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1. INTRODUCTION

The problem of simultaneously estimating the spatial and
temporal frequencies of multiple narrowband plane waves
has received considerable attention in the past few decades
[1–10]. This problem is crucial in many practical appli-
cations, such as array processing, joint angle and Doppler
estimation for space-time adaptive processing (STAP) air-
borne radar, synthetic aperture radar (SAR) imaging, and
some electronic warfare and sonar systems. See [2, 5, 6, 9]
for a detailed description, [1, 3, 7, 8] for some of the
earlier work, and [9, 10] for some of more recent work.
The joint estimation has a number of advantages. First,
as shown in Section 2.1, the number of sources can be
significantly larger than the number of antennas by using the
spatiotemporal data model. Second, in the spatiotemporal
data model, multiple sources with the same DOA can be
resolved (see Property 2 in Section 2.1, Figure 5 in Example 1
and Figure 6 in Example 2). Finally, the estimation accuracy
can be improved (see Figures 6 and 7 in Example 2, Figure 14
in Section 3.2).

Although the well-known maximum likelihood ap-
proaches (see, e.g., [1, 2] and the references therein) can pro-
vide optimum parameter estimation in the presence of white
Gaussian noise, they are perceived to be too computationally

complex. Based on the subspace techniques, a number
of suboptimal algorithms have been developed, such as
multiple signal classification (MUSIC) [11] and estimation
of signal parameters via rotational invariance technique
(ESPRIT) [12]. Some of these suboptimal algorithms have
been used to solve the problem of joint direction of arrival
(DOA) and frequency estimation [3–10]. For example,
Zoltowski and Mathews [7] have discussed this problem in
the electronic warfare applications. To cover a very wide
frequency band (2–18 GHz), a nonuniform linear array is
used to resolve the angular ambiguity. Their methods are
mainly motivated by engineering considerations. Haardt and
Nossek [8] have proposed a method for joint 2D angle and
frequency estimation based on the Unitary-ESPRIT in the
space-division multiple access (SDMA) applications. Viberg
and Stocia [6] have presented a prewhitened subspace-
based method for joint DOA and frequency estimation in
the colored noise. Another ESPRIT-based method called
joint angle-frequency estimation (JAFE) has been proposed
by Lemma et al. in [4], and it has been considered as
the state-of-the-art among suboptimal joint DOA-frequency
estimators. The recent work of Lin et al. [9] has proposed
a frequency-space-frequency (FSF) MUSIC-based algorithm
in wireless communication applications. It is a tree-structure
method which can provide a comparable performance to
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the JAFE. Another recent work of Belkacemi and Marcos
[10] has discussed the problem of joint angle-Doppler
estimation in the presence of impulsive noise and clutter
in the airborne radar applications. This method models
the impulsive noise and clutter as the so-called symmet-
ric α-stable (SαS) process, and a preprocessing technique
called phased fractional lower-order moment (PFLOM) is
used before applying the 2-D MUSIC [3] to estimate the
angle and Doppler. Generally speaking, these algorithms
are known to have high-resolution capabilities and yield
accurate estimates. However, there are two major drawbacks
in practical applications. First, most existing techniques are
under the additive white Gaussian noise assumption [3–5, 7–
9]. Unfortunately, in practice, the noise is often spatially cor-
related. As a consequence, the colored noise may degrade the
performance of these algorithms significantly. In addition, if
the noise covariance matrix is known, the spatially colored
noise can be prewhitened [6, 11]. In practice, the noise
covariance is often measured experimentally from the signal-
free data. However, such signal-free data is often unavailable.
Thus, accurate parameter estimation is impossible without
good priori knowledge of the colored noise. Secondly, due
to the eigendecomposition of the sample covariance matrix
or the singular value decomposition (SVD) of the data
matrix, the computational burden is often prohibitively
extensive in the case of large antenna array systems and
multidimensional applications (e.g., array radar systems)
where the model order is large. Therefore, for practical
considerations, robustness and computational efficiency are
always of great importance.

On the other hand, the problem of parameter estimation
with a priori knowledge, such as the waveform of the desired
signal and the steering vector of the array (or the main
beam pattern of the antenna), has been well studied. Li and
Compton Jr. [13] and Li et al. [14] have proposed algorithms
for DOA estimation with known waveforms. Later, Wax
and Leshem [15] and Swindlehurst et al. [16, 17] have
discussed the problem of joint parameters estimation with
known waveforms, respectively. Recently, Gini et al. [18] have
proposed a method of multiple radar targets estimation by
exploiting the knowledge of the antenna main beam pattern
and induced amplitude modulation. A discussion of their
applications to active radar systems, mobile communica-
tion systems, ALOHA packet radio systems, and explosive
detection can be found in [13–20]. It is demonstrated
that exploiting temporal information about the signal can
improve the performance of DOA estimation [13, 14, 20].
In this paper, we will show that one cannot only improve the
robustness of algorithm but also reduce the computational
complexity by using a priori knowledge of one desired signal.

The main contribution of this paper can be briefly stated
as follows: applying the signal-dependent multistage Wiener
filter (MWF) technique [21] so as to accurately determine
the signal subspace even when the noise background is both
spatially and temporally colored. The MWF is a reduced-
rank adaptive filtering technique that has been used in
the application of reduced-rank STAP for airborne radar
[22] and the suppression of multiple-access interference for
mobile communication [23]. In this paper, we introduce

it to joint DOA and frequency estimation. The motivation
of applying the MWF lies in its inherent robustness to
eigenspectrum spreading (referred to as the subspace leak-
age problem [24]). (Eigenspectrum spreading refers to an
increase in the number of interference eigenvalues of the
covariance matrix due to a multitude of real-world effects. In
practice, eigenspectrum spreading is always present particu-
larly in the colored noise environment.) Moreover, by using
the MWF, the proposed method does not need the estimation
of the covariance matrix and its eigendecomposition, and
hence, it is more computationally efficient than the classical
subspace-based methods. Before presenting the numerical
results, the conditional Cramér-Rao lower bound (CRB) on
the parameter estimation is derived. Our new expressions
of CRB can be viewed as an extension of the well-known
results of Stoica et al. Then, the performance of the proposed
method is demonstrated by using both numerical and
experimental examples.

The remainder of this paper is organized as follows.
In Section 2, first we describe the data model and some
necessary preliminaries. Then, the proposed method and the
conditional CRB on the parameter estimation are presented.
Section 3 shows numerical and experimental results, and
Section 4 concludes the paper.

The following notations are used throughout this paper.
Superscripts (·)T , (·)∗, (·)H , (·)#, ⊗, and � denote the
operation of transpose, complex conjugate, complex conju-
gate transpose, pseudoinverse, the Kronecker product and
the Hardamard product, respectively. The notation diag[a]
denotes a diagonal matrix with its diagonal elements formed
by vector a. The notation ‖a‖ denotes the Euclidian norm
of vector a. The notation ‖A‖F denotes the Frobenius norm
of matrix A. The notation ∠(·) denotes the phase angle. The
notation E[·] denotes the expectation of a random variable.

PΔ = Δ(ΔHΔ)
−1
ΔH and P⊥Δ = I−PΔ stand for the orthogonal

projection matrices onto the space of Δ and its orthogonal
complement.

2. PROBLEM FORMULATION

2.1. Datamodel

Consider a uniform linear array (ULA) with M elements.
Impingings on the array are P narrowband plane waves,
which indicates that the effect of a time delay on the received
waveform is a phase shift. Let ωc be the center frequency
of the band of interest, and suppose that the ith (i =
1, 2, . . . ,P) source comes from a direction of θi. Thus, after
demodulation to baseband or intermediate frequency (IF),
the output of ULA at time t can be written as

x(t) =
P∑

i=1

a
(
θi
)
αipi(t)e jωit + n(t), t = 0, 1, . . . ,N − 1,

(1)

where ωi, pi(t), and αi denote the baseband frequency after
sampling, the waveform, and the complex amplitude of the
ith source, respectively. a(θi) is the M × 1 spatial steering
vector of the array toward direction θi and n(t) is the M × 1
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Figure 1: Data stacking technique (K = 5).

noise vector. For ULA, the spatial steering vector a(θi) has the
form

a(θi) =
[
1, e j2πd sin θi/λi , . . . , e j2π(M−1)d sin θi/λi

]T
, (2)

where d and λi are the interelement spacing and the
wavelength of the ith source, respectively.

Next, we define the M × P steering matrix (referred to as
the array manifold) A, the P × 1 signal vector s(t), and the
P × P diagonal matrix Φ as

A = [a(θ1
)
, . . . , a

(
θP
)]

,

s(t) = [α1p1(t), . . . ,αP pP(t)
]T

,

Φ = diag
[
e jω1 , . . . , e jωP

]
.

(3)

Note that Φ is the diagonal matrix only containing informa-
tion about the temporal frequency ωi. Then, the array output
can be expressed as

x(t) = AΦts(t) + n(t). (4)

After that, we use the data stacking technique (referred to
as temporal smoothing [5]) to create the spatiotemporal data
matrix (see Figure 1). By stacking K (referred to as temporal
smoothing factor) temporal shifted versions of the original
array output matrix, we have the following MK×(N−K +1)
spatiotemporal data matrix:

XK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[

s(0) Φs(1) · · · ΦN−Ks(N−K)
]

AΦ
[

s(1) Φs(2) · · · ΦN−Ks(N−K+1)
]

...

AΦK−1
[

s(K−1) Φs(K) · · · ΦN−Ks(N−1)
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+NK ,

(5)

where NK is the MK×(N−K+1) temporally smoothed noise
matrix which has the same form of XK . With the narrowband
assumption, we have s(t) ≈ s(t + 1) ≈ · · · ≈ s(t + K − 1).
Then, the spatiotemporal data matrix in (5) can be expressed
as follows:

XK =

⎡
⎢⎢⎢⎢⎣

A
AΦ

...
AΦK−1

⎤
⎥⎥⎥⎥⎦

[
s(0) Φs(1) · · · ΦN−Ks(N − K)

]
+ NK

= ΩSK + NK ,
(6)

where SK is the P × (N − K + 1) matrix, and Ω =
[AT , (AΦ)T , . . . , (AΦK−1)

T
]
T

is the MK ×P matrix (referred
to as the spatiotemporal manifold) whose range space plays
the role of spatiotemporal signal subspace. It fact, the
spatiotemporal data can be obtained without performing
the data stacking in some applications (see the discussion in
Section 2.2), then, (6) can be rewritten in a form of snapshot
vector

XK (t) = ΩΦts(t) + NK (t), t = 0, 1, . . . ,N − 1. (7)

Property 1. Let b(ωi) = [1, e jωi , . . . , e j(K−1)ωi]
T

denote the
K × 1 temporal steering vector. Then, Ω can be expressed
as Ω = [Ξ(θ1,ω1),Ξ(θ2,ω2), . . . ,Ξ(θP ,ωP)], where

Ξ(θi,ωi) = b(ωi)⊗ a(θi) (8)

is the MK × 1 spatiotemporal steering vector. This property
is useful in the CRB analysis in Section 3.

Proof. See Appendix A.
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Figure 2: Space-time array radar data cube generation.
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Figure 3: Space-time receiver architecture of the advanced ESM systems.

Property 2. With K-factor temporally smoothed data, up to
K sources having the same DOA, can be solved in this data
model.

Proof. See [5, Appendix A]

Some assumptions associated with models (1) and (7) are
as follows.

Assumption 1. The signals are unknown deterministic and
uncorrelated with each other. Without loss of generality, we
assume that p1(t) is the received waveform of the desired
signal. We also assume that the transmitted waveform p0(t)
of the desired signal is known a priori.

Assumption 2. The noise is circularly symmetric zero-mean
Gaussian with variance σ2. Both white noise and colored
noise are considered in this paper. In the case of spatially
and temporally white noise, the noise covariance matrix is
Q = σ2I, where I is the identity matrix.

Assumption 3. The number of sources P is assumed to be
known or has been estimated (see [25] on how to estimate
the sources number P from the input date XK (t)).

Assumption 4. MK ≥ P, and the spatiotemporal manifold
Ω is unambiguous so that the spatiotemporal steering
vectors Ξ(θ1,ω1) and Ξ(θ2,ω2) (θ1 /= θ2, ω1 /=ω2) are linearly
independent. On the other hand, MK is the upper bound on
the number of sources that can be resolved in this data model
whenever θ1 /= θ2 and ω1 /=ω2.

Assumption 5. Let fs be the sample rate, it is assumed that
fs is large enough to the bandwidth of each narrowband

source. To avoid aliasing, it is also required that − fs/2 < fi ≤
fs/2, where fi = fsωi/(2π) is the baseband frequency before
sampling.

2.2. Some applications

It is instructive to describe some applications where the data
model and assumptions outlined above are relevant.

The first application where our data model and assump-
tions are reasonable is active array radar system [26]. In radar
applications, a known waveform p0(t) is transmitted, and
the received signal reflected from each target is just a scaled,
time-delayed, and Doppler-shifted version of the transmitted
signal. More specifically, consider a space-time array shown
in Figure 2. The radar transmits a coherent train of K pulses
with the pulse repetition interval (PRI) T in one coherent
processing interval (CPI), and the target return collected by
the space-time array with M elements is an M × K ×N data
cube, where N is the number of snapshots (range bins). After
I/Q down-conversion, each MK × 1 snapshot vector has the
form of (7).

The second application where our data model and
assumptions hold true is the electronic support measures
(ESM) signal processing [27, 28]. The ESM systems perform
the functions of threat detection and area surveillance. They
use the passive antenna arrays to intercept the radar signal
and determine the characteristics (e.g., radio frequency (RF),
DOA, time of arrival (TOA), pulse width (PW), PRI, etc.) of
the active emitters in a given area (see Figure 3). Moreover,
advanced knowledge-based EMS systems also make full use
of the priori information (e.g., the characteristics of friendly
and enemy emitters) to enhance the performance. In this
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Initialization: c0(t) = p0(t), Y0(t) = XK (t)
Forward Recursion: For i = 1, 2, . . . ,D:

hi = E[c∗i−1(t)Yi−1(t)]/‖E[c∗i−1(t)Yi−1(t)]‖
ci(t) = hH

i Yi−1(t)

Bi = null{hi}
Yi(t) = BiYi−1(t)

Backward Recursion: For i = D, D − 1, . . . , 1 with eD(t) = cD(t):
wi = E[c∗i−1(t)ei(t)]/E[|ei(t)|2]

ei−1(t) = ci−1(t)−w∗i ei(t)

Algorithm 1: MWF algorithm [21].

Initialization: c0(t) = p0(t), Y0(t) = XK (t)
Forward Recursion: For i = 1, 2, . . . ,D:

hi = E[c∗i−1(t)Yi−1(t)]/‖E[c∗i−1(t)Yi−1(t)]‖
ci(t) = hH

i Yi−1(t)

Yi(t) = Yi−1(t)− hici(t)
Backward Recursion: For i = D, D − 1, . . . , 1 with eD(t) = cD(t):

wi = E[c∗i−1(t)ei(t)]/E[|ei(t)|2]

ei−1(t) = ci−1(t)−w∗i ei(t)

Algorithm 2: CSS-MWF algorithm [29].

application, the data stacking technique must be performed
to create the spatiotemporal data.

2.3. MultistageWiener filter (MWF)

In this section, we briefly review the MWF and its implemen-
tation using the correlation subtractive structure (CSS).

The MWF was developed by Goldstein et al. [21] based
on orthogonal projections. A block diagram showing the
structure of MWF is depicted in Figure 4. It is a multistage
representation of the minimum mean-square error (MMSE)
Wiener filer that generates a signal-dependent basis in a
stage-by-stage structure. At every stage i = 1, 2, . . . ,D of the
decomposition, two orthogonal subspaces are formed: one
in the direction of the MK × 1 correlation vector hi, and
the other orthogonal to hi. A blocking matrix Bi = null{hi}
is also formed to perform the projection onto the subspace
orthogonal to hi. It is clear that the scalar output ci+1(t) in
the direction of hi serves as the desired signal for the next
stage while the vector output Yi+1(t) orthogonal to hi is the
input vector of the next stage. The standard MWF algorithm
is presented in Algorithm 1.

Note that the requirement for the blocking matrix Bi is

Bihi = 0. (9)

Hence, the choice of Bi affects the computational complexity.
To make the construction of Bi simple, an efficient imple-

mentation of the MWF algorithm is proposed based on CSS
[29]. First, the blocking matrix Bi is given by

Bi = I− hihH
i . (10)

Then, the input vector Yi(t) for the (i+1)th stage is calculated
as follows:

Yi(t) = BiYi−1(t) = (I− hihH
i

)
Yi−1(t) = Yi−1(t)− hici(t).

(11)

The CSS-MWF algorithm is summarized in Algorithm 2.
From Algorithm 2, it is clear that CSS-MWF avoids the

formation of blocking matrices, and thus, yields much lower
computational complexity.

The MWF has the following properties.

(1) Let TD = [h1, h2, . . . , hD], where D is the order of
filter (in this paper, D = MK), it has been shown
in [21, 23] that the columns in TD are mutually
orthogonal and each hi (i = 1, 2, . . . ,D) is contained
in the signal subspace.

(2) It is shown in [23] that the first P orthogonal vectors
span the signal subspace, and P stages are required to
form the full rank MMSE filter, where P (P < D) is
the number of sources.
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Figure 4: Multistage Wiener filter.

2.4. Proposedmethod

Let Ω̂ = [h1, h2, . . . , hP] denote the matrix of the first P basis
vectors of the MWF. In the case of high signal-to-noise ratio
(SNR) or large snapshots number N , we have

Ω̂ ≈ ΩH, (12)

where H is a P × P nonsingular matrix. Moreover, Ω̂ is
consistent in the sense that limN→∞Ω̂ = ΩH. This implies
that the corresponding transformed matrices for A and Φ
can be expressed as

AT = AH, (13)

ΦT = H−1ΦH, (14)

and they can be estimated as follows:

ÂT = Ω̂1:1, Φ̂T = Ω̂
#
1:K−1Ω̂2:K , (15)

where Ω̂k:l denotes the block rows from k through l.
Since (14) is a similarity transformation, ΦT and Φ have

the same eigenvalues e jωi (i = 1, 2, . . . ,P) in the noise-free
case. By performing the eigendecomposition Φ̂T = UΛU−1

(Λ = diag[ξ1, ξ2, . . . , ξP]), we obtain the eigenvalues of
Φ̂T , namely, ξi (i = 1, 2, . . . ,P). Therefore, the frequency
estimates are given by

ω̂i = ∠ξi, i = 1, 2, . . . ,P. (16)

On the other hand, since U diagonalizes Φ̂T , it provides
an estimation of H−1 in (14). Therefore, the steering matrix
A can be estimated as Â = ÂTU. Letting âi denote the ith
column of Â, for large N , we have âi ∝ a(θi). Since the

steering matrix A for the ULA is a Vandermonde matrix, in
the noise-free case, we obtain

âi(2)
âi(1)

= âi(3)
âi(2)

= · · · = âi(M)
âi(M − 1)

= e j2π(d sin θ̂i/λi),

i = 1, 2, . . . ,P.
(17)

Then, we can derive the DOA estimates from (17) as

θ̂i = 1
M − 1

M∑

l=2

sin−1
(

λ̂i
2πd

∠
(

âi(l)
âi(l − 1)

))
, i = 1, 2, . . . ,P,

(18)

where λ̂i can be calculated by using the frequency estimates
ω̂i in (16) and the center frequency of the band of interest ωc.

The idea of DOA estimation is similar to the method
of [6] (referred to as the Viberg-Stoica method) which
avoids the operation of joint diagonalization in [4, 5], but
we give the closed form of DOA estimates. From (16) and

(18), it is clear that ω̂i and θ̂i are one-to-one related to
the ith eigenvalue and the ith eigenvector, respectively. In
other words, the frequency and DOA estimates are paired
automatically.

The proposed method is summarized in the following
steps.

S1: Estimate the signal subspace Ω̂ by performing the
forward recursion of the rank P MWF, where P is the
number of sources.

S2: Estimate the transformed matrices for A and Φ from
(15).

S3: Perform the eigendecomposition Φ̂T = UΛU−1, and
obtain the eigenvalues of Φ̂T . Then, estimate the
frequencies from (16).

S4: Estimate the steering matrix A as Â = ÂTU. Then,
the DOAs can be estimated from (18).
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After obtaining the estimates of DOA/frequency pairs

(θ̂i, ω̂i) (i = 1, 2, . . . ,P), we can use the known transmitted
waveform p0(t) to extract the desired signal DOA/frequency
pair by using the cross correlation method in [13].

Remarks

(1) In STAP airborne radar application, it is shown in
[22] that the MWF cannot only achieve a substan-
tially higher compression of the interference sub-
space than the classical subspace-based techniques
(e.g., principle components (PC) method and cross-
spectral metric (CSM) method) in both hot and cold
clutter environment, but also provide robustness to
eigenspectrum spreading or subspace leakage of the
interference subspace. Thus, it has the potential for
making the proposed method more feasible in the
presence of colored noise.

(2) It is very important to notice that the CSS-MWF
algorithm only involves complex matrix-vector prod-
ucts, and requires the computationally complexity
of O(MKN) floating-point operations per second
(flops) at each stage [29]. Therefore, the complexity
of O(PMKN) flops is required to estimate the
signal subspace Ω̂ of rank P by performing the
forward recursion of the MWF. In contrast to the
classical subspace-based methods of [3, 4, 6] which
require O((MK)2N) + O(M3K3) flops in estimating
the covariance matrix and calculating the eigen-
decomposition, the proposed method shows low-
complexity capability.

2.5. Cramér-Rao bound

Although the complete statistical analysis of the estimation
algorithm is not the scope of this paper, it is still useful to
present the CRB that indicates the performance limit of any
unbiased estimator.

In the literature, a large number of researchers have
studied the conditional and unconditional CRB for DOA
estimation (see, e.g., [30–33] and the references therein). In
this section, we derive the expression of the CRB for joint
DOA and frequency estimation. The new expressions of CRB
can be viewed as an extension of the well-known results of
Stoica and Nehorai [30]. Since the signals are assumed to
be unknown deterministic, we only consider the conditional
CRB.

For simplicity, we rewrite the data model (7) as

XK (t) = Ωg(t) + NK (t), t = 0, 1, . . . ,N − 1, (19)

where g(t) = Φts(t) = [ g1(t) g2(t) · · · gP(t) ]
T

.

Theorem 1. Under the assumptions in Section 2.1, the condi-
tional CRB for joint DOA and frequency estimation in white
noise can be expressed as

CRB(θ,ω) = σ2

2

[ N∑

t=1

Re
{

ZH(t)DHP⊥ΩDZ(t)
}
]−1

, (20)

where

Z(t) =
⎡
⎣

G(t) 0

0 G(t)

⎤
⎦ ,

G(t) = diag
{
g1(t) g2(t) · · · gP(t)

}
,

D =
[

Dθ Dω

]
,

Dθ =
[
dθ
(
θ1,ω1

)
dθ
(
θ2,ω2

) · · · dθ
(
θP ,ωP

)]
,

Dω =
[
dω
(
θ1,ω1

)
dω
(
θ2,ω2

) · · · dω
(
θP ,ωP

)]
,

dθ
(
θi,ωi

) = ∂Ξ(θ,ω)
∂θ

∣∣∣∣
θ=θi,ω=ωi

,

dω
(
θi,ωi

) = ∂Ξ(θ,ω)
∂ω

∣∣∣∣
θ=θi,ω=ωi

,

P⊥Ω = I−Ω
(
ΩHΩ

)−1
ΩH.

(21)

Proof. See Appendix B.

Theorem 2. For large N , the asymptotic conditional CRB for
joint DOA and frequency estimation in white noise can be
expressed as

CRB(θ,ω) ≈ σ2

2N

[
Re
{[

DHP⊥ΩD
]�RT

}]−1
, (22)

where

R =
[

Rg Rg

Rg Rg

]
, Rg = lim

N→∞
1
N

N∑

t=1

g(t)gH(t). (23)

Proof. See Appendix C.

The asymptotic CRB for DOA estimation in the colored
noise is derived in [34]. By extending the results of [34], we
may obtain the expression of the condition CRB for joint
DOA and frequency estimation in the colored noise.

Theorem 3. The asymptotic conditional CRB for joint DOA
and frequency estimation in colored noise can be expressed as

CRB(θ,ω) ≈ σ2

2N

[
Re
{[

DHQ−1P⊥
Ω̃

D
]�RT

}]−1
, (24)

where P⊥
Ω̃
= I−Ω(ΩHQ−1Ω)

−1
ΩHQ−1. The noise covariance

matrix Q is no longer a diagonal matrix in the case of colored
noise.

3. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present simulation and experimental
examples showing the performance of the proposed method.
The situation in which there is one desired signal with known
transmitted waveform p0(t) in the presence of interfering
signals is considered.
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Table 1: Comparisons of the computational complexity of various algorithms.

Algorithms Main computational complexity

JAFE High-dimensional SVD: O((MK)2N) + O(M3K3) + two low dimensional EVD: O(P3)

Viberg-Stoica method High-dimensional SVD: O((MK)2N) + O(M3K3) + low dimensional EVD: O(P3)

FSF-MUSIC Three low-dimensional SVDs: 2O(K2N) + 2O(K3) + O(M2N) + O(M3) + three 1-D searches

Proposed method Forward recursions of the CSS-MWF: O(PMKN) + low dimensional EVD: O(P3)

3.1. Simulation examples

In the simulation examples below, the array is assumed to be
a ULA with interelement spacing equal to a half wavelength
(λ = 2πc/ωc).

Example 1. In this example, we assume that there are
three uncorrelated narrowband sources with equal power
impinging on the array from far filed. The number of sensors
is M = 6, the temporal smoothing factor is K = 2, and
the number of snapshots is N = 100. The DOA/Frequency
pairs of the three sources are (5◦, 1.6 rad), (−5◦, 1.9 rad),
and 5◦, 2.2 rad), respectively. Figure 5 shows the scatter plots
of proposed method at SNRs = 10 dB. We observe that
the resulting estimates are paired automatically. Moreover,
we note that the two sources with the same DOAs = 5◦

are clearly resolved. This is consistent with Property 2 in
Section 2.1.

Example 2. This example evaluates the performance of pro-
posed method for different angle and frequency separations.
We assume that the number of sensors is M = 8, and the
number of snapshots is N = 100. Thus, the Fourier temporal
resolution limit is 2π/N rad or 0.0628 rad and the Rayleigh
angle resolution limit for the ULA is 2/(M−1) rad or 16.38◦.
First, it is assumed that two sources come from θ1 = 0◦

and θ2 = (0 + Δθ)◦ with two different frequencies ω1 =
2.1 rad and ω2 = 2.5 rad, respectively, where Δθ is the angle
separation between the sources. Figures 6(a) and 6(b) show

the root-mean-square errors (RMSEs) of ω̂1 and θ̂1 versus
angle separation Δθ at SNRs = 15 dB. The performance
of the second source is similar to that of the first one.
All results provided contain 1000 Monte Carlo trials. The
RMSEs of the ith source for DOA and frequency estimation
are, respectively, defined as

RMSEsθ̂i =
√
E
[(
θ̂i − θi

)2]
, i = 1, 2, . . . ,P, (25)

RMSEsω̂i =
√
E
[(
ω̂i − ωi

)2]
, i = 1, 2, . . . ,P, (26)

where i represents the source index. For a clear illustration,
only the square root of the CRB (RCRB) with K = 4 is
provided. Figures 6(a) and 6(b) show that, as the temporal
smoothing factor K increases, the accuracy is improved. We
also note from Figures 6(a) and 6(b) that the two sources
with the same DOA (when Δθ = 0) can be resolved by using
the spatiotemporal data model, which is again consistent
with the discussion of Property 2 in Section 2.1.

Then, we assume that two sources with the frequencies
ω1 = 2.1 rad and ω2 = (2.1 + Δω) rad come from two
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Figure 5: Scatter plot of estimated DOA/frequency pairs with
proposed method. SNRs = 10 dB, M = 6, K = 2, N = 100, and
1000 trials are used.

different DOAs θ1 = 5◦ and θ2 = 10◦, respectively, where
Δω is the frequency separation between the sources. Figures

7(a) and 7(b) show the RMSEs of ω̂1 and θ̂1 versus frequency
separation Δω at SNRs = 15 dB. We observe once again that
the temporal smoothing can improve the accuracy. However,
unlike the results in Figures 6(a) and 6(b), two sources with
the same frequency (when Δω = 0) cannot be resolved by
using the spatiotemporal data model. Meanwhile, Figures
7(a) and 7(b) show that the temporal resolution of the
proposed method goes beyond its corresponding resolution
limit. Moreover, it is seen that, as the frequency separation
Δω increases, the accuracy of DOA estimation is improved
while the improvement for frequency estimation is little.

Example 3. This example tests the RMSEs of proposed
method versus the SNR in both white noise and colored
noise. Comparisons with the JAFE algorithm [4], the Viberg-
Stoica method [6], the FSF-MUSIC algorithm [9], and the
RCRB are made simultaneously. In the simulations below,
the number of sources is P = 2. The true DOA/Frequency
pairs of the two sources are (−3◦, 2.1 rad) and (3◦, 2.15 rad),
respectively. The number of sensors is M = 12, the temporal
smoothing factor is K = 4, and the number of snapshots
is N = 100. Thus, both the temporal resolution and the
spatial resolution of the proposed method go beyond their
corresponding resolution limits (0.0628 rad and 10.42◦). All
results provided contain 1000 Monte Carlo trials.
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Table 2: Means and RMSEs of three methods based on the 20 estimates when used with experimental data.

Source (θi, fi)
Prewhitened JAFE Method of Zoltowski Proposed method

Mean RMSE Mean RMSE Mean RMSE

(3◦, 0.3436) (3.052◦, 0.3409) (0.3162◦, 0.002613) (2.879◦, 0.3396) (0.8163◦, 0.003921) (3.056◦, 0.3429) (0.2899◦, 0.002139)

(−9◦, 0.25) (−9.051◦, 0.2532) (0.2854◦, 0.002159) (−8.810◦, 0.2558) (0.8631◦, 0.004051) (−9.033◦, 0.2520) (0.3484◦, 0.002386)

(8◦, 0.1563) (8.074◦, 0.1571) (0.3509◦, 0.002273) (8.261◦, 0.1611) (0.7972◦, 0.004237) (8.062◦, 0.1557) (0.3737◦, 0.002751)
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Figure 6: RMSE curves of the proposed method for frequency and DOA estimation of the first signal versus angle separation with fixed
SNRs = 15 dB, M = 8, and N = 100. (a) Frequency estimation. (b) DOA estimation.
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Figure 7: RMSE curves of the proposed method for frequency and DOA estimation of the first signal versus frequency separation with fixed
SNRs = 15 dB, M = 8, and N = 100. (a) Frequency estimation. (b) DOA estimation.
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Figure 8: RMSE curves of four methods for frequency and DOA estimation of the first signal versus SNR and the corresponding RCRB in
both spatially and temporally white noise with fixed M = 12, N = 100, and K = 4. (a) Frequency estimation. (b) DOA estimation.
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Figure 9: RMSE curves of four methods for frequency and DOA estimation of the first signal versus SNR and the corresponding RCRB in
both spatially and temporally colored noise with fixed M = 12, N = 100, and K = 4. (a) Frequency estimation. (b) DOA estimation.

First, we assume that the noise is both spatially and
temporally white. Figures 8(a) and 8(b) show the RMSE
curves of frequency and DOA estimates versus SNR for
the first source. The performance of the second source is
similar to that of the first one. From Figures 8(a) and
8(b), it is obvious that the JAFE and the FSF-MUSIC have
very close performances and outperform other two methods

for both frequency and DOA estimations. Meanwhile, the
performance of the proposed method is slightly superior to
that of the Viberg-Stoica method.

Then, we consider a more general scenario where the
noise is both spatially and temporally colored. Figures 9(a)
and 9(b) show the RMSE curves versus SNR for the first sig-
nal in the colored noise which is modeled as a multichannel
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Figure 10: Eigenvalue spectrum of the sample covariance matrix
with M = 12, K = 4, N = 100, and SNRs = 10 dB.

second-order autoregressive (AR(2)) random process [35].
Note that the proposed method has the best performance
among the four methods for both frequency and DOA
estimations, especially in the low SNR region. To gain
insight into why the colored noise degrades the performances
of the classical subspace-based methods significantly, we
plot the eigenvalue spectrum of aforementioned simulation
examples in Figure 10 for both white noise case and colored
noise case. It is clear that the presence of colored noise
leads to the eigenspectrum spreading. In this situation, the
noise subspace is not orthogonal to the signal subspace
anymore. Moreover, we give another important measure of
performance in this analysis, namely, the subspace distance
[36]. The subspace distance is a measure that compares the
Euclidian distance between two subspaces. The smaller the
subspace distance is, the more similar the two subspaces are.
Let Ω̂MWF and Ω̂EIG denote two signal subspace estimates
based on MWF and eigendecomposition, respectively. The
signal subspace distances between Ω̂MWF (or Ω̂EIG) and the
true signal subspace Ω are defined as follows [36]:

dΩ̂MWF
= 1√

2

∥∥PΩ̂MWF
− PΩ

∥∥
F

, dΩ̂EIG
= 1√

2

∥∥PΩ̂EIG
− PΩ

∥∥
F

,

(27)

where PΩ̂MWF
, PΩ̂EIG

, and PΩ are three orthogonal projection

matrices onto the spaces of Ω̂MWF, Ω̂EIG, and Ω, respectively.
Figures 11(a) and 11(b) show the comparisons of the signal
subspace distances dΩ̂MWF

and dΩ̂EIG
for the same simulation

scenario as Figures 8 and 9. We can note from Figure 11(a)
that the subspace distances dΩ̂MWF

and dΩ̂EIG
are very close in

the case of white noise. However, the subspace distance dΩ̂MWF

is significantly smaller than the distance dΩ̂EIG
in Figure 11(b)

especially in the low SNR region. In this case, the subspace
determined by Ω̂EIG departs from the true signal subspace Ω,
which results in a drastic performance degradation.
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Figure 11: Comparison of the signal subspace distances with fixed
M = 12, N = 100, and K = 4. (a) White noise. (b) Colored noise.

Comments

The classical subspace-based methods are inherently not
well suited to the situation in which a dominant signal
subspace is not clearly present. In addition, it should
be noted that, although the prewhitened subspace-based
method [6] can improve the accuracy, known statistics of
the colored noise (e.g., the temporal and spatial correlation
time) are required, which is often unavailable in practical
applications. In contrast, the signal-dependent method has
been demonstrated to be more robust to this problem, and
thus, has a remarkably better performance.
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Example 4. In this example, we compare the computational
complexities of various algorithms. For easy reference, the
comparisons of the computational complexity of these
algorithms are summarized in Table 1. More specifically, we
consider the case where the source number is P = 3, the
number of snapshots is N = 100, and temporal smoothing
factor is K = 4. The computational complexity versus
the number of sensors is plotted in Figure 12. We observe
that the proposed method has the lowest computational
complexity among four algorithms.

3.2. Experimental examples

We apply the proposed method to the experimental data
collected by the real array system. The array system was
developed at the research institute of China-Aerospace Science
and Industry Corporation (CASIC). The real data was col-
lected in the anechoic chamber on October 20, 2005. The
linear frequency modulated (LFM) signals at S-band were
used in the experiment. The array system is a horizontal ULA
which consists of M = 8 elements. The spacing between
adjacent elements is 4.00 cm. After demodulation to IF, the
data was sampled at a rate of 160 MHz with 12-bit precision,
and 256 snapshots were collected at each antenna output.
There are three uncorrelated sources arriving at the array
from θ1 = 3◦, θ2 = −9◦, and θ3 = 8◦ with SNRs of 12 dB,
10 dB, and 10 dB, respectively. The transmitted frequencies
and the normalized frequencies (after demodulation) of
three sources are (3.090 GHz, 0.34375), (3.075 GHz, 0.25),
and (3.060 GHz, 0.15625), respectively. The corresponding
bandwidths are 6 MHz, 10 MHz, and 7.5 MHz, respectively.
The source with the direction of θ1 = 3◦ is assumed to be the
desired signal, and only its transmitted waveform is known a
priori.
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Figure 13: Frequency and DOA estimates with the proposed
methods by using experimental data. (M = 8, K = 4, N = 256).
(a) Frequency estimation. (b) DOA estimation.

Figures 13(a) and 13(b) show the experiment results of
the proposed method with K = 4. Each curve contains 20
estimates. From Figure 13, we observe that the estimation
performance of the proposed method is reliable in this
experiment. Based on the aforementioned 20 estimates, the
comparisons of the means and RMSEs with the prewhitened
JAFE [5] and the Zoltowski method [7] are made in Table 2.
(Due to the difference between two system models, we only
test this algorithm under the model of 1-D ULA instead
of 2-D L-shaped nonuniform linear array which is used in
[7].) Note that for the experimental data analyzed here, the
proposed method and the prewhitened JAFE provide similar
performances and outperform the Zoltowski method.
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Figure 14: RMSE curves for frequency and DOA estimation of the
desired signal as functions of temporal smoothing factor K . (M = 8,
N = 256). (a) Frequency estimation. (b) DOA estimation.

Meanwhile, the effect of temporal smoothing on the
RMSE is investigated. In Figures 14(a) and 14(b), we plot
the RMSEs of the desired signal as a function of temporal
smoothing factor K , and show both the experimental results
(based on 20 experimental trials) and the simulation results
(based on 1000 Monte Carlo trials). As we expect, the RMSEs
of frequency and DOA estimation decrease when K changes
from 2 to 50, which is consistent with the discussion in [5].
In [5], the optimum temporal smoothing factors are given,
that is, K = 2N/3 for frequency estimation and K = N/2
for DOA estimation, respectively. However, this is the most
computationally prohibitive case. From the results in Figures
14(a) and 14(b), we suggest choosing K between 4 and 10

to make a compromise between complexity and accuracy. In
addition, from above experimental results, it should be noted
that the performance degradation of the experimental results
is due to the presence of colored noise and other real-world
effects.

4. CONCLUSION

To apply the joint DOA and frequency estimation more
effectively in practical applications, a robust and computa-
tionally efficient method is proposed by using the signal-
dependent MWF and subspace technique. It is shown that,
in contrast to the classical subspace-based methods, the
proposed method provides a robust performance in the
presence of colored noise. Meanwhile, its computational
complexity is much lower than the classical subspace-based
methods. It is believed that these advantages can make the
proposed method more efficient and feasible in real-world
applications.

Finally, it should be noted that this paper does not
consider the case of coherent signals. As shown in Figure 7,
two sources with the same frequency cannot be resolved by
using the proposed method. Following the method of [5], we
can resort to the spatial smoothing technique to decorrelate
the coherent signals. However, this will result in some
disadvantages, such as the increase of the computational
complexity and the loss of spatial resolution. We will focus
on these problems in our further research.

APPENDICES

A. PROOF OF PROPERTY 1

Let ϕi = 2πd/λi sin θi, then we have

Ω =

⎡
⎢⎢⎢⎢⎣

A
AΦ

...
AΦK−1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
e jϕ1 e jϕ2 e jϕP

...
...

...
e j(M−1)ϕ1 e j(M−1)ϕ2 e j(M−1)ϕP

e jω1 e jω2 e jωP

e jϕ1e jω1 e jϕ2e jω2 e jϕP e jωP

...
...

...

e j(M−1)ϕ1e jω1 e j(M−1)ϕ2e jω2
. . . e j(M−1)ϕP e jωP

...
...

...
e j(K−1)ω1 e j(K−1)ω2 e j(K−1)ωP

e jϕ1e j(K−1)ω1 e jϕ2e j(K−1)ω2 e jϕP e j(K−1)ωP

...
...

...
e j(M−1)ϕ1

×e j(K−1)ω1

e j(M−1)ϕ2

×e j(K−1)ω2
· · · e j(M−1)ϕP

×e j(K−1)ωP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [Ξ(θ1,ω1
)
,Ξ
(
θ2,ω2

)
, . . . ,Ξ

(
θP ,ωP

)]
,

(A.1)
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where

Ξ
(
θi,ωi

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
e jϕi

...
e j(M−1)ϕi

e jωi

e jϕi e jωi

...
e j(M−1)ϕie jωi

...
e j(K−1)ωi

e jϕi e j(K−1)ωi

...
e j(M−1)ϕie j(K−1)ωi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

a
(
θi
)

e jωia
(
θi
)

...
e j(K−1)ωia

(
θi
)

⎤
⎥⎥⎥⎥⎥⎦

= b
(
ωi
)⊗ a

(
θi
)
.

(A.2)

This proves Property 1.

B. PROOF OF THEOREM 1

The log likelihood function of the signal is

lnL(η) = const−MKN ln σ2

− 1
σ2

N∑

t=1

[
XK (t)−Ωg(t)

]H[
XK (t)−Ωg(t)

]
,

(B.1)

where the unknown parameter vector η is defined as

η=
[
θT ωT Re{g(1)} Im{g(1)}· · ·Re{g(N)} Im{g(N)} σ2

]

(B.2)

and θ = [ θ1 · · · θP ]
T

is a P × 1 vector containing the
DOAs of the sources.

ω = [ ω1 · · · ωP ]
T

is a P × 1 vector containing the
frequencies of the sources.

The Fisher information matrix (FIX) is given by [32,
Appendix B]

FIM(η) = E

{[
∂ lnL(η)

∂η

][
∂ lnL(η)

∂η

]T}

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υθθ Υθω μT(1) μT(2) · · · μT(N) 0

Υωθ Υωω νT(1) νT(2) · · · νT(N) 0

μ(1) ν(1) Λ 0 · · · 0 0

μ(2) ν(2) 0 Λ · · · 0 0
...

...
...

...
. . .

... 0
μ(N) ν(N) 0 0 · · · Λ 0

0 0 0 0 0 0 CRB−1
σ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.3)

where

Υθθ = 2
σ2

N∑
t=1

Re
{

GH(t)DH
θ DθG(t)

}
,

Υθω = 2
σ2

N∑
t=1

Re
{

GH(t)DH
θ DωG(t)

}
,

Υωθ = 2
σ2

N∑
t=1

Re
{

GH(t)DH
ω DθG(t)

}
,

Υωω = 2
σ2

N∑
t=1

Re
{

GH(t)DH
ω DωG(t)

}
,

Λ = 2
σ2

⎡
⎣

Re
{
ΩHΩ

} −Im
{
ΩHΩ

}

Im
{
ΩHΩ

}
Re
{
ΩHΩ

}

⎤
⎦ ,

μ(t) = 2
σ2

⎡
⎣

Re
{
ΩHDθG(t)

}

Im
{
ΩHDθG(t)

}

⎤
⎦ ,

ν(t) = 2
σ2

⎡
⎣

Re
{
ΩHDωG(t)

}

Im
{
ΩHDωG(t)

}

⎤
⎦ ,

CRBσ2 = σ4

MKN
.

(B.4)

Then, the inverse CRB matrix for θ and ω is obtained by the
following:

CRB−1(θ,ω)

=
[
Υθθ Υθω

Υωθ Υωω

]
−
[
μT(1) μT(2) · · · μT(N)

νT(1) νT(2) · · · νT(N)

]

·

⎡
⎢⎢⎢⎢⎣

Λ 0 · · · 0
0 Λ · · · 0
...

... Λ
...

0 0 · · · Λ

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣

μ(1) ν(1)
μ(2) ν(2)

...
...

μ(N) ν(N)

⎤
⎥⎥⎥⎥⎦

=
[
Υθθ Υθω

Υωθ Υωω

]
−

N∑

t=1

[
μT(t)

νT(t)

]
Λ−1

[
μ(t) ν(t)

]

= 2
σ2

N∑

t=1

Re

{[
GH(t) 0

0 GH(t)

]⎡
⎣

DH
θ

DH
ω

⎤
⎦

·
[

I−Ω
(
ΩHΩ

)−1
ΩH
][

Dθ Dω

][B(t) 0
0 B(t)

]}

= 2
σ2

N∑

t=1

Re
{

ZH(t)DHP⊥ΩDZ(t)
}
.

(B.5)

This concludes the proof.
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Let Γ = DHP⊥ΩD, we have

lim
N→∞

N∑

t=1

Re
{

ZH(t)ΓZ(t)
} = lim

N→∞
Re

{[ N∑

t=1

zH(t)z(t)

]
� Γ

}
,

(C.1)

where z(t) = [ g1(t) g2(t) · · · gP(t) g1(t) g2(t) · · · gP(t)].
For large N ,

lim
N→∞

N∑

t=1

zH(t)z(t) ≈ N·
⎡
⎣

RT
g RT

g

RT
g RT

g

⎤
⎦ = N·RT , (C.2)

where Rg = limN→∞(1/N)
∑N

t=1 g(t)gH(t). Substituting (C.1)
and (C.2) into (20), we obtain (22). This concludes the proof.
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