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low-complexity, suboptimum generalized likelihood ratio test (GLRT) FC decision rules are derived and the performance of the
GLRT decision rule is analyzed. Based on this performance analysis we derive a gradient algorithm for optimization of the local
decision/censoring threshold. Numerical and simulation results show the effectiveness of the proposed censoring scheme making
distributed space-time coding a prime candidate for signaling in WSNs.
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1. INTRODUCTION

In recent years, wireless sensor networks (WSNs) have been
gaining popularity in a wide range of military and civilian
applications such as environmental monitoring, health care,
and control. A typical WSN consists of a number of geo-
graphically distributed sensors and a fusion center (FC). The
low-cost and low-power sensors make local observations of
the hypotheses under test and communicate with the FC.
Centralized detection schemes require the sensors to trans-
mit their real-valued observations to the FC. However, this
automatically translates into the unrealistic assumption of an
infinite-bandwidth communication channel. In reality, the
WSN has to work in a bandlimited environment. Moreover,
as communication is a key energy consumer in a WSN, it is
desirable to process the observation data as much as possible
at the local sensors to reduce the number of bits that have
to be transmitted over the communication channel. There-
fore, the sensors typically make local decisions which are then
transmitted to the FC where the final decision is made [1–5].

The resulting decentralized detection problem has a long
and rich history. The decentralized optimum hypothesis test-
ing problem was first formulated in [1] to provide a theoret-
ical framework for detection with distributed sensors. Tradi-
tionally, the local decisions are assumed to be transmitted to
the FC through perfect, error-free channels [1–6]. Realisti-
cally, the sensors typically work in harsh environments and
therefore, fading and noise should be taken into account.

The problem of fusing sensor decisions over noisy and
fading channels was considered in [7, 8]. The fusion rules
developed in [7] require instantaneous channel-state infor-
mation (CSI). While the fusion rules in [8] do not re-
quire amplitude CSI, they still assume perfect phase estima-
tion/synchronization. However, obtaining any form of CSI
may not be feasible in large-scale WSNs and cheap sen-
sors make phase synchronization challenging. To avoid these
problems, simple ON/OFF keying and corresponding fusion
rules were considered in [9]. Furthermore, power efficiency
is improved in [9] by employing a simple form of censor-
ing [10], where the sensors transmit only reliable decisions
to the FC. The schemes in [7–9] assume orthogonal channels
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between the sensors and the FC, which entail a large required
bandwidth especially in dense WSNs with a large number of
sensors.

To overcome the bandwidth limitations of orthogonal
transmission in WSNs, the application of coherent dis-
tributed space-time coding was proposed in [11]. In par-
ticular, in [11] each sensor is randomly assigned a column
of Alamouti’s space-time block code (STBC) [12] and it is
assumed that only two sensors are active randomly at any
time. The quantized observations are encoded by the sensors
using the respective preassigned columns of the STBC and
transmitted to the FC via a common, noorthogonal channel.
Since there are typically more sensors than STBC columns,
the same column has to be assigned to more than one sensor
resulting in a diversity order of 1. The performance degra-
dation due to the diversity loss and the observation noise is
analyzed in [11].

We point out that distributed space-time coding is usu-
ally employed in relay networks where a cyclic redundancy
check (CRC) code can be used to avoid the retransmission
of incorrect decisions by the relays [13–15]. In this context,
selection relaying first introduced in [16] has some similari-
ties to censoring in sensor networks [9, 10]. However, while
in selection relaying the decision whether a relay retransmits
a packet or not depends on the instantaneous CSI of the
source-relay channel, the censoring decision depends on the
observation noise at the sensor. Furthermore, relaying deci-
sions in selection relaying are made on a packet-by-packet
basis enabling coherent detection at the destination node but
censor decisions are performed on a symbol-by-symbol basis
making coherent data fusion at the FC practically impossible.

In this paper, we consider noncoherent distributed space-
time block coding for transmission of censored sensor deci-
sions in WSNs. In particular, we make the following contri-
butions.

(i) We show that the noncoherent distributed STBCs
(DSTBCs) introduced in [14] eliminate the various re-
strictions and drawbacks of the coherent scheme in
[11].

(ii) Moreover, it is shown that censoring of local decisions
is essential for the efficient application of distributed
space-time coding in WSNs.

(iii) We derive the optimum maximum-likelihood (ML)
and a suboptimum generalized likelihood ratio test
(GLRT) noncoherent FC decision rules for the pro-
posed signaling scheme.

(iv) The bit-error rate (BER) at the FC for the GLRT deci-
sion rule is characterized analytically.

(v) Based on the analytical expression for the BER, we de-
vise a gradient algorithm for calculation of the opti-
mum local decision/censoring threshold.

(vi) Our numerical and simulation results show the effec-
tiveness of the proposed transmission scheme and the
ability of the noncoherent DSTBC to achieve a diver-
sity gain in WSNs.

This paper is organized as follows. In Section 2, we
present the system model and introduce the proposed trans-
mission scheme for WSNs. In Section 3, we derive the
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Figure 1: Parallel fusion model with K sensors and one FC. A cen-
sored DSTBC is used for transmission from the sensors to the FC.

ML and GLRT noncoherent FC decision rules and ana-
lyze the performance of the GLRT decision rule. A gradient
algorithm for optimization of the local decision/censoring
threshold is provided in Section 4. Simulation and numer-
ical results are given in Section 5, while some conclusions are
drawn in Section 6.

Notation. In this paper, bold upper case and lower case
letters denote matrices and vectors, respectively. [·]T , [·]H ,
ε{·}, ||·||2, |·|, and ∪ denote transposition, Hermitian
transposition, statistical expectation, the L2-norm of a vec-
tor, the cardinality of a set, and the union of two sets, respec-
tively. In addition, Q(x) � 1/

√
2π
∫ ∞
x e

−t2/2 dt, IX , 0X×Y , and
j �

√−1 denote the Gaussian Q-function, the X×X identity
matrix, the X × Y all zeros matrix, and the imaginary unit,
respectively.

2. SYSTEMMODEL

The binary hypothesis testing problem under consideration
is illustrated in Figure 1, where a set K � {1, 2, . . . ,K} of K
distributed sensors tries to determine the true state of nature
H as being H0 (the null hypothesis) or H1 (target-present hy-
pothesis). Typical applications for binary hypothesis testing
include seismic detection, forest fire detection, and environ-
mental monitoring. The a priori probabilities of the two hy-
potheses H0 and H1 are denoted as P(H0) and P(H1), respec-
tively. We assume that P(H0) = P(H1) = 0.5 throughout this
paper. The details of the system model will be discussed in
the following subsections.

2.1. Local sensor decisions

We assume that the sensor observations are described by

H0 :xk = −1 + nk, k ∈K ,

H1 :xk = 1 + nk, k ∈K ,
(1)
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where the local observation noise samples nk, k ∈ K , are
independent and identically distributed (i.i.d.). For conve-
nience and similar to [8, 9, 11], we assume identical sen-
sors in this paper and model nk as real-valued additive white
Gaussian noise (AWGN) with zero mean and variance σ2 �
ε{n2

k}, k ∈ K . We note, however, that the generalization of
our results to nonidentical sensors (e.g., sensors with differ-
ent noise variances) is also possible.

Upon receiving its own observation, each sensor makes a
ternary local decision:

uk =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if xk < −d,

1 if xk > d,

0 otherwise,

k ∈K , (2)

where d is the nonnegative decision/censoring threshold.
While uk = −1 and uk = 1 correspond to hypotheses H0

and H1, respectively, uk = 0 corresponds to a decision that
is deemed unreliable by the sensor and thus censored. For
future reference, we denote the sets of sensors with uk = 0,
uk = −1, and uk = 1 by S, H0, and H1, respectively. Note
that K = S ∪H0 ∪H1.

It is not difficult to show that the probabilities of correct
and wrong sensor decision are given by

Pc = Q
(
d − 1
σ

)
,

Pw = Q
(
d + 1
σ

)
,

(3)

respectively. The probability that a decision is censored is
given by

Ps = 1− Pc − Pw = 1−Q
(
d − 1
σ

)
−Q

(
d + 1
σ

)
. (4)

2.2. Noncoherent distributed space-time coding

The general concept of DSTBC was originally proposed in
[13] to achieve a diversity gain in cooperative networks with
decode-and-forward relaying. The DSTBC scheme in [14] is
particularly attractive for application in networks with a large
number of nodes since its decoding complexity is indepen-
dent of the total number of nodes. This scheme consists of
a code C and a set of signature vectors G. The active relay
nodes1 encode the (correctly decoded) source information
using a T × N code matrix Φ ∈ C. Each active relay trans-
mits a linear combination of the columns of the information-
carrying matrix Φ. The linear combination coefficients for
each node are unique and are collected in a signature vector
gk ∈ G, ‖gk‖2

2 = 1, k ∈K , of length N .
In this work, we consider the application of the DSTBC

scheme in [14] in WSNs. In particular, sensors encode their
local decisions using a noncoherent DSTBC. Since we con-
sider here a binary hypothesis testing problem,C = {Φ0,Φ1}

1 The relays which fail to decode the source packet correctly remain silent.

has only two elements. To optimize performance under non-
coherent detection, we choose Φ0 and Φ1 to be orthogo-
nal, that is, ΦH

0 Φ1= 0N×N and ΦH
ν Φν = IN , ν ∈ {0, 1}

(cf. [17]). Each sensor is assigned a unique signature vector
gk ∈ G, ‖gk‖2

2 = 1, k ∈ K , of length N . For the design of
deterministic and random signature vector sets G, we refer to
[14, 15] , respectively. The transmitted signal of sensor k is
given by

sk =

⎧
⎪⎪⎨

⎪⎪⎩

√
EΦ0gk if k ∈H0,√
EΦ1gk if k ∈H1,

0T×1 if k ∈ S,

(5)

where E denotes the transmitted energy of sensor k per code-
word. We note that sensor k transmits the T elements of sk in
T consecutive symbol intervals. The total average transmit-
ted energy per information bit is given by Eb = EK(Pw + Pc).

2.3. Channel model

We assume that the sensors transmit time synchronously and
that the sensor-FC channels are frequency-nonselective and
time-invariant for at least T symbol intervals.2 Therefore, us-
ing the equivalent complex baseband representation of band-
pass signals, the signal samples received at the FC in T con-
secutive symbol intervals can be expressed as

r =
∑

k∈H0∪H1

skhk + n = √EΦ0GH0hH0 +
√
EΦ1GH1hH1 + n,

(6)

where hk and n denote the fading gain of sensor k and a com-
plex AWGN vector, respectively. The columns of the N×|H0|
matrix GH0 and N × |H1| matrix GH1 contain the signa-
ture vectors of the sensors in H0 and H1, respectively. The
corresponding fading gains are collected in column vectors
hH0 and hH1 which have lengths |H0| and |H1|, respectively.
We model the channel gains hk, k ∈ K , as i.i.d. zero-mean
complex Gaussian random variables (Rayleigh fading) with
variance σ2

h = ε{|hk|2} = 1.3 The elements of the noise vec-
tor n have variance σ2

n = N0, where N0 denotes the power
spectral density of the underlying continuous-time passband
noise process.

Equation (6) clearly shows the importance of censoring
when applying DSTBCs in WSNs, since incorrect sensor de-
cisions lead to interference. For example, for H = H0, ide-
ally the term involving Φ1 in (6) would be absent. How-
ever, incorrect decisions may cause some sensors to trans-
mit

√
EΦ1gk instead of

√
EΦ0gk. The considered censoring

2 Time synchronous transmission can be accomplished if the relative delays
between the relay nodes are much smaller than the symbol duration. This
is usually a reasonable assumption for low-rate WSN applications. We re-
fer the interested reader to [18] for a more detailed discussion on time
synchronism in the context of WSNs.

3 This model is justified if the distance between any pair of sensors is much
smaller than the distances between the sensors and the FC. The effect of
unequal channel variances is considered in Section 5 (cf. Figure 7).
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scheme reduces the number of incorrect decisions (by choos-
ing d > 0) at the expense of reducing the number of sensors
that make a correct decision. However, this disadvantage is
outweighed by the reduction of interference as long as d is
not too large (cf. Section 5). We note that censoring was not
considered in any of the related publications, for example,
[11, 13–15]. For example, in [13–15], DSTBCs were mainly
applied for relay purposes, where a CRC code can be used to
avoid the retransmission of incorrect decisions.

2.4. Processing at fusion center (FC)

The FC makes a decision based on the received vector r and
outputs u0 = 1 if it decides in favor ofH1, and u0 = −1 other-
wise. Different decision rules may be applied at the FC differ-
ing in performance and complexity. In this context, we note
that coherent detection is not feasible in large-scale WSNs
since the FC would have to estimate and track the channel
gains of all sensors. While (6) suggests that only the effective
channels

√
EGH0hH0 and

√
EGH1hH1 have to be estimated if

distributed space-time coding is applied, this is also not feasi-
ble since the sets H0 and H1 typically change after T symbol
intervals (i.e., for every new sensor decision). Therefore, only
noncoherent decision rules will be considered in the next sec-
tion.

3. FC DECISION RULES AND PERFORMANCE
ANALYSIS

In this section, we present the optimum ML and the
generalized-likelihood ratio test (GLRT) noncoherent deci-
sion rules. In addition, we provide a performance analysis
for the GLRT decision rule.

3.1. Optimummaximum-likelihood (ML) decision rule

We first provide the optimum ML decision rule. For this pur-
pose, we introduce the likelihood ratio (LR):

Λo(r) � f
(
r |H1

)

f
(
r |H0

)

=
∑

H0,H1
f
(
r |H0,H1

)
P
(
H0,H1 |H1

)

∑
H0,H1

f
(
r |H0,H1

)
P
(
H0,H1 |H0

) ,

(7)

where P(H0,H1 |H0) = P|H0|
c P|S|s P|H1|

w and P(H0,H1 |H1)
= P|H1|

c P|S|s P|H0|
w denote the probabilities that the sets H0,H1

occur for H0 and H1, respectively. Since r conditioned on
H0,H1 is a Gaussian vector, the conditional probability den-
sity function (pdf) f (r |H0,H1) is given by

f
(
r |H0,H1

) = exp
(− rHBr

)

πTdet(B)
, (8)

where the T × T correlation matrix B is defined as B �
ε{rrH |H0,H1} = E(Φ0GH0G

H
H0
ΦH

0 +Φ1GH1G
H
H1
ΦH

1 )+σ2
nIT .

Now we can express the ML decision rule at the FC as

u0 =
{

1 ifΛo(r) ≥ 1,

−1 ifΛo(r) < 1.
(9)

We note that the sums in the numerator and denominator
of (7) both have 3K terms, that is, the complexity of the ML
decision rule is of orde O(3K ) and grows exponentially with
K . In addition, (8) reveals that for the ML decision rule the
FC requires knowledge of the signature vectors of all sensors.
These two assumptions make the implementation of the ML
decision rule difficult, if not impossible in practice. There-
fore, we will provide a low-complexity suboptimum FC de-
cision rule in the next subsection.

3.2. GLRT decision rule

The received vector can be expressed as

r = Φheff + neff, Φ ∈ {Φ0,Φ1
}
. (10)

If H0 is the true hypothesis Φ = Φ0, heff �
√
EGH0hH0 , and

neff �
√
EΦ1GH1hH1 + n, while if H1 is true Φ = Φ1,heff �√

EGH1hH1 , and neff �
√
EΦ0GH0hH0 + n.

Equation (10) suggests a two-step GLRT approach for the
estimation of the transmitted codewor Φ. In the first step, heff

is estimated assuming Φ is known, and in the second step the

channel estimate ĥeff is used to detect Φ. Since the correlation
matrix of the effective noise neff depends on GH1 or GH0 , the
ML estimate for heff and thus the resulting GLRT decision
rule depend on the signature vectors. Therefore, the com-
plexity of this GLRT decision rule is still exponential in K .
To avoid this problem we resort to the simpler least-squares
(LS) approach to channel estimation. The LS channel esti-
mate is given by

ĥeff � arg min
heff

{‖r−Φheff‖2
2

} = ΦHr. (11)

Now, the GLRT decision rule can be expressed as

Φ̂ = arg min
Φ∈{Φ0,Φ1}

{‖r−Φĥeff‖
2

2

} = arg max
Φ∈{Φ0,Φ1}

{‖ΦHr‖2
2

}
,

(12)

where all irrelevant terms have been dropped. The FC output
u0 = −1 if Φ̂ = Φ0, and u0 = 1 if Φ̂ = Φ1. Clearly, the GLRT
decision rule does not require CSI and the FC does not have
to know the signature vectors of the sensors.

3.3. Performance analysis for GLRT decision rule

For the optimum ML decision rule, a closed-form perfor-
mance analysis does not seem to be feasible. However, for-
tunately such an analysis is possible for the more practical
GLRT decision rule. In particular, the BER can be expressed
as

Pe = P
(
u0 = 1 |H0

)
P
(
H0
)

+ P
(
u0 = −1 |H1

)
P
(
H1
)
.

(13)

Since the considered signaling scheme is symmetric in H0

and H1, (13) can be simplified to Pe = P(u0 = 1|H0). Ex-
panding now P(u0 = 1|H0) leads to

Pe =
∑

H0,H1

P
(
u0 = 1 |H0,H1

)
P
(
H0,H1 |H0

)
, (14)
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where P(u0 = 1 |H0,H1) denotes the probability that u0 = 1
is detected assuming that uk = −1 for k ∈ H0 and uk =
1 for k ∈ H1, and P(H0,H1 |H0) is given in Section 3.1.
Exploiting the orthogonality of Φ0 and Φ1 and using (6) and
(12), P(u0 = 1 |H0,H1) can be expressed as

P
(
u0 = 1 |H0,H1

) = P
(
Δ < 0 |H0,H1

)
, (15)

where

Δ � ‖x‖2
2 − ‖y‖2

2,

x �
√
EGH0hH0 + ΦH

0 n,

y �
√
EGH1hH1 + ΦH

1 n.

(16)

Since Δ is a quadratic form of Gaussian random variables,
the Laplace transform ΦΔ(s) of the pdf of Δ can be obtained
as

ΦΔ(s) = 1
∏ N

i=1

(
1 + sλxi

)∏ N
i=1

(
1− sλyi

) , (17)

where λxi and λyi denote the eigenvalues of the N ×N matri-
ces

Dx � ε{xxH} = EGH0G
H
H0

+ σ2
nIN ,

Dy � ε{yyH} = EGH1G
H
H1

+ σ2
nIN ,

(18)

respectively. Thus, P(u0 = 1 |H0,H1) can be calculated from
[19]

P
(
u0 = 1 |H0,H1

) = 1
2π j

c+ j∞∫

c− j∞

ΦΔ(s)
s

ds, (19)

where c is a small positive constant in the region of conver-
gence of the integral. The integral in(19) can be either com-
puted numerically using Gauss-Chebyshev quadrature rules
[19] or exactly using [20, 21]

P
(
u0 = 1 |H0,H1

) = −
∑

RHS poles

Residue
[
ΦΔ(s)
s

]
, (20)

where RHS stands for the right-hand side of the complex
plane. The BER at the FC for the GLRT decision rule can be
readily obtained by combining (14) and (19).

4. OPTIMIZATION OF CENSORING THRESHOLD d

Since a closed-form calculation of the optimum decision/
censoring threshold d which minimizes Pe does not seem to
be possible, we derive here a gradient algorithm for recursive
optimization of d. This algorithm is given by [22]

d[i + 1] = d[i] + δ
∂Pe
∂d[i]

, (21)

where i is the discrete iteration index and δ is the adaptation
step size. Using (14) the gradient in (21) can be expressed as

∂Pe
∂d

=
∑

H0,H1

P
(
u0 = 1 |H0,H1

)∂P
(
H0,H1 |H0

)

∂d
, (22)

where we have used the fact that P(u0 = 1 |H0,H1) is in-
dependent of d and the remaining partial derivative is given
by

∂P
(
H0,H1| |H0

)

∂d
= |S|P|S|−1

s P|H0|
c P|H1|

w
∂Ps
∂d

+ |H0|P|S|s P|H0|−1
c P|H1|

w
∂Pc
∂d

+ |H1|P|S|s P|H0|
c P|H1|−1

w
∂Pw
∂d

.

(23)

Using (3), (4) and the fundamental theorem of calculus [23],
the derivatives in (23) can be expressed as

∂Pw
∂d

= − 1√
2πσ

e−(d+1)2/2σ2
,

∂Pc
∂d

= − 1√
2πσ

e−(d−1)2/2σ2
,

∂Ps
∂d

= 1√
2πσ

[
e−(d+1)2/2σ2

+ e−(d−1)2/2σ2]
.

(24)

For d = 0, we have |S| = 0 and since ∂Pw/∂d < 0 and
∂Pc/∂d < 0 we obtain ∂Pe/∂d < 0. On the other hand, for
d→∞, we get |H0|→0 and |H1|→0 which results in ∂Pe/∂d >
0.4 Therefore, by the mean value theorem, ∂Pe/∂d = 0 is valid
for at least one value of 0 ≤ d < ∞ corresponding to at least
one local minimum of Pe [23]. Although numerical evidence
shows that there is exactly one local minimum (which there-
fore is also the global minimum), we cannot formally prove
this due to the complexity of the involved expressions. Nev-
ertheless, the above considerations suggest that we initialize
the gradient algorithm with d[0] = 0 corresponding to the
case of no censoring. The solution found by the algorithm is
then guaranteed to yield a performance not worse than that
of the no censoring case. Numerical examples will be given
in the next section.

We note that d will typically be calculated at the FC and
the value of d has to be conveyed to the sensors over a feed-
back channel. However, this feedback channel can be very
low rate assuming that the statistical properties of the for-
ward channel and the sensors vary only slowly with time.

5. SIMULATION RESULTS

In this section, we provide some numerical and simulation
results for the proposed censored DSTBCs and the system
model introduced in Section 2. We assume that T = 8 sym-
bol intervals are available for transmission of one informa-
tion bit, that is, orthogonal matrices Φ0 and Φ1 can be found
for N ≤ 4. Here, we consider N = 1, N = 2, and N = 4, and
generate Φ0 and Φ1 from the 8 × 8 Hadamard matrix H8,
where the orthogonal columns of H8 are normalized to unit
length. For example, for N = 2Φ0 consists of the first two
columns of H8, whereas Φ1 consists of the third and fourth

4 In fact, it can be shown that ∂Pe/∂d approaches zero from above if d→∞
corresponding to the maximum BER of Pe = 0.5.
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Figure 2: d and Pe versus iteration number i for a WSN withK = 30
sensors using DSTBCs with N = 1, 2, and 4. 10 log 10(Eb/N0) =
15 dB, σ2 = 1/4.

column of H8. For the set of signature vectors G, we adopted
the gradient sets described in [14]. Unless stated otherwise,
the sensors have a local noise variance of σ2 = 1/4 corre-
sponding to a signal-to-noise ratio (SNR) of 6 dB and we
assume the suboptimum GLRT decision rule and Pe at the
FC are obtained using the analytical results presented in Sec-
tion 3.3.5

d and Pe versus i. First, we investigate the behavior of the
adaptive algorithm described in Section 4 for optimization of
d. Figure 2 shows d and the corresponding BER Pe at the FC
as a function of the iteration number i for N = 1, 2, and 4, re-
spectively. The considered WSN had K = 30 sensors and the
channel SNR was 10 log 10(Eb/N0) = 15 dB. d[i] was initial-
ized with 0 and the step size parameter was chosen to achieve
a fast convergence while avoiding instabilities. As can be ob-
served from Figure 2 the adaptive algorithm significantly im-
proves the BER over the iterations. While d itself requires
more than 600 iterations to converge to the final optimum
value, Pe does practically not change after more than 180 it-
erations for all considered cases. It is interesting to note that
the optimum value for d decreases with increasing N , that is,
for larger N less censoring should be applied. The reason for
this behavior is that the maximum achievable diversity order
of a DSTBC is N (cf. [14]) and therefore, the performance
of the DSTBC improves notably with increasing number of
transmitting sensors only until N sensors transmit. If more
than N sensors transmit, the diversity order does not further
improve and only a small additional coding gain can be real-

5 We note that we confirmed the analytical BER results for the GLRT de-
cision rule presented in Section 3.3 by simulations. However, we do not
show the simulation results here for conciseness.
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Figure 3: Pe versus 10 log 10(Eb/N0) for a WSN with K = 30 sensors
using DSTBCs with N = 1, 2, and 4. Considered cases: error-free
local sensor decisions (σ2 = 0, d = 0), noisy sensor decisions with-
out censoring (σ2 = 1/4, d = 0), and noisy sensor decisions with
optimum censoring (σ2 = 1/4, d = dopt).

ized. On the other hand, less censoring means that more er-
roneous decisions are forwarded to the FC which may negate
the additional coding gain.

Pe versus 10 log 10(Eb/N0). In Figure 3, we consider the
BER achievable with the proposed censored DSTBCs at the
FC of a WSN with K = 30 sensors as a function of the
channel SNR 10 log 10(Eb/N0). For each considered N , we
compare the BER for error-free local sensor decisions (σ2 =
0, d = 0), noisy sensor decisions without censoring (σ2 =
1/4, d = 0), and noisy sensor decisions with censoring
(σ2 = 1/4, d = dopt), where dopt denotes the optimum deci-
sion/censoring threshold found with the gradient algorithm.
Figure 3 clearly shows that DSTBCs suffer from a significant
performance degradation due to erroneous decisions if cen-
soring is not applied. Fortunately, with censoring this perfor-
mance degradation can be avoided and a performance close
to that of error-free local decisions can be achieved. Figure 3
also nicely illustrates the diversity gain that can be realized
with censored DSTBCs.

Pe versus K . In Figure 4, we investigate the dependence of
the BER on the total number of sensors in the network for
10 log 10(Eb/N0) = 15 dB. In particular, we show in Figure 4
the BER for error-free local sensor decisions and the GLRT
decision rule at the FC (σ2 = 0, d = 0), noisy sensor deci-
sions with censoring and the GLRT decision rule at the FC
(σ2 = 1/4, d = dopt), and noisy sensor decisions with censor-
ing and the ML decision rule at the FC (σ2 = 1/4, d = dopt).6

6 We note that we use for the ML decision rule also the decision/censoring
threshold dopt found by the proposed gradient algorithm which is based
on the GLRT decision rule. Therefore, this threshold is not strictly opti-
mum for the ML decision rule.
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Figure 4: Pe versus total number of sensors K for aWSN using DST-
BCs with N = 1, 2, and 4. 10 log 10(Eb/N0) = 15 dB. Numerical re-
sults for error-free local sensor decisions and GLRT decision rule
(σ2 = 0, d = 0), numerical results for noisy sensor decisions with
censoring and GLRT decision rule (σ2 = 1/4, d = dopt), and sim-
ulation results for noisy sensor decisions with censoring and ML
decision rule (σ2 = 1/4, d = dopt).

The results for the GLRT decision rule were obtained numer-
ically based on the analytical results in Section 3.3, whereas
Monte Carlo simulation was used to obtain the results for
the ML decision rule. For complexity reasons, for the latter
case, we only show the results for K ≤ 5. For error-free local
sensor decisions, BER is constant for K > N since the diver-
sity order is limited to N and the DSTBC achieves the same
performance as the related STBC C for colocated antennas if
all K > N sensors transmit. The censored DSTBC with noisy
sensor decisions approaches the performance of the DSTBC
with error-free sensor decisions as the number of sensors in-
creases. This is due to the fact that as K increases the deci-
sion/censoring threshold dopt increases making the transmis-
sion of erroneous sensor decisions less likely. Figure 4 also
shows that the GLRT decision rule is almost optimum and
only small additional gains are possible if the significantly
more complex ML decision rule is used.

Pe and d versus N . Assuming the GLRT decision rule and
10 log 10(Eb/N0) = 15 dB at the FC, Figure 5 shows Pe and
the corresponding optimum decision threshold d as a func-
tion of N for K = 1, 2, 4, 10 and 30. Similar to the obser-
vation we made in Figure 2, d decreases for increasing sig-
nature vector length N for all K . As we have mentioned be-
fore, the maximum achievable diversity order for DSTBC is
N . For a given K , a smaller d allows more sensors to be active
and thus exploits the the extra diversity benefit provided by
the longer signature vectors. This figure also shows that d in-
creases for increasing K . This can be also explained easily. For
a given d and N , increasing K allows more sensors to trans-
mit. However, our scheme only requires a certain number of
sensors to be active to exploit the full diversity benefit and
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Figure 5: Pe and d versus N for aWSN with K sensors. σ2 = 1/4
and 10 log 10(Eb/N0) = 15 dB. GLRT fusion rule is shown for all K
(solid curves) and ML fusion rule is shown for K = 1 and 2 (dashed
curve).

achieve a certain target BER. On the other hand, increasing
d decreases the chance of having erroneous decisions being
transmitted to the FC. This suggests that our scheme tries to
maximize the performance by only allowing the minimum
number of sensors (with quality decisions) to transmit. Fi-
nally, it is interesting to see that the Pe performance actually
deteriorates for N > K for the GLRT fusion rule. This is be-
cause for N > K the GLRT fusion rule implicitly estimates

the N×1 effective channel vector ĥeff in a noisy environment
(cf. (11)) whereas the underlying channel vectors, hH0 and
hH1 , have a smaller dimensionality K . The increased dimen-
sionality causes a larger channel estimation error while no
diversity benefit is achieved because the maximum diversity
order is limited to K [14]. In light of this degradation for the
GLRT fusion rule, we also simulated the ML fusion rule for
K = 1 and K = 2 (dashed curves) and clearly, as expected,
the ML decision rule does not suffer from the same degra-
dation. We note that in the practically more relevant case of
N < K ML and GLRT decision rules have similar perfor-
mances (cf. Figure 4).

Pe and d versus SNR of local sensors. We investigate the ef-
fect of local sensor observation noise on the Pe performance
in Figure 6. In particular, we plot Pe versus the SNR of local
sensors 10log 10(1/σ2) for different K and N . We assume the
GLRT fusion rule at the FC and the corresponding optimum
decision threshold d is also depicted. Furthermore, the chan-
nel SNR is fixed to 10 log10(Eb/N0) = 15 dB for all cases. As
expected, the network with K = 30 sensors performs better
than the network with K = 10 sensors for any N regardless
of the sensor observation noise. However, this gain is mini-
mal for large sensor SNR. This is because as the sensor SNR
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Figure 6: Pe and d versus 10 log 10(1/σ2) for a WSN with K = 10,
and 30 sensors and DSTBC with N = 1, 2, and 4. 10 log10(Eb/N0) =
15 dB.
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Figure 7: Pe versus 10 log 10(Eb/N0) for a WSN with K = 30 sensors
using DSTBCs with N = 1, 2, and 4. σ2 = 1/4 and i.n.d. Rayleigh
fading channels.

increases, most of the sensor decisions will be correct and
less censoring is required. This phenomenon is clearly sup-
ported by the corresponding d versus 10 log 10(1/σ2) figure
where the optimum decision threshold d approaches zero for
increasing sensor SNR. In addition, as more sensors transmit,
the maximum achievable diversity order N and the channel
SNR will be the ultimate factors which determine Pe and
therefore, for a given N , the BER curves for K = 10 and
K = 30 converge to the same value for large local sensor SNR.

I.n.d. Rayleigh fading. Until now, we have been consider-
ing i.i.d. Rayleigh fading channels. In our last example, we
consider independent and nonidentically distributed (i.n.d.)
fading channels. In particular, we consider a network with
K = 30 sensors and the sensor nodes are uniformity dis-
tributed in a circle with radius r and the distance from the
center of the circle to the FC is d. We assume i.n.d. Rayleigh
fading between the sensors and the FC and the received
power decreases as d−αk , where dk is the distance measured
from sensor k to the FC and α = 3 is the path loss exponent.
Figure 7 depicts the simulated Pe versus 10 log 10(Eb/N0) for
different r/d ratios. For a given N , the decision threshold d
was optimized for r/d = 0 (corresponding to i.i.d. fading)
and it was then used also for r/d > 0. It can be seen from the
figure that, as expected, Pe increases with increasing r/d. It
is also interesting to note that the performance degradation
is larger for larger N . This can be explained as follows. For a
given network size K , as we have seen in Figures 4 and 5, d
decreases for increasing N . Since a smaller censoring thresh-
old d corresponds to a larger number of active sensors, more
sensors are negatively affected by the i.n.d. channels resulting
in the greater performance degradation for larger N .

6. CONCLUSION

In this paper, we have considered the application of nonco-
herent DSTBCs in WSNs. We have introduced censoring as
an efficient method to overcome the negative effects of erro-
neous local sensor decisions on the performance of the non-
coherent DSTBC. Furthermore, we have derived optimum
ML and suboptimum GLRT FC decision rules, and we have
analyzed the performance of the latter decision rule. Based
on this analysis, we have devised a gradient algorithm for
recursive optimization of the decision/censoring threshold.
Numerical and simulation results have shown the effective-
ness of censoring which eliminates the effect of local deci-
sion errors for practically relevant BERs if the number of sen-
sors in the network K is greater than the length of the signa-
ture vectors N or in other words, if there are enough sensors
to exploit the diversity benefit provided by the DSTBC. Fi-
nally, our results have shown that the suboptimum GLRT fu-
sion rule performs very close to the optimum ML fusion rule
while having a very low complexity and allowing noncoher-
ent detection at the FC.
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