega-
tion on the received images, the energy equations will be

ER@l = 3 TXE+Y> CxEc+y AXE,  (8)
pTotal ZTdumXEf+ZCXE +ZAXEa,

dum
pdiff _ {Z Taum — . T} x E,. ©)

Since the computational load of both cases is the same, the
total energy consumption difference is equal to the transmis-
sion load difference. Figure 7 shows the percentage change of
transmission load which is calculated by

Z Taum — Z T
Z Tdum

change (%) = X 100%. (10)

In our simulation, the percentage change is always pos-
itive which shows that the total transmission energy con-

7
25 : : :
9
=20+
o0
o —
=]
o
= _
2 157
g
a
£
E 10F
.8
=]
S
g
S 0
=4
0 L | L |
Sparse Moderate Dense
density

B o<D<5 B 15<D<20

I 5<D<10 I 20 <D <25

[Jio<D<15

FIGURE 7: Reduction in transmission energy.

sumed by using the protocol is always less than that con-
sumed in the dummy case. The results with different com-
bination of object distance and sensor density are shown in
Figure 7. From the result, we can observe that the reduction
in transmission energy is greater when the object is farther
away from S. Additionally, the reduction will be more signif-
icant as the density increases. When the network is denser,
the camera nodes are closer to each other and thus the im-
age overlaps with its neighbor’s image to a greater extent.
The greater the overlapping portion is, the more the energy is
saved. The energy saved by applying Case 1 or is Case 2 of the
protocol is | ,im] | X he(k) X E; and the energy saved in Case 3 is

IIWI X he(j) X E;. When |I m]I and | mJI increase, the energy
saved will also increase.

If we assume the mobile sink will not perform data ag-
gregation on the received images, Efoi”! will be the same as
(8) but ER% will be different. The energy equations will be

ETot 1
d?n?l Z Tdum X Ey,

Ediff:{ZTdum_ZT}xEt—ZCXEC—ZAXEa.
(11)

In Figures 8-10, the x-axis represents E,/E; and the y-
axis represents the normalized energy difference between our
protocol and the dummy case, that is, E4ff/E,. For the nor-
malized energy difference,

=43 Taum - ZT}—ZCx%—ZAx%

(12)

Edlff
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FiGure 8: Sparsely populated network.
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FIGURE 9: Moderately populated network.

In addition to E,/E;, E./E; is also a factor in the above
equation. Reference [27] claims that communication/com-
putation power usage ratio can be higher than 1000, and thus
E./E; can be as small as 0.001. To allow for different applica-
tions where this number can vary, we take a more conserva-
tive estimate and set E./E; equal to 0.005. With this assump-
tion, we can estimate the relationship between normalized
total energy difference and normalized energy needed in per-
forming image alignment.

x10°
3.5

3 -

A

2.5 ¢

23

i\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\ﬂ\

0 U\E'\n

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
E./E;
—o—0=<D<5 —*— 15<D <20

—8—5=<D<10 —«— 20<D<25

—— 10=D<15

FIGURE 10: Densely populated network.

When the normalized energy difference is positive that
means the total energy consumption in dummy case is
greater than that in our protocol, and vice versa. The crossing
points on the zero-axis are the critical values of E,/E;. If the
ratio is smaller than the critical value, our protocol will be
more energy efficient than sending the images independently
along their shortest paths.

When the density increases, the critical value increases. A
higher critical value means the protocol can tolerate a larger
computational energy for image alignment. As the density
increases, the amount of overlapping portions also increases.
Since transmission energy is far greater than computational
energy, the reduction in total transmission energy consump-
tion is much more significant than the increase of total com-
putational energy dissipation.

On the other hand, the critical value increases as the ob-
ject of interest moves away from the sink under the same
density. This indicates that the protocol can tolerate a higher
processing cost for image alignment. This is reasonable be-
cause more transmission energy is saved as the object is far-
ther away, and therefore the protocol can bear a larger com-
putational cost.

Figure 11 shows the result of sparsely populated density
network with size of 20 X 20 grids. By comparing Figure 11
with Figure 8, it can be observed that the two plots are very
similar. The only difference is for the curve 20 < D < 25,
because for a 20 x 20 grid, the object of interest would be lo-
cated at the margin of the network. Thus, we can see that the
advantage of our protocol holds for different network sizes.

It is easy to verify that the transmission energy saved by
applying Case 1 or Case 2 of the protocol is II,-iﬁj | X he(k) X E;

and the energy saved in Case 3 is \I,-jmjl X he(j) X E;. In a real
situation, the compression level of images is known, and thus
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1x2 104 sent independently along their shortest paths:
diff
10 0< E
E;
gl 4 E E
1| x {hc(x) CaMx B px J} (16)
! | j E, E;
. E; E,
[ 3 — _ = _ —a
< 4-\ he(x) 3MXEt MXEt’
E '
2 )\@\\ where
0
\E\S\S\ k Casel or2,
K= (17)
“2r 1 j Case 3.
71(1),01 002 005 004 005 006 007 008 009 01 Reference [28] claims that the image quality of a compressed

E./E;

—©— 0=<D<5 —+— 15<D<20

—8— 5<D<10 —4— 20<D<25

—4— 10=D<15

F1GURE 11: Sparsely populated network, network size = 20 x 20.

we can approximate the ratio between the size of raw image
data and the size of compressed image. Let M be the ratio
between |R(Jj;)| and |Ij;|. The computation load for each
case of the protocol becomes

C=3Mx |Ii],

. 13

The normalized energy difference for Case 1 or Case 2 will be

Ediff . ) E
= [T} | X he(k) = 3M x [ I}; | x -
b B (1g
; E
- M x |If,;| x f{:
The normalized energy difference for Case 3 will be
Ediff ) ) ) E
= |Ii’mj| X he(j) = 3M X |Iilmj| X =
E; E (5
; E
- M x |If;| x F’:

Since E;, E, E;, and hop count can also be known, each
pair of nodes can determine whether to send their images ac-
cording to the protocol or not by calculating the approximate
value of energy difference. If E4ff > 0, the images should be
sent according to the protocol or else the images should be

image with compression ratio of 32-to-1 is considered to be
good. In our simulation, the ratio between the size of raw
image data and the size of compressed image, M, is about 35.
The hop count of a node which captured the image of the
object of interest in the range 0-5 unit away from the sink in
a sparsely populated network is in the range of 1-3, and we
assume E./E; to be 0.005. By plugging the parameters into
(16), we can find that the estimated critical value of E,/E;
is around 0.0405. This value is different from the crossing
point on Figure 8, since that is the overall energy difference
plot which contains several pairs of nodes and the value of M
is image dependent. Although we cannot predict the energy
difference precisely, the approximation gives a good indica-
tion for the node to determine the path to send the image.

6. CONCLUSION

In this paper, we investigate how to optimize the energy re-
sources in transmitting images on demand to a mobile node
through selecting appropriate paths. A distributed protocol
was proposed and evaluated through extensive simulations.
Depending on the ratios of transmission and computational
energy, network density, compression level, and object dis-
tance, the sensors should choose to send the images accord-
ing to the protocol or not.

It should be noted that the assumptions used in this work
have room for refinement, especially when the methodology
is applied to applications where the overlapping among im-
ages may not be easily determined. Examples include track-
ing objects without strongly identifiable features while re-
quiring strictly image-based localization. Similar to most of
the related works, in this paper we assume that the overlap-
ping regions among images can be deduced by the geometric
positions of the sensors. One direction for our future work is
to develop an explicit solution in identifying the overlapping
among images using advanced vision-based approaches.
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