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In recent years, more and more wireless communications systems are required to provide also a positioning measurement. In code
division multiple access (CDMA) communication systems, the positioning accuracy is significantly degraded by the multiple access
interference (MAI) caused by other users in the system. This MAI is commonly managed by a power control mechanism, and yet,
MAI has a major effect on positioning accuracy. Probability control is a recently introduced interference management mechanism.
In this mechanism, a user with excess power chooses not to transmit some of its symbols. The information in the nontransmitted
symbols is recovered by an error-correcting code (ECC), while all other users receive a more reliable data during these quiet periods.
Previous research had shown that the implementation of a probability control mechanism can significantly reduce the MAI. In
this paper, we show that probability control also improves the positioning accuracy. We focus on time-of-arrival (TOA)-based
positioning systems. We analyze the TOA estimation performance in a generalized CDMA system, in which the probability control
mechanism is employed, where the transmitted signal is noncontinuous with a symbol transmission probability smaller than 1. The
accuracy of the TOA estimation is determined using appropriate modifications of the Cramer-Rao bound on the delay estimation.
Keeping the average transmission power constant, we show that the TOA accuracy of each user does not depend on its transmission
probability, while being a nondecreasing function of the transmission probability of any other user. Therefore, a generalized,
noncontinuous CDMA system with a probability control mechanism can always achieve better positioning performance, for all
users in the network, than a conventional, continuous, CDMA system.

Copyright © 2008 Itsik Bergel et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

In recent years, more and more wireless communications
systems are required to provide also a positioning measure-
ment of their mobile users. In this paper, we focus on time-
of-arrival (TOA) positioning techniques for code division
multiple access (CDMA) systems.

One of the main factors that limit the accuracy of TOA es-
timation in such communication systems is the multiple ac-
cess interference (MAI). Research had shown that while MAI
limits the system capacity (e.g., [1–3]) it also degrades the
TOA estimation accuracy (e.g., [4]). The worst MAI scenario
is known as the “near-far” problem. In this scenario, an in-
terfering signal is received in much higher power than the
desired signal.

The common way to mitigate the near far problem in
CDMA systems is by using a power control mechanism [3, 5–
7], which controls the users’ transmitted powers in order to

limit the amount of interference between users. Power con-
trol is currently implemented in almost any CDMA system,
and can mitigate the interference very well in multiple access
channels (in which all users receive the signal from the same
antenna). In other scenarios, the power control is not always
optimal, and typically systems performance is limited by the
MAI.

Although our work is not limited to any frequency range,
it is especially interesting in ultrawideband (UWB) commu-
nication and positioning systems. The large bandwidth of
these systems can lead to a very good TOA estimation accu-
racy [8, 9]. However, most UWB communication systems are
not planned for cellular deployment. Thus, power control is
not efficient enough in such systems, and MAI severely re-
duces the positioning accuracy.

Recently, Bergel and Messer had suggested using a proba-
bility control mechanism to reduce the MAI [10–12]. Proba-
bility control mechanism can come in addition to or instead
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of a power control mechanism. If a user has an excess power,
a probability control mechanism will choose not to trans-
mit some of its symbols, while keeping its average power
constant, such that a symbol is transmitted with probabil-
ity P < 1, controlled by the system. The information in the
nontransmitted symbols is recovered by an error correcting
code (ECC). The advantage of this approach is that all other
users in the system receive a more reliable data during these
quiet periods and therefore improve their performance.

Probability control requires the transmission of noncon-
tinuous CDMA signals. Bergel and Messer had termed these
signals as generalized CDMA (GCDMA). The noncontinuity
is achieved by setting some of the symbols to zero and trans-
mitting the others. The percentage of transmitted symbols is
termed the “transmission probability.” Note that this sym-
bol puncturing does not change the bandwidth of the signal,
which remains identical to the bandwidth of a conventional
CDMA signal (represented here by a transmission probabil-
ity of 1).

As the importance of probability control mechanism for
communication systems was proven and current research fo-
cuses on the implementation of probability control in prac-
tical CDMA systems, it is interesting to investigate the effect
of the changes in transmission probability on the position-
ing performance. In this paper, we address this problem for
TOA-based positioning.

Our derivation will follow the general lines of Botteron
et al. [13], which derived bounds on the positioning accu-
racy in asynchronous CDMA systems with known transmit-
ted data. As the relation between the bounds on unbiased es-
timation of the delay and the bounds on unbiased estimation
of the position is already known [13], we limit the analysis
herein to the effect of transmission probability on the de-
lay estimation performance. We use the Cramer-Rao lower
bound [14] to derive an achievable lower bound on the de-
lay estimation error for any unbiased estimator. This bound
depends on the transmitted data. Following [13], we also per-
form an asymptotic analysis (for large observation interval)
to produce an asymptotic bound that does not depend on the
transmitted data sequences, but only on the data statistics.

We use this novel bound to show that the TOA estimation
mean square error (MSE) for each user does not depend on
its transmission probability, while it is a nondecreasing func-
tion of the transmission probability of any other user. There-
fore, any decrease in the transmission probability of any user
in the network can only improve the positioning accuracy.

The system model and the definitions of the GCDMA
transmitted and received signals are given in the following
section. The bound derivation and its asymptotic form are
given in Section 3. Section 4 contains the analysis of the ef-
fect of the transmission probability on the delay estimation
bound. Section 5 includes simulation results, and Section 6
provides some concluding remarks.

2. SYSTEMMODEL

The GCDMA transmitted signal is a modification of the
CDMA transmitted signal [15] where the symbols sequence
is multiplied by a gating sequence. The gating sequence

is modeled as an independent and identically distributed
(i.i.d.) binary sequence, and the probability of the gating to
be 1 is termed the transmission probability. The gating se-
quence determines whether a symbol is transmitted or not.
The transmission probability determines the nature of the
system, CDMA systems use transmission probability that
equals 1, and the case of lower transmission probability re-
flects noncontinuous transmission.

The transmitted signal of the uth user is described by

su(t) =
∞∑

k=−∞

√
εudukguk√

SF

SF−1∑

v=0

cukv f
(
t − kTs − vTc

)
, (1)

where f (t) is the transmitted pulse shape with
∫
f 2(t)dt =

1, Ts is the symbol time, Tc is the chip time, and SF is the
spreading factor. εu is the uth user peak power, duk is its kth
data symbol, and cukv its spreading sequence. guk is the uth
user kth gating value, distributed as

guk =
{

1 w · p pu,

0 w · p 1− pu,
(2)

where pu is the transmission probability of the uth user.
We assume that each receiver can only decode the infor-

mation from its desired user (single user decoder). The de-
sired user is indicated with index w, while the other users
(u = 1 · · ·U , u�=w) are considered as interference. We will
assume hereafter that the receiver knows the desired user
transmitted symbols. This can correspond to positioning
which is based on a pilot sequence (a known sequence which
is transmitted periodically for synchronization purposes).
Alternatively, this assumption also holds if the positioning
is performed after the data has been detected with negligible
probability of error.

Since we focus on single user decoder, we cannot assume
any knowledge about the interfering users’ data.1 The com-
mon approach in previous works (e.g., [16]) was to treat the
whole interference as a Gaussian-distributed additive noise.
This approach simplifies the model but unfortunately, is not
suitable for GCDMA systems. The reason is that probability
control can cause the interference to be impulsive, and then
the Gaussian approximation does not hold. In this paper, we
consider each interferer individually and treat the data sym-
bols as Gaussian distributed with zero mean and variance
σ2
d, duk ∼ N(0, σ2

d). This assumption may also not be precise
(e.g., if the data is binary data), however we use it as it sim-
plifies the analysis. Although we model the CDMA chips and
the gating sequence as random, in practical systems they are
generated by pseudorandom predefined generators. We as-
sume hereafter that there exists a central unit which informs
all users what is the transmission powers and what pseudo-
random gating sequence is used by each user.

1 In pilot-based positioning, we assume that the transmitters are not syn-
chronized, so that their pilot sequences do not overlap.
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Assuming a frequency flat slow fading channel, the re-
ceived signal is composed of the sum of the desireduser signal
and the interferer signals

r(t) = αwsw
(
t − τw

)
+

U∑

u=1
u �=w

αusu
(
t − τu

)
+ n(t), (3)

where U is the number of users, αu and τu are the uth
user channel gain and channel delay, respectively, and n(t)
is AWGN with zero mean and spectral density N0/2.2

The delay of the desired user, τw, is the TOA pa-
rameter to be estimated, but since the receiver does not
have prior knowledge of the other users delays and chan-
nel gains, we derive the bound on the error covariance
matrix in joint estimation of the delays and gains of all
users. Let �τu = [τ1, . . . τw−1, τw+1, . . . τU]T and �αu =
[α1, . . . αw−1,αw+1, . . . αU]T be the vectors of interferers’ de-
lays and gains, respectively. The vector of parameters to be
estimated is

�θ = [τw,αw,�τu,�αu
]T

, (4)

where αw,�τu,�αu are nuisance parameters. We also collect the
known parameters into the vector

�ψ =

⎡
⎢⎣
{
dwk
}
k=−∞,...,∞, {guk} u=1,...,U

k=−∞,...,∞
, {cukv} u=1,...,U

k=−∞,...,∞
v=0,...,SF−1

⎤
⎥⎦

T

.

(5)

Let T = N·Ts be the observation time, where N is the num-
ber of symbols in the observation interval. The receiver sam-
ples the received signal with Q samples per chip, so we get a
total of L = Q·SF·N samples in the observation interval. The
sampling interval is Ti = Tc/Q. The lth sample value is given
by:

r[l] = 1
Ti

∫ lTi

(l−1)Ti

r(t)dt = αw
1
Ti

∫ lTi

(l−1)Ti

sw(t − τw)dt

+
U∑

u=1
u �=w

αu
1
Ti

∫ lTi

(l−1)Ti

su(t − τu)dt + n[l]
(6)

for l = 1, . . . ,L, where the noise sample n[l] =
(
1/Ti

)∫ lTi

(l−1)Ti
n(t)dt has a Gaussian distribution with zero

mean and variance N0/2Ti.
Collecting the received samples, the received signal vector

is the L× 1 vector defined by

�r =
U∑

u=1

�su + �n, (7)

2 The analysis is based on baseband UWB systems and therefore assumes
reception of real signals. The extension to bandpass complex systems is
straight forward.

where the noise samples vector, �n, is a Gaussian vector with
zero mean and covariance matrix Λn = (N0/2Ti)IL, and �su
is the vector of the uth user transmitted signal after passing
through the channel. Note that this vector contains only the
part of the signal within the observation interval. We write�su
as

�su =
∞∑

k=−∞
�suk, (8)

where �suk is the vector describing the kth symbol of the uth
user

�suk = αu
√
εudukguk �fuk, (9)

and �fuk is the vector of the sampled pulse shape (with the ap-
propriate delay for the kth symbols of the uth user), in which
the lth element is

fuk[l] = 1√
SF

SF−1∑

v=0

cukv
1
Ti

∫ lTi

(l−1)Ti

f
(
t − kTs − vTc − τu

)
dt.

(10)

In order to distinguish the desired user from the interfer-
ence, we rewrite the received signal vector as

�r = �μw +�qw +�n, (11)

where �μw = �sw is the desired user vector (in the follow-
ing sections we will also use the notation: �μwk = �swk)
and �qw=

∑
u �=w�su is the interference vector. Note that, given

τw,αw,�ψ, only the interfering data symbols are random and
therefore �μw is deterministic, while �qw|�ψ ∼ N(0,Λw) has a
Gaussian distribution with

Λw = E
[
�qw�qT

w | �ψ
]

= E

⎡
⎢⎣

U∑

u=1
u �=w

∞∑

k=−∞
�suk

U∑

v=1
v �=w

∞∑

j=−∞
�sTv j | �ψ

⎤
⎥⎦

=
U∑

u=1
u �=w

∞∑

k=−∞
Λuk,

(12)

where

Λuk = E
[
�suk�sTuk | �ψ

]
= α2

uεuσ
2
dg

2
uk
�fuk �f Tuk, (13)

is the covariance matrix of the interference caused by the kth
symbol of the uth user, and the third equality in (12) results
from the fact that E[�suk�sv j] = 0 whenever u�=v or k �= j.

As the received signal vector, (11), is the sum of a deter-
ministic vector and independent Gaussian vectors, it also has
a Gaussian distribution�r|�ψ ∼ N(�μw,Λrw) with

Λrw = Λw + Λn. (14)

Note that �μw depends only on the desired user parameters,
while Λrw depends only on the interference and noise param-
eters.



4 EURASIP Journal on Advances in Signal Processing

3. THE ASYMPTOTIC BOUND

The Cramer-Rao bound [14] is a lower bound on the co-
variance of any unbiased estimator. As we assume that the
receiver knows �ψ, we are only interested in bounds that
are derived based on the conditional distribution of the re-
ceived signal given �ψ. We therefore use a conditional ver-

sion of the inequality and denote it by R ≥ CC(�θ|�ψ), where

R = E�r;�θ|�ψ[(
�̂
θ(�r)-�θ)(

�̂
θ(�r)-�θ)T | �ψ] is the estimator error co-

variance matrix, CC(�θ|�ψ) = F−1 is the conditional bound,
and F is the Fisher information matrix (FIM) given by

F = E�r;�θ|�ψ

[(
∂ ln p

(
�r;�θ|�ψ)

∂�θ

)(
∂ ln p

(
�r;�θ|�ψ)

∂�θ

)T∣∣∣∣�ψ
]
. (15)

Note that since �ψ is random, both the error covariance ma-
trix, R, and the FIM, F, are random matrices that depend on

�ψ, and the notation R ≥ CC(�θ|�ψ) means Pr(R < CC(�θ|�ψ)) =
0.

The resulting bound is identical to the Cramer-Rao
bound that is derived for the case that �ψ is determinis-
tic and known. However, the bound we use depends on
the random vector �ψ and therefore is itself a random vari-
able. The bound holds for any unbiased estimator (satisfying

E�r;�θ|�ψ[
�̂
θ(�r)] = �θ, ∀ �θ,�ψ). For more details about alternative

derivations of the Cramer-Rao bound and their applicability
see, for example, [17].

We divide F into the following blocks according to the

components of �θ:

F =

⎡
⎢⎢⎢⎣

Fτwτw Fτwαw Fτwτu Fτwαu
Fαwτw Fαwαw Fαwτu Fαwαu
Fτuτw Fτuαw Fτuτu Fτuαu
Fαuτw Fαuαw Fαuτu Fαuαu

⎤
⎥⎥⎥⎦ . (16)

As the received signal vector is Gaussian, each element in F
can be calculated using the Bangs formula [18]

Fi j =
∂�μTw
∂θi

Λ−1
rw

∂�μw
∂θ j

+
1
2

tr
(
∂Λrw

∂θi
Λ−1
rw

∂Λrw

∂θ j
Λ−1
rw

)
. (17)

Since �μw only depends on the desired user parameters, while
Λrw only depends on the interference and noise parameters,
we get

Fτwτw =
∂�μTw
∂τw

Λ−1
rw

∂�μw
∂τw

, Fτwαw =
∂�μTw
∂τw

Λ−1
rw

∂�μw
∂αw

,

Fαwτw =
∂�μTw
∂αw

Λ−1
rw

∂�μw
∂τw

, Fαwαw =
∂�μTw
∂αw

Λ−1
rw

∂�μw
∂αw

.

(18)

The blocks that correspond to the interferers parameters be-
come

Fτuτu =
1
2

tr
(
∂Λrw

∂τu
Λ−1
rw

∂Λrw

∂τu
Λ−1
rw

)
,

Fτuαu =
1
2

tr
(
∂Λrw

∂τu
Λ−1
rw

∂Λrw

∂αu
Λ−1
rw

)
,

Fαuτu =
1
2

tr
(
∂Λrw

∂αu
Λ−1
rw

∂Λrw

∂τu
Λ−1
rw

)
,

Fαuαu =
1
2

tr
(
∂Λrw

∂αu
Λ−1
rw

∂Λrw

∂αu
Λ−1
rw

)
,

(19)

and the blocks that include derivatives with respect to the pa-
rameters of both the interferers and the desired user become
zero:

Fαwαu = 0 , Fαwτu = 0, Fαuτw = 0, Fτuτw = 0 .
(20)

Thus, the FIM becomes a block diagonal matrix, and the
inverse of the matrix can be calculated by taking the inverse
of each block. As we are only interested in the performance
of the desired user, we can limit the analysis to the upper-left
block defined as

Fw =
[
Fτwτw Fτwαw
Fαwτw Fαwαw

]
, (21)

and the bound is given by the top-left element of the inverse

of this matrix CCτw (�θ|�ψ) = [F−1
w ]1,1.

As stated above, the resulting bound is a function of
�ψ. Nevertheless, when the observation interval become long
(N→∞), the elements in Fw/N converge to a limit that de-
pend only on the statistics of the sequences in �ψ. We de-
note the asymptotic FIM by AsFw � lim N→∞Fw/N and the
resulting asymptotic bound by AsCCτw = [AsFw]1,1. In Ap-
pendix A, we prove that the asymptotic FIM is given by

AsFw = E
[
Fw
]

= εwσ
2
d pwE

⎡
⎣
⎡
⎣αw

�̇
f Twk
�f Twk

⎤
⎦Λ−1

rw

[
αw
�̇f wk �fwk

]
⎤
⎦ ,

(22)

which can be evaluated numerically.
The asymptotic bound on the estimation error of the de-

lay τw is given by

AsCCτw =
[
AsF−1

w

]
1,1 =

[
1 0

]
AsF−1

w

[
1
0

]
. (23)

Note that as in [13], we can approximate the conditional
bound for N <∞ by

CCτw (�θ|�ψ) ≈ C̃Cτw =
AsCCτw

N
. (24)

This approximation becomes more accurate as the observa-
tion time increases and has the big advantage of not being
dependant on the chips, gating, and data sequences.
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It is also important to note that the asymptotic bound de-
pends on the transmission probability directly while the con-
ditional bound depends on the transmission probability only
through a sample gating sequence. Therefore, the asymptotic
bound also allows us to analyze the effect of the transmission
probability.

4. THE EFFECT OF THE TRANSMISSION PROBABILITY

In this section, we prove that a decrease in any transmis-
sion probability can only decrease the delay estimation mean
square error (MSE). Although a decrease in the transmis-
sion probability makes the transmitted signal more impul-
sive, it is important to note that it does not change the trans-
mitted spectrum. Thus, the performance gain reported here-
after stems from the reduction in interference and not from
a change in the signal bandwidth. In fact, it is easy to verify
that the asymptotic bound, (23), depends on the desired user
transmission probability only through the average transmis-
sion power εav

w = εw pw. Therefore, changing a user transmis-
sion probability while keeping its average power constant will
only affect the other users’ performance.

We prove that the delay estimation MSE is a nondecreas-
ing function of the transmission probability of any user by
showing that the derivative of the desired user MSE w.r.t. any
interferer transmission probability, when the average power
is kept constant, is non negative. We use the following theo-
rem.

Theorem 1. If the asymptotic bound can by written as
AsCCτw = �aTAsF−1

w �awhere �a does not depend on the uth inter-
ferer’s transmission probability and transmission power, then a
sufficient condition for a GCDMA system to satisfy

dAsCCτw

dpu

∣∣∣∣
puεu=εavu

≥ 0 (25)

is

∂2AsFw
∂ε2

uk

≥ 0, (26)

where εuk is the power of the kth symbol of the uth user and the
notations ≥ 0 mean that the matrix is nonnegative definite.

Proof of Theorem 1. See Appendix B.

Before we prove that the sufficient condition of Theorem 1,
(26), is satisfied in our model, we verify that the theorem is

applicable by inspecting (23) and setting �a = [ 1 0 ]
T

. Next,
we calculate the derivative of the asymptotic FIM, (22), with
respect to the peak power of the kth symbol of the uth in-
terferer. Noting that the only element that depends on the
interferer power is Λ−1

rw , we get

∂2AsFw
∂ε2

uk

= εwσ
2
d pwE

[[
αw ḟ

T
wk

f Twk

]
∂2Λ−1

rw

∂ε2
uk

[
αw ḟwk fwk

]]
.

(27)

From the quadratic form in the expectation, we see a suffi-
cient condition for the matrix ∂2AsFw/∂ε2

uk to be nonnegative

definite. is that the matrix ∂2Λ−1
rw /∂ε

2
uk is always nonnegative

definite.
Calculating the first derivative we have

∂Λ−1
rw

∂εuk
= −Λ−1

rw
∂Λrw

∂εuk
Λ−1
rw . (28)

Before we calculate the second derivative, we note that Λrw,
(14), is linear with εuk, and therefore ∂Λrw/∂εuk in (28) is
independent of εuk. Using this fact, the second derivative is
given by

∂2Λ−1
rw

∂ε2
uk

= 2Λ−1
rw

∂Λrw

∂εuk
Λ−1
rw

∂Λrw

∂εuk
Λ−1
rw . (29)

Again, the resulting expression has a quadratic form, and
we only need to prove that the matrix Λ−1

rw is nonnegative def-
inite. This is guaranteed because this matrix is the inverse of
the covariance matrix Λrw which is a positive definite matrix.
Therefore, (25) is satisfied in our model.

Thus, Theorem 1 assures that the considered model sat-
isfies dAsCCτw /dpu|puεu=εav

u
≥ 0. Recalling that the bound

on the TOA of the desired user depends only on its average
transmitted power, we also have dAsCCτw /dpw|pwεw=εav

w
= 0,

which shows that the asymptotic bound is a nondecreasing
function of any transmission probability. Note that for a suf-
ficiently large observation interval, the asymptotic bound is
reachable, and therefore the bound indicates the achievable
TOA estimation performance. As we always seek to reduce
the estimation MSE, we conclude that, from the positioning
performance point of view, the system would always prefer to
reduce the transmission probabilities of all the users as much
as possible.

Note that in practical systems that combine communica-
tion and positioning, the transmission probabilities will usu-
ally be chosen to maximize the communication performance.
Yet, our results indicate that any decrease in the transmission
probability can only increase the positioning performance.
A system that employs probability control will typically use
transmission probabilities which are less than 1, and there-
fore should be preferred, from the positioning point of view,
over conventional CDMA systems.

5. SIMULATIONS

In order to demonstrate the results of the previous sections,
we present in this section some simulation results over a sim-
plified scenario. The simulated scenario includes two users.
User 1 is the desired user while user 2 is the interferer. We as-
sume known channel gains and a near-far scenario, charac-
terized by the channel gains: α1 = 1(0 dB),α2 = 100(40 dB).
Both users transmit the same average power (Eav

1 = Eav
2 ), and

the desired user signal-to-noise ratio is Eav
1 /N0 = −9 dB (so

that the scenario is interference dominated).
The symbol time is set to Ts = 1 ns and the symbol shape

was set as in [19] to be f (t) = √
8/3tn[1 − 4π((t − Ts/2)/

tn)2] exp (−2π((t − Ts/2)/tn)2) with tn = 0.3 ns. The number
of samples per chip is Q = 20, and we start with no spreading
(SF = 1). The users’ delays are τ1 = 0.35 ns, τ2 = 0.425 ns.
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Figure 1: Asymptotic approximation of the bound versus interferer
transmission probability. Observation interval contains N = 100
symbols.
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Figure 2: MSE of a ML estimator versus the number of symbols in
the observation interval for different interferer’s transmission prob-
abilities. The figure also shows the asymptotic approximation of the
bound and the single-user bound. (Results averaged over 20 000
simulations.)

We use P1 = 1 for the desired user transmission, and vary
only the interferer transmission probability.

Figure 1 depicts the asymptotic approximation to the
bound, (24), versus the interferer transmission probability.
This figure demonstrates that the bound is monotonic in-
creasing with the transmission probability P2. For compari-

2 4 6 8 10 12 14

Number of users

4

4.5

5

5.5

6

×10−5

M
SE

ML, p = 1
Binary, p = 1
ML, p = 0.5
Binary, p = 0.5

ML, p = 0.1
Binary, p = 0.1
AsCC/N

Figure 3: MSE of an ML estimator versus the number of users in
the system, for different interferers’ transmission probabilities, in a
CDMA system with spreading factor of 6 and an observation inter-
val of 300 symbols. The figure also shows the MSE of the estimation
for binary-modulated signals and the asymptotic approximation of
the bound. (Results averaged over 20 000 simulations.)

son, the figure also shows the single-user bound (the perfor-
mance of user 1 in the absence of user 2). We can see that
for small-enough transmission probability, the interference
is practically suppressed and the desired user (user 1) can
achieve the single user bound.

Figure 2 depicts the performance of a maximum likeli-
hood (ML) estimator. The figure shows the MSE of the de-
lay estimation versus number of symbols in the observation
interval, N , for several values of the interferer transmission
probability. The estimation MSE was calculated from 20 000
simulations. The figure also shows the approximated bound
and the single-user bound. As expected, for all transmission
probabilities, for large-enough number of symbols the ML
performance converges to the bound. Again, we can see that
the estimation error decreases as the transmission probabil-
ity decreases. Comparing to the single-user bound, we also
see that for small enough transmission probability, the inter-
ference can be significantly suppressed.

Turning to a more sophisticated system, Figure 3 depicts
the performance of a CDMA system with spreading factor of
6 as a function of the number of users. As in the previous
simulation scenario, all interfering users are 40 dB stronger
than the desired user. The symbol time is Ts = Tc SF = 6 ns,
and the interfering users delays are uniformly distributed in
the range [0,Ts]. Figure 3 depicts the asymptotic bound and
the performance of an ML estimator with block size of 300
symbols, when all users transmit in probabilities of P = 0.1,
0.5, and 1. As the number of users grows, the amount of MAI
increases and we can see an increase in the estimation errors.
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1 2 34

7

56

Figure 4: Simple positioning system. Circles indicate the location
of bases and numbered x-marks indicate the location of mobiles.
The distance between the bases is 1.7 meters.

Table 1: Received Eb/N0 in dB by each base from each mobile in the
positioning scenario of Figure 4.

Base mobile 1 2 3

1 −9.0 17.3 −9.1

2 −8.9 14.4 −8.8

3 −9.1 −9.1 20.1

4 −8.9 −8.6 12.2

5 16.3 −9.0 −8.9

6 13.4 −8.7 −8.9

7 −3.7 −4.8 −5.3

But, as expected, this increase strongly depends on the trans-
mission probability. For lower probabilities, the estimation
is much more accurate. For a transmission probability of 0.1
we see that the interference from other users has almost no
effect on the desired user performance.

Figure 3 also depicts the performance of the same receiver
when the transmitters use the common binary signaling (and
not Gaussian, as assumed in the rest of the paper). As can
be seen, the performance is almost identical to the perfor-
mance with Gaussian signaling, and the asymptotic bound
gives a good prediction of the actual performance with bi-
nary signaling. Receivers which are based on the assumption
that the interference is Gaussian are common in practical
systems as they give good tradeoff between complexity and
performance. But we must note that this is not the optimal
receiver for this case. In the case of binary signaling, the op-
timal receiver needs to consider all possible combinations of
the transmitted bits from all users, which makes it imprac-
tical. On the other hand, the optimal receiver can perform
much better, especially if the interference is very strong (in
which case it can reliably detect the interference symbols, and
therefore achieve the same performance as if the interference
symbols were known).

Finally, although the relation between TOA estimation
accuracy and positioning accuracy was already investigated
[13], we show here a simple example of the effect of trans-
mission probability on the positioning accuracy. We simu-
late the simple scenario of 3 base stations and 7 mobile users
shown in Figure 4. The distance between the base stations is

1 2 3 4 5 6 7

Mobile number

3.5

4

4.5

5

5.5

6

6.5

Po
si

ti
on

R
M

S
[C

M
]

p = 1
p = 0.5
p = 0.1

Figure 5: Root mean square (RMS) of positioning error in the sys-
tem of Figure 4 for different transmission probabilities.

1.7 meters. We assume an AWGN channel, and the channel
gains are inversely proportional to the square of the distance.
The Eb/N0 received by each base from each mobile is sum-
marized in Table 1. The positioning is based on TOA mea-
surements that each base performs based on the reception of
a block of 300 symbols. The root mean square of the posi-
tioning error in centimeters is shown in Figure 5. As can be
seen, for some mobiles (e.g., 1 and 4) the reduction in trans-
mission probability (keeping the average transmission power
constant) causes a noticeable reduction in the positioning er-
ror. For other mobile, the effect of MAI is smaller, and there-
fore the effect of transmission probability is small. As proved
above, for all users the reduction in transmission probability
does not degrade the positioning accuracy. The actual im-
provement in positioning accuracy depends on the mobiles
and bases locations, the propagation model, and the amount
of MAI between users.

6. CONCLUSIONS

In this paper, we analyzed the asymptotic positioning perfor-
mance of GCDMA systems with a probability control mech-
anism. We focused on positioning using TOA and used the
asymptotic Cramer-Rao bound for time-delay estimation as
the performance measure.

We proved that, keeping the average transmission pow-
ers constant, the asymptotic bound does not depend on the
desired user transmission probability and is a nondecreasing
function of the interferers’ transmission probabilities. Since
the bound is asymptotically achievable, this result indicates
that the best TOA estimation accuracy in a GCDMA system
is achieved by decreasing the transmission probabilities as
much as possible (while keeping the average power constant).
Conventional CDMA systems use transmission probability
that equals 1, while probability-controlled systems would
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typically work in lower transmission probabilities. Therefore,
a generalized CDMA system with a probability control mech-
anism can always achieve better positioning performance, for
all users in the network, than a conventional CDMA system.

As this is the first work that analyzes the effect of the
transmission probability on the delay estimation error, we
chose the simplified frequency flat slow fading channel. For
this channel, we were able to prove the basic results that es-
timation MSE is a nondecreasing function of the transmis-
sion probability. Further work will need to consider also fre-
quency selective fading channels.

APPENDICES

A. EVALUATIONOF THE ASYMPTOTIC FIM

In this appendix, we calculate the asymptotic FIM, AsFw =
lim N→∞Fw/N . Expanding (18), we get

Fτwτw =
∞∑

k=−∞

∂�μT

∂τw
Λ−1
rw

∂�μwk
∂τw

+
∞∑

k=−∞

∞∑

j=−∞
j �=k

∂�μTwk
∂τw

Λ−1
rw

∂�μw j

∂τw

=
∞∑

k=−∞
α2
wεwd

2
wkg

2
wk
�̇f TwkΛ

−1
rw
�̇fwk

+
∞∑

k=−∞

∞∑

j=−∞
j �=k

α2
wεwdwkdw jgwkgw j

�̇f TwkΛ
−1
rw
�̇fw j ,

(A.1)

Fαwαw =
∞∑

k=−∞
εwd

2
wkg

2
wk
�f TwkΛ

−1
rw
�fwk

+
∞∑

k=−∞

∞∑

j=−∞
j �=k

εwdwkdw jgwkgw j
�f TwkΛ

−1
rw
�fw j ,

(A.2)

Fαwτw =
∞∑

k=−∞
αwεwd

2
wkg

2
wk
�f TwkΛ

−1
rw
�̇fwk

+
∞∑

k=−∞

∞∑

j=−∞
j �=k

αwεwdwkdw jgwkgw j
�f TwkΛ

−1
rw
�̇fw j ,

(A.3)

where �̇fwk = (∂/∂τw)�fwk is the derivative of each element in
the pulse-shape vector with respect to τw.

We begin by calculating the limit of the first element in
Fτwτw , (A.1),

A = lim
N→∞

1
N

∞∑

k=−∞
α2
wεwd

2
wkg

2
wk
�̇f TwkΛ

−1
rw
�̇f Twk. (A.4)

Note that the summation is infinite because we assume the
transmission of infinite number of symbols. On the other
hand, the observation interval is limited to the duration
of only N symbols. Thus, the observation interval contains
the entire received signal of almost N of the transmitted
symbols, while at the beginning and at the end of the ob-
servation interval there are some symbols for which only
part of the received signal is included in the observation

interval. However, when the observation interval is large
enough, the effect of the clipped symbols at the edges is neg-
ligible for almost all of the symbols. Specifically, the term

α2
wεwd

2
wk0

g2
wk0

�̇f Twk0
Λ−1
rw
�̇fwk0 has the same distribution for any

symbol k0 which is far enough from the observation interval
edges (almost N symbols). Noting that the sequences dw, g, c
are independent and each of them is i.i.d, all terms in the sum
in (A.4) are i.i.d, and we can apply the law of large numbers:

A = Edw ,g,c

[
α2
wεwd

2
wk0

g2
wk0

�̇f Twk0
Λ−1
rw
�̇fwk0

]

= α2
wεwσ

2
d pwEg,c

[ �̇f Twk0
Λ−1
rw
�̇f Twk0

]
.

(A.5)

The limit of the second part of Fτwτw , (A.1)is

B = lim
N→∞

1
N

∞∑

k=−∞

∞∑

j=−∞
j �=k

α2
wεwdwkdw jgwkgw j

�̇f TwkΛ
−1
rw
�̇fw j .

(A.6)

Noting that
∑∞

j=−∞
�̇f TwkΛ

−1
rw
�̇fw j is finite for any k, we can apply

again the law of large numbers. But in this case, the expecta-
tion includes the expectation of two uncorrelated, zero-mean
random variables, and therefore B = 0, and we have

lim
N→∞

Fτwτw
N

= α2
wεwσ

2
d pwE

[ �̇f TwkΛ
−1
rw
�̇fwk
]
. (A.7)

In the same way, we calculate

lim
N→∞

Fαwτw
N

= αwεwσ
2
d pwE

[
�f TwkΛ

−1
rw
�̇fwk
]
= lim

N→∞
Fτwαw
N

,

lim
N→∞

Fαwαw
N
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2
d pwE

[
�f TwkΛ

−1
rw
�fwk
]
.

(A.8)

Summarizing the results above leads to the asymptotic FIM,
(22).

B. PROOF OF THEOREM 1

In this appendix, we prove the sufficient condition of The-
orem 1. Note that as we keep the average power constant,
any change in the uth user transmission probability causes a
change in its peak power according to εu = εav

u /pu.
Using the chain rule for derivatives,

dAsCCτw

dpu

∣∣∣∣
puεu=εav

u

= ∂AsCCτw

∂pu
+
∂AsCCτw

∂εu

∂εu
∂pu

= 1
pu

(
pu∂AsCCτw

∂pu
− εu∂AsCCτw

∂εu

)
.

(B.1)

Considering first the partial derivative with respect to the
transmission probability, we use the chain rule again to write

∂AsCCτw

∂pu
=

∞∑

k=−∞

∂AsCCτw

∂puk

∂puk
∂pu

=
∞∑

k=−∞

∂AsCCτw

∂puk
, (B.2)
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where puk is the transmission probability of the kth symbol
of the uth user. Note that this is done only for the purpose
of the derivation, and we still consider a single-transmission
probability for each user. This means that we require puk =
pu which results in the second equality in (B.2).

Calculating the partial derivative with respect to the peak
power in the same manner, we get

∂AsCCτw

∂εu
=

∞∑

k=−∞

∂AsCCτw

∂εuk

∂εuk
∂εu

=
∞∑

k=−∞

∂AsCCτw

∂εuk
, (B.3)

where εuk is the power of the kth symbol of the uth user. Sub-
stituting (B.2) and (B.3) into (B.1), we can write

dAsCCτw

dpu
=

∞∑

k=−∞

1
puk

Δw,u,k, (B.4)

where

Δw,u,k = puk
∂AsCCτw

∂puk
− εuk

∂AsCCτw

∂εuk
. (B.5)

Now, a sufficient condition for the derivative, (25), to be
nonnegative is that Δw,u,k ≥ 0 for any w,u, k. The derivatives
in (B.5) satisfy

∂AsCCτw

∂puk
= −�aT·AsF−1

w
∂AsFw
∂puk

AsF−1
w ·�a, (B.6)

∂AsCCτw

∂εuk
= −�aT·AsF−1

w
∂AsFw
∂εuk

AsF−1
w ·�a. (B.7)

Writing the expectation in the definition of AsFw, (22), as an
explicit function of puk:

AsFw = pukE
[
Fw | guk = 1

]
+
(
1− puk

)
E
[
Fw | guk = 0

]
,

(B.8)

we note that E[Fw | guk = γ] does not depend on puk for
γ = 0, 1. Thus, the derivative in (B.6) becomes

∂AsFw
∂puk

= E
[
Fw | guk = 1

]− E
[
Fw | guk = 0

]

= 1
puk

(
AsFw − E

[
Fw | guk = 0

])
.

(B.9)

Since setting guk = 0 is equivalent to setting εuk = 0, we can
write

puk∂AsFw
∂puk

= AsFw − AsFw|εuk=0 =
∫ εuk

0
fwuk(α)dα,

(B.10)

where fwuk() denotes the derivative of the asymptotic FIM
with respect to the u, k symbol power:

fwuk(α) = ∂AsFw
∂εuk

∣∣∣∣
εuk=α

. (B.11)

Substituting (B.10) into (B.6), we get

puk∂AsCCτw

∂puk
= −

∫ εuk

0
�aT·AsF−1

w fwuk(α)AsF−1
w ·�a·dα

(B.12)

and defining

f̃ (α) = �aT·AsF−1
w fwuk(α)AsF−1

w ·�a, (B.13)

where fwuk() is a matrix function and f̃ () is a scalar function,
we rewrite the derivative as

puk∂AsCCτw

∂puk
= −

∫ εuk

0
f̃ (α)dα. (B.14)

The same functions ( fwuk() and f̃ () defined in (B.11) and
(B.13), resp.) are used also to express the partial derivative
with respect to the peak power in (B.7):

εuk∂AsCCτw

∂εuk

= −εuk�aT·AsF−1
w fwuk

(
εuk
)
AsF−1

w ·�a = −εuk f̃
(
εuk
)
.

(B.15)

Substituting (B.14) and (B.15) into (B.5), we have

Δw,u,k = εuk f̃
(
εuk
)−

∫ εuk

0
f̃ (α)dα, (B.16)

and a sufficient condition for that is

∂ f̃ (α)
∂α

≥ 0, ∀α ∈ [0, εuk
]
. (B.17)

Writing the derivation in (B.17) explicitly, we get

∂ f̃ (α)
∂α

= ∂
(
�aT·AsF−1

w fwuk(α)AsF−1
w ·�a

)

∂α

= �aT·AsF−1
w

∂ fwuk(α)
∂α

AsF−1
w ·�a

(B.18)

and from the quadratic form of (B.18) we can see that a suf-

ficient condition for ∂ f̃ (α)/∂α ≥ 0 is that ∂ fwuk(α)/∂α ≥ 0.
Recalling the definition of fwuk(), (B.11), the sufficient con-
dition becomes ∂2AsFw/∂ε2

uk ≥ 0, which concludes the proof
of Theorem 1.
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