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1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
technique that enables high speed transmission over fre-
quency selective channels with simple equalizers. It does
this by creating a set of parallel frequency-flat channels
over which large constellation signals can be transmitted.
For frequency flat fading channels, space-time codes provide
diversity and coding gain benefits compared with single-
input single-output (SISO) systems improving the BER per-
formance of the system [1]. (We concentrate in this work on
space-frequency codes. We note however that a very similar
approach can be used for space-time block codes (STBC).
Given the similarity between the two approaches and the fact
that the abbreviation STBC is more familiar, we continue to
use this abbreviation to refer to our frequency-space codes.)
When multiple antennas (MIMO) are combined with OFDM,
space-time codes can be used per tone, providing the benefit
of multiple antennas with simple channel equalization.

An OFDM receiver needs channel state information (CSI)
to detect the data. With no CSI at the receiver, both
the channel and the data are unknowns that have to be
recovered. The estimation process can be carried out jointly

or separately. Techniques for channel estimation fall into 3
distinct classes: (1) training/pilot-based, (2) semiblind, and
(3) blind methods. Training/pilot-based methods estimate
the channel from a known preamble/pilot sequence sent at
the transmitter and use the estimated channel to decode the
data [2–7]. Blind methods do not use any preambles/pilots
but rely instead on a priori constraints to recover the channel
and data. The data constraints include redundancy due to
the cyclic prefix [8, 9], nonredundant, and nonconstant-
modulus precoding [10], constant-modulus modulation
[11], subspace-based constraints [12], and the finite alphabet
constraint [13]. Semiblind methods make use of both pilots
and additional channel/input data constraints to perform
channel identification and equalization. These methods use
pilots to obtain an initial channel estimate and improve the
estimate by using a variety of a priori information. Thus,
in addition to the aforementioned constraints, semiblind
methods use the time and frequency correlation [14] and the
subspace of the channel [15]. The channel estimate can also
be improved iteratively in a data-aided fashion [12], or more
rigourously by the expectation maximization (EM) approach
[16–21].
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1.1. Paper contributions

This paper considers receiver design for OSTBC-OFDM trans-
mission over a frequency selective, time-variant channel. We
propose a semiblind iterative receiver using the EM algorithm
for joint channel and data recovery. The main contributions
of the work are summarized below.

(1) We make a collective use of the structure of the
communication problem (i.e., the constraints on the
data and on the channel) in a transparent manner.
The data constraints include the finite alphabet
constraint [13], the cyclic prefix [8], pilots [6, 7], and
the OSTBC. In addition, the receiver uses the following
constraints on the channel: the finite delay spread,
frequency and time correlation [22–24], and spatial
correlation (it is also straightforward to incorporate
channel sparsity [15, 25, 26]). This is in contrast
to the work done by other researchers as none has
used all the above mentioned constraints in such a
collective and transparent manner.

(2) The channel estimation and data detection as well as
the exploitation of the system constraints is done in a
semioptimal manner through the EM algorithm. This
guarantees a simple receiver structure.

(3) In spite of the complexity of the problem that we
address here and the many constraints we incorpo-
rate, our algorithm maintains its transparency:

(a) the maximization step is used for channel
estimation and makes use of the channel
constraints by employing a forward-backward
Kalman filter.

(b) the expectation step is used for data detection
and makes use of the data constraints.

(4) In contrast to prior approaches, we take a channel
estimation centric viewpoint and reverse the roles
of the channel and the transmitted signal in our
implementation of the EM algorithm [19] using the
estimation step for data detection and maximization
step for channel estimation. We do so because it is
difficult to employ the expectation step for channel
estimation while simultaneously incorporating the
various constraints on the channel (most notably, the
time-correlation constraint).

A similar algorithm was proposed by the first author
in [27] for the SISO case. Extending this algorithm to the
MIMO case is nontrivial. For in addition to the scale up in
the number of transmit and receive antennas, this paper (1)
makes use of the space-time code and (2) makes full use of
the frequency and time correlation as well as transmit and
receive spatial correlation (see Section 2.2 and Appendix A
where we derive the channel model). Moreover, and in spite
of the many dimensions we deal with, we maintain the
transparency of the presentation.

1.2. Paper organization

The paper is organized as follows. After introducing our
notation, we give an overview of the transceiver in Section 2.
Section 3 then derives the input/output (I/O) equations
for MIMO-OFDM with ST coding (the equations are needed
for channel and data recovery). Channel estimation using
the forward-backward (FB) Kalman filter is derived in
Section 4 at the end of which we summarize the transceiver
algorithm with an extension/modification of the algorithm.
Section 5 presents our simulations and Section 6 presents
our conclusions.

1.3. Notation

Proper choice of notation is essential for clarity and con-
sistency. One challenge in choosing notation is the many
dimensions we deal with in this paper including sample time,
(frequency) tone, (channel) tap, (OFDM) symbol index, and
space.

In this paper, we denote scalars with small-case letters
(e.g., x), vectors with small-case boldface letters (e.g., x),
and matrices with uppercase boldface letters (e.g., X).
Calligraphic notation (e.g., X) is reserved for vectors in the
frequency domain. A hat over a variable indicates an estimate

of the variable (e.g., ̂h is an estimate of h). We use∗ to denote
conjugate transpose, ⊗ to denote Kronecker product, IN to
denote the size N × N identity matrix, and 0M×N to denote
the all zero M × N matrix. Given a sequence of vectors htxrx
for rx = 1 · · ·Rx and tx = 1 · · ·Tx, we define the following
stack variables:

hrx =

⎡

⎢

⎢

⎢

⎣

h1
rx
...

hTx
rx

⎤

⎥

⎥

⎥

⎦

, h =

⎡

⎢

⎢

⎣

h1
...

hRx

⎤

⎥

⎥

⎦

. (1)

The notation vec(X) denotes a column vector consisting
of the concatenation of all column vectors of X while the
operation diag(X) transforms the vector X into a matrix
with diagonal X .

2. AN OVERVIEWOF THE COMMUNICATION SYSTEM

In this section, we give an overview of the communications
system: transmitter, channel, and receiver.

2.1. Transmitter

A block diagram of the transmitter is shown in Figure 1.
The bit sequence to be transmitted passes through a
convolutional encoder that serves as an outer code for the
system. The coded output is punctured to increase the code
rate. The punctured sequence then passes through a random
interleaver which rearranges the order of the bits according
to a random permutation. The interleaved bit sequence is
mapped to QAM symbols (or any modulation scheme for
that matter) using Gray coding and the QAM symbols are in
turn mapped to the OFDM symbols with some tones reserved
for the pilot symbols. The STBC encoder uses the OFDM
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Figure 1: OSTBC OFDM transmitter.

symbols to construct the ST block by mapping the various
OFDM symbols to a specific antenna and specific time slot
depending on the ST code used. Each antenna performs an
IFFT operation on the OFDM symbols to produce the time-
domain OFDM symbols and adds a cyclic prefix to each prior
to transmission.

2.2. Channel model

We consider a time-variant and frequency selective MIMO
channel. For a general MIMO system, the I/O time-domain
relationship is described by

y(m) =
P
∑

p=0

H(p)x(m− p), (2)

where H(p) is the Rx × Tx MIMO impulse response at tap
p and where m represents the sample time index. The taps
H(p) usually incorporate the effect of the transmit filter and
the effects of the transmit and receive correlation making
H(p) correlated across space and tap. We will assume for
simplicity that H(p) is iid for all p (In Appendix A we
consider the general case where the channel exhibits transmit
and receive correlation). We will also assume that the tap
H(p) remains constant over a single ST block (and hence
over the constituent OFDM symbols) and changes from the
current block (Ht(p)) to the next (Ht+1(p)) according to
the dynamical equation (We will at times suppress the time
dependence for notational convenience.)

Ht+1(p) = α(p)Ht(p) +
√

(1− α2(p))e−βpUt(p). (3)

Here, Ut(p) is an iid matrix with entries that are N(0, 1),
and α(p) is related to the Doppler frequency fD(p) by
α(p) = J0(2π fD(p)T), whereT is the time duration of one ST
block. The variable β in (3) corresponds to the exponent of

the channel decay profile while the factor
√

(1− α2(p))e−βp

ensures that each link maintains the exponential decay
profile (e−βp) for all time.

This channel model allows the channel to be time variant
(as the channel can change arbitrarily from one ST block
to the next) while avoiding intercarrier interference and
ensuring the proper operation of the space-time code (as
the channel remains fixed over any one OFDM symbol or

ST block). This model was adopted in [23, 28, 29] in an
SISO context. (This model is based on approximating the
nonrational Jakes model by a first-order AR model. It is also
possible to have a better approximation by employing higher-
order AR models but this would increase the latency of the
receiver.)

In this paper, we scale up the model to the MIMO case
and also show how to incorporate transmit and receive
correlation in Appendix A (see [27, 30] where we also
incorporate the effect of the receive filter).

Using this dynamical model, we can obtain the state-
space model for the impulse response htxrx between transmit
antenna tx and receive antenna rx. From (3), we can write

htxrx ,t+1(p) = α(p)htxrx ,t(p) +
√

(

1− α2(p)
)

e−βputxrx ,t(p). (4)

By stacking (4) over the taps p = 0, 1, . . . ,P, we obtain the
dynamical model

htxrx ,t+1 = Fhtxrx ,t + Gutxrx ,t, (5)

where

F =

⎡

⎢

⎢

⎣

α(0)
. . .

α(P)

⎤

⎥

⎥

⎦

,

G =

⎡

⎢

⎢

⎢

⎣

√

1− α2(0)
. . .

√

(

1− α2(P)
)

e−βP

⎤

⎥

⎥

⎥

⎦

.

(6)

By further stacking (5) over all transmit and receive
antennas (refer to our stacking notation in (1)), we obtain

ht+1 =
(

ITxRx ⊗ F
)

ht +
(

ITxRx ⊗G
)

ut, (7)

where ht+1,ht, and ut , are vectors of size TxRx(P+1)×1. The
dynamical equation (7) shows explicit dependence on the
space-time index t (so t = 1 for the first space-time symbol
which consists of two OFDM symbols in the Alamouti case,
t = 2 for the second space-time symbol, etc.).

For complete characterization of the dynamical model,
we need to specify the covariance of ut, and also the
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covariance of the channel at the first time instant. It is easy
to show that

E
[

utu∗t
] = IRx ⊗ E

[

urxu
∗
rx

]

= IRx ⊗
(

ITx ⊗ E
[

utxrxu
tx∗
rx

])

= IRx ⊗ ITx ⊗ IP+1 = ITxRx(P+1).

(8)

We can similarly show that the channel covariance at the first
time instant is given by

E
[

h0h∗0
] = ITxRx ⊗GG∗. (9)

The covariance information is important for employing the
Kalman filter which is used for channel estimation. We finally
note that while (3) and (7) are equivalent, the latter model
is in vector form and hence lends itself more to the Kalman
filter operations, which are used for channel estimation.

A note about time variation

One drawback of the approach in this paper is the block
fading model that we adopt. For it is more realistic to assume
that the channel continuously varies with time. There are 3
justifications for using the block fading model.

(1) While it is more realistic to assume that the channel
continuously varies over the OFDM symbol, the model
we assume is more valid than the block-fading model
that is widely used in literature. For in the block-
fading model, it is usually assumed that the channel
remains constant over any one symbol and varies
independently from one symbol to another. Here, we
account for the time correlation across symbols.

(2) The purpose of this paper is to design an algorithm
that makes a collective use of the underlying structure
of the communication problem to lower the training
overhead required in the time-variant case. Solving
the general time-variant case is a future research
problem that builds upon the findings in this paper
[31].

(3) One could still envision applications where the
channel is constant over an ST block, but varies
substantially from one symbol to the next. Consider,
for example, a multiuser application in which the
wireless channel is time shared. Imagine also that
the channel is very slowly time variant but the duty
cycle is very large. In that case, the channel that each
user experiences during his transmission burst is very
slow, but from one burst to another, the channel
would change substantially due to the long duty cycle.
This situation would also make sense in random
access scenarios.

2.3. Receiver

This paper is concerned with designing a receiver for the
system described above. For completeness and as an allusion
to the developments further ahead, Figure 2 shows a block
diagram of the proposed receiver. As we will show, the
receiver’s core operation is based on the EM algorithm which
performs joint channel and data recovery.

2.3.1. STBC decoder/data detector (estimation step)

The STBC decoder/data detector calculates the conditional
first and second moments of the transmitted data (soft
estimate) to be used by the channel estimator.

2.3.2. channel estimator (maximization step)

Pilots are used to initialize channel estimation. The channel
estimator then uses the soft data estimates together with
the data and channel constraints to improve the channel
estimate. These two processes (channel estimation and data
detection) go on iteratively until a stopping criterion is
satisfied.

3. INPUT/OUTPUT EQUATIONS FOR MIMO-OFDM

As pointed out in Section 2.3, the receiver performs two
operations, channel estimation and data detection. As such,
we need to derive two forms of the I/O equations: one that
lends itself to channel estimation (i.e., treats the channel
impulse response as the unknown) and a dual version that
lends itself to data detection (i.e., treats the input in its
uncoded form as the unknown). To this end, let Xtx be
the OFDM symbol transmitted through antenna tx which first
undergoes an IDFT xtx = 1/NQXtx where Q is the N ×
N IDFT matrix. The system then appends a cyclic prefix
before transmission. At the receiver end, the receiver strips
the cyclic prefix to obtain the time domain symbol ytxrx . The
I/O equation of the OFDM system between transmit antenna
tx and receive antenna rx is best described in the frequency
domain

Ytx
rx = diag(Xtx )Q

∗
P+1h

tx
rx + Nrx , (10)

where Ytx
rx ,Xtx ,H

tx
rx , and N tx

rx are the (length-N) DFTs of
ytxrx , xtx ,h

tx
rx ,nrx , respectively, and where (10) follows from the

fact that

H tx
rx = Q∗

[

htxrx
O(N−P−1)×1

]

= Q∗P+1h
tx
rx . (11)

Here, QP+1 represents the first P + 1 rows of Q. By
superposition and using the stacking notation (1), we can
express the I/O equation at receive antenna rx as

Yrx =
[

diag
(

X1
) · · ·diag

(

XTx

)](

ITx ⊗Q∗P+1

)

hrx + Nrx .
(12)

3.1. I/O equations: channel estimation version

Consider a set of Nu uncoded OFDM symbols {S(1), . . . ,
S(Nu)} which we would like to transmit over Tx anten-
nas and Nc time slots. Following [32], we can per-
form ST coding using the set of Tx × Nc matrices
{A(1),B(1), . . . ,A(Nu),B(Nu)} which characterizes the ST
code. We can now show that the OFDM symbol transmitted
from antenna tx at time nc is given by [32]:

Xtx

(

nc
) =

Nu
∑

nu=1

atx ,nc

(

nu
)

ReS
(

nu
)

+ jbtx ,nc

(

nu
)

ImS
(

nu
)

,

(13)
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Figure 2: OSTBC OFDM receiver.

where atx ,nc(nu) is the (tx,nc) element of A(nu) and btx ,nc(nu)
is the (tx,nc) element of B(nu). Thus, in the presence of ST
coding, (12) reads

Yrx

(

nc
) = [diag

(

X1
(

nc
)) · · ·diag

(

XTx

(

nc
))]

× (ITx ⊗Q∗P+1

)

hrx + Nrx

(

nc
)

.
(14)

(It should be clear that by using an ST code, a diversity ofTx×
Rx is achieved by spreading each symbol in time and space
at the transmitter antenna. The symbols are not spread in
frequency and thus, (multipath) diversity is lost at the price
of decoding simplicity (i.e., bin by bin decoupling).) This
represents the I/O equation at antenna rx at OFDM symbol nc
of an ST block. Collecting this equation for all such symbols
yields

Yrx = Xhrx + Nrx , (15)

where

Yrx =

⎡

⎢

⎢

⎣

Yrx (1)
...

Yrx (Nc
)

⎤

⎥

⎥

⎦

,

X =

⎡

⎢

⎢

⎢

⎢

⎣

{

diag
(

X1(1)
) · · ·diag

(

XTx (1)
)}(

ITx ⊗Q∗P+1

)

{

diag
(

X1(2)
) · · ·diag

(

XTx (2)
)}(

ITx ⊗Q∗P+1

)

...
{

diag
(

X1
(

Nc
)) · · ·diag

(

XTx

(

Nc
))}(

ITx ⊗Q∗P+1

)

⎤

⎥

⎥

⎥

⎥

⎦

.

(16)

Now, by further collecting this relationship over all receive
antennas, we obtain

Yt =
(

IRx ⊗Xt
)

ht + Nt . (17)

This equation captures the I/O relationship at all frequency
bins, for all input and output antennas, and for all OFDM
symbols of the tth ST block.

To perform initial channel estimation, we select those
equations where the pilots are present. Let Ip denote the
index set of the pilots bins. Then, the pilot/output equation
takes the form

YtIp =
(

IRx ⊗XtIp

)

ht + NtIp . (18)

As can be seen, (17) and (18) are quite similar and using them
in a Kalman filter context will be similar as well.

3.2. I/O equations: data detection version

Signal detection in ST-coded OFDM is done on a tone-by-tone
basis (as in SISO OFDM), except that the tones are collected
for the whole ST block (i.e., for Rx receive antennas and over
Nc time slots). From (10), we can construct the following I/O
equation at any tone n belonging to the OFDM symbol nc:

Yrx

(

nc
) =

[

H1
rx · · · HTx

rx

]

⎡

⎢

⎢

⎣

X1
(

nc
)

...
XTx

(

nc
)

⎤

⎥

⎥

⎦

+ Nrx

(

nc
)

.

(19)

We suppress the dependence on n for notational conve-
nience. Collecting this relationship for all receive antennas
yields

⎡

⎢

⎢

⎣

Y1
(

nc
)

...
YRx

(

nc
)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

H1
1 · · · HTx

1
... · · ·

...
H1

Rx
· · · HTx

Rx

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

X1
(

nc
)

...
XTx

(

nc
)

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

N1
(

nc
)

...
NRx

(

nc
)

⎤

⎥

⎥

⎦

,

(20)

or, more succinctly,

Y(nc) = HX(nc) + N (nc). (21)

By further concatenating this relationship for nc = 1, . . . ,Nc,
we can show that the following relationship holds (see [32]):

Y = C

[

ReS
ImS

]

+ N , (22)

where

Y =

⎡

⎢

⎢

⎣

Y(1)
...

Y(Nc)

⎤

⎥

⎥

⎦

, S =

⎡

⎢

⎢

⎣

S(1)
...

S(Nu)

⎤

⎥

⎥

⎦

, C =
[

Ca Cb

]

,

(23)
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with Ca = [ vec(HA(1)) · · · vec(HA(Nu)) ] and Cb =
[ vec(HB(1)) · · · vec(HB(Nu)) ]. We finally note that the
STBC code is orthogonal if and only if the matrix C satisfies
[32]

Re[C∗C] = ‖H‖2I2Nu ∀H. (24)

This property is essential to perform data detection. We
stress that the relationships (19) through (24) apply at a
particular tone n and that this dependence has been omitted
for notational convenience.

4. JOINT CHANNEL ANDDATA ESTIMATION:
AN EM APPROACH

4.1. The EM algorithm

Consider the I/O equation (17) reproduced here for conve-
nience

Yt =
(

IRx ⊗Xt
)

ht + Nt . (25)

Ideally, we estimate ht by maximizing some log-likelihood
function, for example,

̂hMAPt = max
ht

ln p
(

Yt | Xt,ht
)

+ ln p
(

ht
)

. (26)

In our case, however, the input Xt is not available. Thus, we
use the EM algorithm and maximize instead an averaged form
of the log-likelihood function. Specifically, starting from an

initial estimate ̂h(0)
t , the estimate ̂ht is calculated iteratively,

with the estimate at the jth iteration given by

̂h
( j)
t = arg max

ht
E
Xt|Yt ,̂h

( j−1)
t

ln p
(

Yt | Xt,ht
)

+ ln p
(

ht
)

.

(27)

For example, when the system obeys the I/O relationship (25)
and ht isN (0,Π), the EM-based estimate (at the jth iteration)
is given by

̂h
( j)
t = arg min

ht

∥

∥Yt −
(

IRx ⊗ E
[

Xt
])

ht
∥

∥

2
1/σ2

n

+
∥

∥ht
∥

∥

2
I⊗Cov[X∗t ] +

∥

∥ht
∥

∥

2
Π−1,

(28)

where the two moments of Xt are taken given the output Yt

and the most recent channel estimate h
( j−1)
t . (The weighted

norm notation ‖h‖2
A stands for h∗Ah.) We now derive the EM

algorithm for the time-variant case.

4.2. Channel estimation: an EM-based
forward-backward Kalman

Consider the OFDM system of this paper, essentially described
by the state-space model

ht+1 =
(

ITxRx ⊗ F
)

ht +
(

ITxRx ⊗G
)

ut , (29)

Yt =
(

IRx ⊗Xt
)

ht + Nt, (30)

with h0 ∼ N (0,Π) and ut ∼ N (0,Ru). Given a sequence
of T + 1 input and output ST symbols XT

0 and YT
0 , (we use

XT
0 to denote the sequence X0,X1, . . . ,XT) we obtain the MAP

estimate of the channel sequence hT0 by maximizing the log-
likelihood

L = ln p
(

YT
0 | XT

0 ,hT0
)

+ ln p
(

hT0
)

. (31)

Now, using (30), we can express the first term of the log-
likelihood (up to some additive constant) as

ln p
(

YT
0 | XT

0 ,hT0
) =

T
∑

t=0

ln p
(

Yt |Xt,ht
)

= −
T
∑

t=0

∥

∥Yt −
(

IRx ⊗Xt
)

ht
∥

∥

2
1/σ2

n
.

(32)

Similarly, using (29), we can express the second term of (31)
(again up to some additive constant) as

ln p
(

hT0
) =

T
∑

t=1

ln p
(

ht | ht−1
)

+ ln p
(

h0
)

= −
T
∑

t=1

∥

∥ht −
(

ITxRx ⊗ F
)

ht−1
∥

∥

2
(GRuG∗)−1 − ∥∥h0

∥

∥

2
Π−1

0
.

(33)

Combining these two expressions yields

L = −
T
∑

t=1

∥

∥Yt −
(

IRx ⊗Xt
)

ht
∥

∥

2
1/σ2

n

−
T
∑

t=1

∥

∥ht −
(

ITxRx ⊗ F
)

ht−1
∥

∥

2
(GRuG∗)−1 − ∥∥h0

∥

∥

2
Π−1

0
.

(34)

Since the channel sequence hT0 is jointly Gaussian, the MAP
estimate of the channel sequence given the input and output
sequences XT

0 and YT
0 is the same as the MMSE estimate given

the same sequences. The MMSE estimate itself is obtained by
the forward-backward (FB) Kalman filter. This allows us to
state the following theorem. (For a proof, see [33, problem
10.9].)

Theorem 1 (channel estimation-known input case). Con-
sider the state-space model (29)-(30). Given the input and
output sequences XT

0 and YT
0 , the MAP (or equivalently MMSE)

estimate of hT0 is obtained by applying the following (forward-
backward Kalman) filter to the state-space model (29)-(30).

Forward run

For i = 1, . . . ,T , calculate

Re,t = σ2
nITxRxN +

(

IRx ⊗Xt
)

Pt|t−1
(

IRx ⊗X∗t
)

P0|−1 = Π0,

(35)

Kt = Pt|t−1
(

IRx ⊗X∗t
)

R−1
e,t , (36)

̂ht|t =
(

ITxRx(P+1) −Kt
(

IRx ⊗Xt
))

̂ht|t−1 + KtYt , (37)

̂ht+1|t =
(

ITxRx ⊗ F
)

̂ht|t, h0|−1 = 0, (38)

Pt+1|t = (ITxRx ⊗ F)(Pt|t−1 −KtRe,tK∗t )(ITxRx ⊗ F∗)

+ GRuG∗.
(39)
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Backward run

Starting from λT+1|T = 0 and for t = T ,T − 1, . . . , 0, calculate

λt|T =
(

IP+N −
(

IRx ⊗X∗t
)

K∗t
)(

I⊗ F∗
)

λt+1|T

+
(

I⊗Xt
)

R−1
e,t

(

Yt −
(

I⊗Xt
)

̂ht|t−1
)

,
(40)

̂ht|T = ̂ht|t−1 + Pt|t−1λt|T . (41)

The desired estimate is ̂ht|T .

(The Kalman filter has been initialized with zero in (38)
as we are dealing with Rayleigh channel. For the case of
Ricean channel, we only need to initialize the Kalman filter
with nonzero mean corresponding to the direct line-of-sight
(LOS) signal present in Ricean channel.) This theorem allows
us to obtain the estimate of hT0 when the input sequence
XT

0 is not available. For in this case, we maximize the log-
likelihood (34) averaged over the sequence XT

0 . Thus, the jth
iteration of the EM algorithm is now obtained by maximizing
the averaged log-likelihood

L = E
XT

0 |YT
0 ,h

T( j−1)
0

[L]. (42)

By inspecting (34), we note that the only term that is
modified under expectation is the first summand, and its
expectation is given by

E
∥

∥Yt −
(

IRx ⊗Xt
)

ht
∥

∥

2
1/2σ2

n

= ∥∥Yt −
(

IRx ⊗ E
[

Xt
])

ht
∥

∥

2
1/2σ2

n
+
∥

∥ht
∥

∥

2
(1/2σ2

n )IRx⊗Cov[X∗t ]

=
∥

∥

∥

∥

∥

[

Yt

0TxRx(P+1)×1

]

−
[

IRx ⊗ E
[

Xt
]

IRx ⊗ Cov
[

X∗t
]1/2

]

ht

∥

∥

∥

∥

∥

2

1/2σ2
n

,

(43)

where the expectations are taken given the previous estimate
̂h

( j−1)
0 and the output symbols YT

0 . We thus have

L = −
T
∑

t=0

∥

∥

∥

∥

∥

[

Yt

0TxRx(P+1)×1

]

−
[

IRx ⊗ E
[

Xt
]

IRx ⊗ Cov
[

X∗t
]1/2

]

ht

∥

∥

∥

∥

∥

2

1/2σ2
n

−
T
∑

t=1

∥

∥ht − Fht−1
∥

∥

2
(GRuG∗)−1 − ∥∥h0

∥

∥

2
Π−1

0
.

(44)

Note that we can obtain the averaged likelihood (44) from
the original likelihood (34) by performing the substitution

IRx ⊗Xt −→
[

IRx ⊗ E
[

Xt
]

IRx ⊗ Cov
[

X∗t
]1/2

]

,

Yt −→
[

Yt

0TxRx(P+1)×1

]

,

(45)

we can thus state the following theorem.

Theorem 2 (channel estimation-unknown input case). Con-
sider the state-space model (29)-(30) and assume that the
receiver does not have access to the transmitted data XT

0 . The

channel estimate at the jth iteration h
T( j)
0 of the EM algorithm is

obtained by applying the forward-backward Kalman (35)–(41)
to the following state-space model

ht+1 =
(

ITxRx ⊗ F
)

ht +
(

ITxRx ⊗G
)

ut, (46)
[

Yt

0TxRx(P+1)×1

]

=
[

IRx ⊗ E
[

Xt
]

IRx ⊗ Cov
[

X∗t
]1/2

]

ht +

[

Nt

nt

]

, (47)

where nt is virtual noise that is not physically present and that
is independent of the physical noiseNt .

The virtual noise results from having a norm of the
following form:

∥

∥

∥

∥

∥

[

Yt

0TxRx(P+1)×1

]

−
[

IRx ⊗ E
[

Xt
]

IRx ⊗ Cov
[

X∗t
]1/2

]

ht

∥

∥

∥

∥

∥

2

(1/σ2)I

. (48)

Note that the weighting matrixI is now of size N + P. To
account for this, we assume the presence of virtual noise nt

which is independent of the actual physical noise Nt in the
I/O equation (47).

To fully implement the EM algorithm, we need to initialize
the algorithm and calculate the first and second moments of
the input, which we do next.

4.3. Initial channel estimation

We obtain the initial channel estimate from the pilot/output
equation (18) together with the dynamical channel model
(7). Specifically, we do this by applying the FB Kalman to the
following state-space model

ht+1 =
(

ITxRx ⊗ F
)

ht +
(

ITxRx ⊗G
)

ut, (49)

YtIp =
(

IRx ⊗XtIp

)

ht + NtIp , (50)

that is, by applying the FB Kalman filter (35)–(41) with the
following substitution:

Yt −→ YtIp , Xt −→ XtIp , ITxRxN −→ ITxRx|Ip|. (51)

4.4. Data detection

To detect the data, we use the data detection version of the
I/O equation (22). Upon multiplying both sides by C∗ and
taking the real part, we obtain

˜Y = ‖H‖2

[

ReS
ImS

]

+ ˜N , (52)

where ˜Y and ˜N are 2Nu × 1 vectors defined by ˜Y =
ReC∗Y and ˜N = ReC∗N . Since C is orthogonal, the
noise ˜N remains white, and the input can be detected on
an element-by-element basis. (Equation (13) holds for every
STBC but only the orthogonal case is considered in this
work.) We will now demonstrate how to detect the elements
of ReS (the imaginary part can be treated similarly). So
let R = {r1, . . . , r|R|} denote the alphabet set from which
the elements of ReS take their values. We can evaluate the
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conditional pdf f (ReS(nu)| ˜Y(nu),H) by applying Bayes
rule on it which yields

f
(

ri | ˜Y
(

nu
)

,H
) = f (ri, ˜Y(nu) |H)

f ( ˜Y(nu) |H)

= f (ri, ˜Y(nu) |H)
∑|R|

i=1 f ( ˜Y(nu), ri |H)

= f ( ˜Y(nu) | ri,H) f (ri |H)
∑|R|

i=1 f ( ˜Y(nu) | ri,H) f (ri |H)
,

(53)

f
(

ri | ˜Y
(

nu
)

,H
) = e−(| ˜Y(nu)−‖H‖2ri|2)/2σ2

n

∑|R|
i=1 e−(| ˜Y(nu)−‖H‖2ri|2)/2σ2

n

. (54)

We can use this pdf to calculate conditional expectation of
ReS(nu) and its second moment given the output ˜Y(nu):

E
[

ReS
(

nu
) | ˜Y(nu

)

,H
] =

∑|R|
i=1 rie

−(| ˜Y(nu)−‖H‖2ri|2)/2σ2
n

∑|R|
i=1 e−(| ˜Y(nu)−‖H‖2ri|2)/2σ2

n

,

E
[|ReS

(

nu
)|2 | ˜Y(nu

)

,H
] =

∑|R|
i=1 r

2
i e
−(| ˜Y(nu)−‖H‖2ri|2)/2σ2

n

∑|R|
i=1 e−(| ˜Y(nu)−‖H‖2ri|2)/2σ2

n

.

(55)

We can similarly calculate the two moments of the
imaginary part. Now (55), just like (19)–(24), apply at a
certain frequency tone n. So collecting (55) for all tones
(n = 1, . . . ,N) produces the two moments of the uncoded
OFDM symbols. Specifically, we can calculate

E[ReS(nu)], E[ImS(nu)],

E[diag(ReS(nu))2], E[diag(ImS(nu))2].
(56)

We show in Appendix B that these moments are enough to
characterize the first and second moments E[X] and E[X∗X],
which are needed for channel estimation.

4.5. Summary of the EM-based receiver

We now have all the elements for the iterative receiver for
channel and data recovery, and for ease of reference, we
summarize the receiver algorithm in the following. Given a
sequence of input and output symbols XT

0 and YT
0 perform

the following operations.

(1) Calculate the initial channel estimate hT0 (0) by apply-
ing the FB Kalman filter to the state-space model
(49)-(50), that is, by applying (35)–(41) with the
following substitutions:

Yt −→ YtIp , Xt −→ XtIp , ITxRxN −→ ITxRx|Ip|.

(57)

(2) Iterate between the expectation and maximization
steps for j = 1, . . . ,Niter:

(a) expectation:

(i) use (55) to compute the first two moments
of the uncoded OFDM symbols S(1), . . . ,S(nu),
given the output YT

0 and the most recent
estimate of the channel, hT0 ( j − 1);

(ii) use these moments to calculate the moments of
X through the relationships (13) and (55).

(b) maximization:

obtain the channel estimate hT0 ( j) by employing
the FB Kalman to the state-space model (46)-(47),
that is, by applying (35)–(41) with the following
substitutions:

IRx ⊗Xt −→
[

IRx ⊗ E
[

Xt
]

IRx ⊗ Cov
[

X∗t
]1/2

]

,

Yt −→
[

Yt

0TxRx(P+1)×1

]

,

ITxRxN −→ ITxRx(N+P+1).

(58)

The algorithm can be stopped when the maximum number
of iterations Niter is reached or when the difference between
two consecutive estimates ‖hT( j)

0 −hT( j−1)
0 ‖2 is below a certain

threshold.

4.6. Modification: Kalman- (forward-only)
based estimation

One disadvantage of the FB Kalman (summarized in
Section 4.5 above) is the storage and latency involved. The
algorithm needs to wait for all T + 1 ST symbols before it
can execute the backward run and hence obtain the channel
estimate. One way around this is to reduce the window size
T. Alternatively, we can run the filter in the forward direction
only (i.e., run (35)–(39)) for both the initial estimation and
the EM iteration. The algorithm then collapses to the Kalman-
based filter proposed in [34] where the data and channel are
recovered within one ST symbol.

5. SIMULATION RESULTS

In the following simulations, we test the performance of the
forward and forward-backward Kalman filters.

5.1. The forward-only Kalman

The transmitter and receiver illustrated in Figures 1 and
2 were implemented. The outer encoder is a rate 3/4
convolutional encoder and the coded bits are mapped to
16-QAM symbols using Gray coding. We use the OSTBC
commonly known as the Alamouti code with number of time
slots Ns = 2 and number of transmitters Tx = 2 [35].
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Our MIMO channel model is simulated using the state-
space model (7) with parameters, α = 0.985, β = 0.2, and
P = 7. The number of receive antennas is set to Rx = 2.

Three thousand packets were simulated per SNR-value.
Each packet is comprised of 12 OFDM symbols transmitted
over six ST blocks. Each OFDM symbol consists of 64
frequency tones and a cyclic prefix of length 16. The length
of cyclic prefix is always kept greater than or equal to the
channel length P + 1 to avoid any ISI. We employ 16 pilots
in the OFDM symbols making up the first ST block, while the
number of pilots we use in subsequent symbols vary between
two, six, and ten.

In the following, we discuss the effect of various parame-
ters on the BER performance of the receiver design.

5.1.1. Benchmarking

We compare our algorithm with an EM-based iterative MMSE
receiver such as the one proposed in [17, 21]. In contrast
to our work, the authors in [17, 21] take a data-centric
approach, treating the transmitted signal as the desired
parameter and the channel as the unobserved data. This
algorithm further confines its pilots to the first ST block.
The pilots are used to produce an initial channel estimate for
the first ST block. This estimate is in turn used to predict
the initial channel estimate for the subsequent ST blocks
by employing a time correlation filter [17]. These initial
estimates are used to kick-start the EM algorithm.

In this algorithm, the E-step is calculated by a conditional
expectation of the channel given the received symbol and
the current estimate of the transmitted data (i.e., through
MMSE estimation). The maximization step is simply the hard
decision, that is, the ML estimate of the transmitted data.

In Figure 3, we compare both schemes with 16 pilots in
the initial ST block and zero pilots in the subsequent blocks.
EMA refers to the iterative MMSE scheme while EMB refers
to the Kalman filter-based scheme proposed in this paper.
We also implement both schemes with a total of 26 pilots
as shown in Figure 3. The EMA confines the pilots to the first
ST block while in EMB, we place 16 pilots in the first ST block
and 2 pilots each in subsequent blocks. This ensures that both
schemes incur the same pilot overhead.

Our algorithm (EMB) outperforms EMA of [17] in both
pilot scenarios. One reason for this performance improve-
ment is that our algorithm incorporates the time correlation
information and the most recent channel estimate in every
iteration of the EM algorithm, while that of [17] does not.

5.1.2. Effect of number of iterations

In this section, we test the sensitivity of our algorithm to
the number of EM iterations used. Here, we employ six
pilots per OFDM symbol (in addition to the 16 pilots per
symbol employed in the first ST block). From Figure 4, we
see that the first iteration yields substantial improvement
over the pilot-based estimation. The enhanced performance
with increased number of EM iterations is also evident from
Figure 4. This improved performance comes at the cost of
increased computational complexity.

0 2 4 6 8 10 12 14 16 18

SNR (dB)

10−3

10−2

10−1

100

B
E

R

EMA, pilots = [16 0 0 0 0 0]
EMB , pilots = [16 0 0 0 0 0]
EMA, pilots = [26 0 0 0 0 0]
EMB , pilots = [16 2 2 2 2 2]
Perf. ch.

Figure 3: Comparison of EM-MMSE(EMA) and EM-FB-Kalman
(EMB) algorithms.
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10−5

10−4

10−3

10−2

10−1
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E
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Pilots only
Iter = 1

Iter = 4
Perf. ch.

Figure 4: BER performance with different number of EM iterations.

5.1.3. Effect of incorporating frequency and time
correlation in the channel estimation

The impact of using both frequency and time correlations
in channel estimation is shown in Figure 5 for the six-pilot
scenario. In this figure, Ie = 1 (where Ie stands for “infor-
mation used in estimation”) refers to channel estimation
using either frequency or time correlation information only
while Ie = 2 implies the use of both frequency and time
correlation in channel estimation. We observe an error floor
when either the frequency or time correlation information is
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Pilots only, Ie = 1 (frequency)
Iter = 1, Ie = 1 (frequency)

Pilots only, Ie = 2
Iter = 1, Ie = 2
Perf. ch.

Figure 5: Effect of a priori correlation knowledge on the perfor-
mance of the receiver.

used in channel estimation. (By using frequency correlation
only, we mean a receiver that estimates the channel using
least squares, i.e., by performing the minimization in (28).
This could equivalently be performed by implementing
the FB-Kalman (35)–(41) with the matrix F set to zero.
Similarly, the time correlation only case can be performed
by implementing the FB-Kalman (35)–(41) with the matrix

G set to
√

1− α2(p)I. It should be clear that it is not possible
to ignore the frequency correlation completely but by using
this setting, its effect is only decreased as the channel taps do
not follow the exponential channel decay profile and become
identically distributed.) This error floor remains regardless
of the number of iterations. However, when we incorporate
both frequency and time correlation information, we observe
a significant improvement in BER. We also note that a
single EM iteration provides substantial improvement when
compared to the pilot-based estimation case. We conclude
that including both time and frequency correlations in the
channel estimation process (especially for channels with high
time correlation) increases the amount of information that
can be harnessed by iterating.

5.1.4. Effect of time variation

In this section, we test the performance of our receiver
against different degrees of time variation. This is parameter-
ized by α (0 ≤ α ≤ 1) with lower values of α indicating a more
time-variant channel. (According to IEEE 802.16 standards,
the typical range for α is 0.677 to 0.9398 for a vehicle speed
decreasing from 120 km/h to 50 km/h, resp.) In Figure 6,
we show the BER curves for a system that employs six pilots
per OFDM symbol. We observe an error floor as the channel
variation increases. So, we are unable to capture the time
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10−6
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10−4

10−3
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10−1

100

B
E

R

Iter = 1, α = 0.7
Iter = 1, α = 0.8
Iter = 1, α = 0.985

Perf. ch., α = 0.985
Perf. ch., α = 0.8
Perf. ch., α = 0.7

Figure 6: BER performance with varying time correlation with six
pilots.
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Iter = 1, α = 0.3

Perf. ch., α = 0.985
Perf. ch., α = 0.8
Perf. ch., α = 0.7
Perf. ch., α = 0.3

Figure 7: BER performance with varying time correlation with ten
pilots.

diversity. More pilots are thus needed to capture diversity and
improve performance.

For comparison, in Figure 7, we show the BER curves
for a system with ten pilots per OFDM symbol for α =
0.3, 0.7, 0.8 and 0.985. From this figure, we observe that as
α decreases (indicating more channel variation), the BER
improves. This comes from increased time diversity in the
channel. Therefore, with enough number of pilots, we are
able to track the channel and capture time diversity.
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Figure 8: BER performance of Kalman and FB-Kalman using hard
and soft estimate of data.

5.2. The FB Kalman

To test the FB Kalman filter, we use an input similar to the
one employed in the forward-only Kalman case. The outer
encoder in this case is a rate 1/2 convolutional encoder. The
number of transmitters is two as Alamouti code is used in
this case also and the number of receivers is also fixed at two.
We use two MIMO channel models in this case. One is spatially
white while the other one is spatially correlated with transmit
and receive correlation matrices

T(p) =
[

1 ζ
ζ 1

]

, R(p) = I , (59)

where ζ = 0.2. All other parameters are the same in both
channel models, that is, α = 0.8, β = 0.2, and P = 16.

Packets are transmitted at each SNR-value until a mini-
mum number of errors (five in this case) occur. Similar to
the forward-only Kalman case, each packet consists of six ST
blocks. The first ST block contains 16 pilots while the number
of pilots in subsequent blocks remains fixed at 12.

Figure 8 compares the Kalman and the FB-Kalman over
spatially white channel. The results are shown for two
scenarios. In one, hard estimate of data (the estimated data)
is used while in the other soft estimate (expected value of the
data) is used. The figure clearly illustrates that the FB-Kalman
is better than the Kalman for both scenarios. It can also
be observed from this figure that the FB-Kalman using soft
estimate of data outperforms the one using hard estimate.

The performance of Kalman and the FB-Kalman is
compared in Figure 9 over the two channel models, that
is, spatially correlated and spatially white channel model.
In both cases, soft estimate of data is used. In the perfect
channel scenario, the increased diversity in uncorrelated
(white) case gives a better BER compared to the correlated
case. However, in the estimated channel case, diversity is
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Figure 9: BER performance of Kalman and FB-Kalman using soft
data over spatially white and correlated channel models.

a two-edged sword. On the one hand, increased diversity
should improve performance if we manage to have a good
estimate of the channel. On the other hand, increased
diversity also increases the channel’s degrees of freedom
giving an inferior estimate to the uncorrelated case for
the same number of pilots used. This explains why in the
estimated case, the correlated channel performs better than
the uncorrelated channel for the channel estimate quality in
the former is better than the channel quality in the latter.

6. CONCLUSION

In this paper, we have proposed a receiver for MIMO-OFDM
transmission over time-variant channels. While the paper
assumed the channel to be constant within any ST block,
the channel was allowed to vary from one block to the next.
This makes the receiver suitable for operation in high-speed
environments.

The receiver employs the EM algorithm to achieve channel
and data recovery. Specifically, the data recovery (or the
expectation step) is as simple as decoding a space-time
block code. Channel recovery (or the maximization step) is
performed using a forward-backward Kalman filter. We also
suggested a relaxed (forward-only) version of the algorithm
that is able to perform recovery with no latency and hence
avoid the delay and storage shortcomings of the FB-Kalman.

When compared with other MIMO receivers, our receiver
makes the most use of the underlying structure. Specifically,
the algorithm makes use of the finite alphabet constraints
(55), the data in its soft form (46)-(47), pilots (49)-(50),
finite-delay spread (in that channel estimation is done in the
time domain), frequency and time correlation (7), spatial
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correlation in (A.16), and space-time coding. It is also
straightforward to incorporate the effect of an outer code,
sparsity, and the cyclic prefix (see [27, 36]). Our simulations
show the favorable behavior of the two Kalman filters as
compared to other receivers.

APPENDICES

A. CHANNELMODEL IN THE PRESENCE OF
SPATIAL CORRELATION

In what follows, we derive the dynamical model for the
channel impulse response in the transmit correlation case,
and then generalize our results of Section 2.2 to deal with
the general (transmit and receive) correlation case. In the
transmit correlation case, H(p), the MIMO impulse response
at tap p, is given by

H(p) =W(p)T1/2(p), (A.1)

where T1/2(p) is the transmit correlation matrix (of size Tx)
at tap p and where W(p) consists of iid elements. The matrix
W(p) remains constant over a single ST block and varies
from one ST block to the next according to

Wt+1(p) = α(p)Wt(p) +
√

(

1− α2(p)
)

e−βpUt(p), (A.2)

where α(p),β, and Ut(p) are as defined in Section 2.2.
(We suppress the time dependence at times for notational
convenience.)

Just as we did in Section 2.2, we would like to construct
a recursion for the tap htxrx (p) and subsequently scale it up
for the SISO and MIMO cases. Now since htxrx (p) is the (rx, tx)
element of H(p), we deduce from (A.1) that it is the inner
product of the rx row of W(p) and the tx column of T1/2, that
is,

htxrx (p) = wrx (p)ttx (p). (A.3)

Moreover, from (A.2), we have the following recursion for
wrx (p):

wrx ,t+1(p) = α(p)wrx ,t(p) +
√

(

1− α2(p)
)

e−βpurx ,t(p).
(A.4)

Postmultiplying both sides by ttx (p) yields

wrx ,t+1(p)ttx (p) = α(p)wrx ,t(p)ttx(p)

+
√

(

1− α2(p)
)

e−βpurx ,t(p)ttx (p).
(A.5)

This means that htxrx (p) satisfies the dynamical equation

htxrx ,t+1(p) = α(p)htxrx ,t(p) +
√

(

1− α2(p)
)

e−βputtxrx ,t(p),
(A.6)

where uttxrx is defined by

uttxrx (p) = urx (p)ttx (p). (A.7)

Concatenating (A.6) for p = 1, 2, . . . ,P yields a dynamic
equation for the impulse response

htxrx =

⎡

⎢

⎢

⎢

⎣

htxrx (0)
...

htxrx (P)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

wrx (0)ttx (0)
...

wrx (P)ttx (P)

⎤

⎥

⎥

⎥

⎦

, (A.8)

which is the same as the dynamic equation (see (5)) for the
spatially uncorrelated case

htxrx ,t+1 = Fhtxrx ,t + Guttxrx ,t . (A.9)

The only difference from the uncorrelated case is that uttxrx is
no more white. Rather, we have

E
[

uttxrxut
tx∗
rx

]

Δ= E

⎡

⎢

⎢

⎢

⎢

⎢

⎣

urx (0)ttx (0)
urx (1)ttx (1)

...

urx (P)ttx (P)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

×
[

ttx∗(0)u∗rx (0) ttx∗(1)u∗rx (1) · · · ttx∗(P)u∗rx (P)
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

tttxtx (0)
tttxtx (1)

. . .

tttxtx (P)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Δ= diag
(

tttxtx
)

,

(A.10)

where

tttxrx =

⎡

⎢

⎢

⎢

⎢

⎣

trx∗(0)ttx (0)
trx∗(1)ttx (1)

...
trx∗(P)ttx (P)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

trx (0)ttx (0)
trx (1)ttx (1)

...
trx (P)ttx (P)

⎤

⎥

⎥

⎥

⎥

⎦

, (A.11)

and where the second line follows from the fact that trx∗(p) =
ttx (p) since T1/2(p) is conjugate symmetric. In general, we
can show that

E
[

utrxut
∗
r′x

] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

diag
(

tt1
1

)

diag
(

tt2
1

) · · · diag
(

ttTx
1

)

diag
(

tt1
2

)

diag
(

tt2
2

) · · · diag
(

ttTx
2

)

...
... · · ·

...
diag

(

tt1
Tx

)

diag
(

tt2
Tx

) · · · diag
(

ttTx
Tx

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(A.12)

for rx = r′x and is zero otherwise. Alternatively, we can write
this as

E
[

utrxut
∗
r′x

] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

P
∑

p=0

T(p)⊗ (IpBIp) for rx = r′x,

O otherwise,

(A.13)



T. Y. Al-Naffouri and A. A. Quadeer 13

where

B =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎦

,

I =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
1 0

1
. . .
. . . 0

1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

I =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1

0
. . .
. . . 1

0 1
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(A.14)

Collecting (A.9) for all transmit and receive antennas yields

ht+1 =
(

ITxRx ⊗ F
)

ht +
(

ITxRx ⊗G
)

utt , (A.15)

where

E
[

uu∗
] = IRx ⊗ E

[

utrxut
∗
rx

]

=
P
∑

p=0

IRx ⊗ T(p)⊗ (IpBIp). (A.16)

When the channel exhibits both transmit and receive corre-
lations, the IRh continues to satisfy the dynamical equation
(A.15) except that the correlation of the innovation u is now
given by

E
[

uu∗
] =

P
∑

p=0

R(p)⊗ T(p)⊗ (IpBIp). (A.17)

B. CALCULATING THEMOMENTS OFX

In this appendix, we demonstrate that the four moments (56)
of the uncoded OFDM symbol S(nu) are enough to calculate
the first two moments of X,E[X], and E[X∗X]. Since X
depends linearly on ReS(nu) and ImS(nu) (see (13) and
(16)), it is straight forward to calculate the mean of X starting
from the means of ReS(nu) and ImS(nu). Now from (16),
we note that evaluating E[X∗X] boils down to evaluating the
cross correlation E[diag(X∗

i (nc))diag(X j(n′c))], recall also
that

Xtx

(

nc
) =

Nu
∑

nu=1

atx ,nc

(

nu
)

ReS
(

nu
)

+ jbtx ,nc

(

nu
)

ImS
(

nu
)

.

(B.1)

This means that calculating the cross expectation boils down
to calculating the cross correlation of ReS(nu), ImS(nu),
ReS(n′u), and ImS(n′u) for nu,n′u = 1, . . . ,Nu. It is easy

to see that these variables are independent for nu /=n′u.
Moreover, since the noise in (52) is white, one can also
see that ReS(nu) and ImS(nu) are independent. As a
result, we can completely characterize the cross correlation
E[diag(X∗

i (nc))diag(X j(n′c))] and hence the expectations
E[X] and E[X∗X] starting from the first and second
moments of (56).
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