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Digital image stabilization (DIS) is a technique to prevent images captured by a handheld camera from temporal fluctuation. This
paper proposes a new DIS algorithm that reduces the computation time while preserving the accuracy of the algorithm. To reduce
the computation time, an image is transformed by a Laplacian operation and then converted into two one-bit spaces, called L* and
L~ spaces. The computation time is reduced because only two-bits-per-pixel are used while the accuracy is maintained because
the Laplacian operation preserves the edge information which can be efficiently used for the estimation of camera motion. Either
two or four subimages in the corners of an image frame are selected according to the type of the image and five local motion
vectors with their probabilities to be a global motion vector are derived for each subimage. The global motion vector is derived
from these local motion vectors based on their probabilities. Experimental results show that the proposed algorithm achieves a
similar or better accuracy than a conventional DIS algorithm using a local motion estimation based on a full-search scheme and
MSE criterion while the complexity of the proposed algorithm is much less than the conventional algorithm.
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1. INTRODUCTION

Digital image stabilization (DIS) is a technique to compen-
sate an irregular camera motion in a captured video se-
quence, and obtain a stable video sequence with smooth
camera motion [1-7]. By reducing abrupt motion between
successive image frames, DIS improves the compression effi-
ciency when a video sequence is encoded based on a com-
pression standard such as MPEG or H.264 [8, 9]. It can
also eliminate remnant images on LCD screen due to high-
frequency jitters of images and the slow reaction of the LCD
screen [1]. As DIS utilizes only digital image processing tech-
niques, it can be easily integrated with other digital logics in a
single chip. As a result, the implementation cost of DIS is very
low when compared with conventional optical image stabi-
lization (OIS) that uses mechanical devices like a gyro sensor
or a fluid prism.

In order to compensate an undesirable camera motion,
a DIS system, in general, derives the global motion vec-
tor (GMV) which represents the motion between the cur-
rent image frame and the previous image frame. One of
the widely-used algorithms to obtain the GMV is the full-
search frame matching (FS-FM) motion estimation in which
an entire frame is used to compare the current and previ-
ous frames and the best-matched displacement between the
two frames is chosen as the GMV [3, 4, 10]. Another pop-
ular algorithm is full-search block-based matching (FS-BM)
in which the current frame is divided into many blocks and
the motion is estimated for each block. This estimated mo-
tion for each block is represented by a local motion vector
(LMV). By combining the LMVs derived for all the blocks in
a frame, the GMV of the frame is derived [2, 7, 11].

Mean absolute difference (MAD) or mean square error
(MSE) is generally used as the criterion of how well the
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current frame is matched with the previous frame [11]. The
amount of computation required by FS-FM or FS-BM using
MAD or MSE is very large as reported in [1, 3, 4]. Hence, var-
ious algorithms have been proposed to reduce the computa-
tion for motion estimation [1, 3-6, 10-14]. One approach
to reduce the computation is to reduce the size of blocks
for which LM Vs are derived [5, 10]. In this approach, small
blocks in the four corners of an image frame are, in general,
chosen for the derivation of LMVs and the GMYV is derived
based on these four LMVs. Note that there is a high possi-
bility that the corners of an image is a background area of
which the motion should be compensated by DIS while the
movement of foreground objects should be preserved even
with DIS. Another approach for computation reduction is
to reduce the number of pixels in a block for motion esti-
mation. In [6], the edge pattern of an image is derived and
only edge regions are compared for the best match between
frames. This method reduces the computation at the expense
of the accuracy of motion estimation. Fast motion estimation
methods based on bit-plane or gray-coded bit-plane match-
ing have been proposed in [3, 4], respectively. These ap-
proaches reduce the number of bits to represent one pixel, re-
sulting in the reduction of the computation while maintain-
ing the motion estimation accuracy. Another method that
obtains the motion vector using a binary operation is one-bit
transform (1BT)-based motion estimation in which image
frames are transformed into a single bit-plane after compar-
ing the original image frame against its multiband-pass fil-
tered version [10]. This method also provides a low compu-
tational complexity with reasonably accurate motion estima-
tion results. Subimage phase-correlation-based global mo-
tion estimation is proposed in [1, 15]. This algorithm gen-
erates relatively accurate motion estimation results, but re-
quires large computational complexity due to the computa-
tion for 2D-Fourier transforms [10]. Recently, a digital image
stabilizer integrated with a video codec has been proposed in
[16]. One of the three schemes proposed in this research is
a technique to reduce the computational complexity of the
digital stabilizer by using the information obtained by the
motion estimation in the video codec.

This paper proposes a novel DIS algorithm that out-
performs previously proposed algorithms in terms of mo-
tion estimation accuracy and computational complexity. For
LMV derivation, either two or four subimages are chosen
in the corner of an image frame. To obtain LMVs, the sec-
ond derivatives by Laplacian operation of subimages are
computed and the computation results are transformed into
two-bit-per-pixel representation. This two-bit representation
called Laplacian two-bit transform (L2BT) contributes to the
computation reduction due to the decrease of the number
of bits per pixel, while the motion estimation accuracy is
still maintained because the edge information is preserved
by Laplacian operations. An LMV for each subimage is de-
rived with binary block matching with the corresponding
subimage in the previous frame. This derivation also consid-
ers the distance of the derived LMV from the previous global
motion vector (PGMYV). For each subimage, five candidate
LMVs with the largest L2BT block matching and the smallest
distance from PGMV are derived. From LMVs obtained for
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(a) Subimages for single human image (b) Subimages for general image

FIGURE 1: The subimages for the LMV estimation.

subimages, a novel algorithm to obtain the GMV is proposed.
Although this algorithm for GMV derivation is more com-
plex than a conventional method, the increase of the compu-
tation time of overall DIS algorithm is marginal because the
GMYV derivation algorithm has much less complexity than
the search process for local motion estimation.

This paper is organized as follows. Section 2 presents the
L2BT block-based correlation matching algorithm for the
derivation of LMVs. In Section 3, the GMV derivation algo-
rithm is proposed. Experimental results compared with prior
DIS algorithms are given in Section 4 and conclusions are
drawn in Section 5.

2. LOCAL MOTION ESTIMATION BASED ON
LAPLACIAN TWO-BIT PLANE MATCHING

2.1. Selection of subimages for
local motion estimation

This paper uses two subimages S, S; as shown in Figure 1(a)
for the derivation of LMVs for images with a single human
as the only foreground object while it utilizes four subimages
S1, 82,83, and Sy as shown in Figure 1(b) for generic scenes.
A single human image may be often used for video telephony
communication while the amount of computation can be re-
duced with two subimages instead of four subimages.

2.2. Feature extraction

To derive an LMYV, the second derivatives of an original image
are derived because it can represent edge information while
ignoring flat areas. As a result, a motion can be effectively
estimated with edge areas while computation load can be re-
duced with the ignorance of flat areas. The equation used to
obtain the second derivatives for image f(x, y) is as follows:

0? d?
sz = TJ{Z—'—T){Z (1)

The digital realization of (1) is as follows [17]:

Vif=[flx+Ly)+ flx—1,y)

(2)
+fOoy+ D+ fly—1)] —4f(xy).

The Laplacian masks as shown in Figure 2 can be used
for the derivation of (2). Either of the two masks shown
Figure 2 can be used for the second derivative operation and
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this paper uses the left smask in Figure 2. The second deriva-
tive operation using Laplacian mask needs one shift and
four add/sub operations for one pixel. Note that the Lapla-
cian mask operation requires less computation than the first
derivative operation by Sobel masks that requirefour shift
and eleven add/sub operations for one pixel [17].

If the Laplacian mask operation results in very small val-
ues for certain pixels, these pixels may not be in an edge area.
Therefore, it may be reasonable to ignore these results for
motion estimation. To this end, a threshold value is chosen
so that some Laplacian results are converted to 0 if their abso-
lute values are less than the threshold. Based on experimental
results with sample video sequences, 1/2° of maximum pos-
itive value among all results is chosen as the positive thresh-
old while 1/2° of the minimum negative value is chosen as
the negative threshold. This conversion to 0 can also help to
reduce the computation load. The laplacian operation results
are expressed in two spaces, called L* and L~ spaces. When
a Laplacian operation result is positive and greater than or
equal to the positive threshold, 1 is stored in the L* space.
On the other hand, when it is negative and less than or equal
to the negative threshold, 1 is stored in the L~ space. For all
the remaining pixels, 0 is stored in both the L* and L~ spaces.
Note that the number of pixels in each space is the same as
the original image.

As the measure to estimate the correlation between the
two subimages in the current frame and the previous frame,
the number of nonmatching points (NNMP) [18-20] is
used. NNMP is defined as a distance in this paper as follows:

DG,j)= > {Lf(xy) @ Li(x+iy+))}
(x,y)es
Uil (o) e L (x+i,y+j)}, for—r<i, j<r,

3)

where s represents the range of pixels for which the distance
is calculated. The detailed explanation about this range is
given in Section 2.4. In (3), r represents the search range,
and L (x, y) and L{_,(x, y) denote the values of pixel (x, y)
in the L* space at the current and previous image frames, re-
spectively. L; (x, y) and L;_(x, y) represent the correspond-
ing pixel values in the L~ space. Symbols @ and U represent
Boolean exclusive-Or (XOR) and Boolean-Or operations, re-
spectively.

2.3. LMV selection and probability estimation

Generally, one LMV is derived for one subimage. However, in
this paper, five LMV candidates are derived for a subimage.
In addition, the probability of each LMV candidate to be the
GMYV is also assigned. This section explains the method for
obtaining five LM Vs with the probabilities.

The probability for a specific vector (i, j) to be the GMV
is denoted by P.(i, j). Note that the summation of P.(i, j) for
all pixels (4, j) in the search range must be equal to 1 because
P.(i, j) is a probability distribution function. Thus, the fol-
lowing equation must be satisfied:

> Peiyj) =1 (4)

—r<ij<r
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FIGURE 2: Laplacian masks for second derivative operation.

As D(i, j) of (3) decreases, P.(i, j) becomes large. An-
other independent variable determining the probability for
a vector (7, j) to be the GMV is the distance from PGMV.
This is because a hand-movement is relatively slower than
the frame rate of a camera and the motion vector of the cur-
rent frame is often almost the same as that of the previous
frame [4]. If multiple vectors have the same D(j, j) value, the
vector near PGMV should have a high probability to be the
GMV. Let (g, gy) denote the PGMV and Dpgmy (4, j) denote
the distance of a vector from PGMV

Dramv(is j) = (i — g%+ (j — g (5)

Then, P.(i,j) increases as either D(i,j) decreases or
Dpemv (i, j) decreases. Let f(D(i, j)) and g(Dpgyy (4, 7)) de-
note monotonically nondecreasing functions of D(i, j) and
Dpamv (i, j), respectively. In order to reduce the compu-
tational load, this paper chooses simple models of func-
tions f(D(i, j)) and g(Dpemv(i, j)). The proposed mod-
els simply use the aspect that the functions f(D(i, j)) and
g(Dpemv (i, j)) are monotonically nondecreasing

f(DG,j)) =D(,j) - (min (D(, j)) - «), (6)
BDpemv (i, j) +x
if Dpamv (i, ) < (11‘%)

1 otherwise,

2
>

g(Dvemv (i, j)) =

(7)

where (min(D(i, j)) — «) in (6) is subtracted from D(j, j) be-
cause the magnitude of D(j, j) can vary significantly accord-
ing to the characteristics of an image. For example, the value
of D(i, j) is large when an image includes blurs and noises
which may cause mismatches between successive frames. On
the other hand, the value of D(i, j) may be small for a clean
image. The subtraction of (min(D(j, j)) — &) reduces these
differences in the amount of D(j, j) between different types
of images. The value of « is chosen as 10 by experiments. In
(7), g(Dpamv (i, j)), the parameters 8 and y are chosen as 0.3
and 0.47, respectively, obtained from experimental results.
Let a new function h(i, j) be defined as the product of

f(D(, j)) and g(Dpgmv (4, j)) as
h(i, j) = f(D(, j)) % g(Dpamv (i, )). (8)

Then, the probability increases as the value of h(i, j) de-
creases. Five vectors with the smallest five values of h(i, j) are
selected as LMV candidates for each subblock. For these five
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FIGURE 3: The method for searching LM Vs from the subimage.
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FiGure 4: Computation flow of LMV and weight derivations.

vectors, its probabilities to become the GMV are assigned to
be 0.50, 0.20, 0.15, 0.10, 0.05 for the corresponding LM Vs in
the increasing order of h(i, j). This selection of probability
values is very simple although these values may not be the
optimal one. However, the simple derivation avoids the in-
crease of the computation load by the probabilistic approach
while this approximate probability values still give good re-
sults as shown in Section 4.

2.4. Subblock selection

The subimages for LMV derivation should be taken from a
background region. If the whole or one part of a subimage
is included in a foreground region moving in a different di-
rection from the global motion, the MV obtained in such
subimage should not be considered for the derivation of the
GMV. This section proposes an algorithm to detect whether a
part of a subimage is included in a foreground region or not.
Based on the detection, the probabilities of candidate LM Vs
are adjusted accordingly.

Figure 3(a) shows a subimage S’ whose size is denoted by
W x H. Figure 3(b) shows a subblock s,, of size w x h located
in the center of . The size of a subblock w X h is equal to
0.5W x 0.5H. For the derivation of five candidate LMV as
explained in Sections 2.2 and 2.3, the subblock s, is used in-
stead of the entire subimage S'. For all the points in the search
space, h(i, j) of (8) is calculated. Then, the five positions with
the minimum h(i, j) are selected as the five LMVs. The prob-

abilities are also assigned to the five LM Vs as explained in the
last paragraph in Section 2.3. By using the small subblock s,
instead of the entire subimage S, the computational load is
reduced. However, the accuracy of the estimated LMVs may
also be reduced.

To compensate the reduction of the accuracy, the pro-
posed algorithm uses additional four subblocks as shown in
Figure 3(c). The size of these subblocks is also 0.5W x 0.5H.
For these subblocks, D(i, j) is calculated for the five LMVs
derived with s,. Note that this D(j, j) calculation for each
subblock is performed for only five points, that is, no search-
ing operations are performed for these four additional sub-
blocks. Thus, the increase of the computational load for these
additional four blocks is negligible when compared with the
expensive search operations performed for subblock s, to
derive the five LMVs.

The probabilities of the five LM Vs initially assigned with
sm are adjusted based on the value of D(j, j) calculated with
S1, S2, 3, and sy. If this value is small for a given LMYV, its
probability should be increased. If not, the probability should
be decreased. The values of 0.40,0.24,0.18,0.12 and 0.06, in
the increasing order of D(i, j), are assigned, respectively, to
the probabilities of the five LMVs. These probabilities are as-
signed for four subblocks s, s2, s3, and s4. As a result, five
probabilities are assigned to each LMV: one probability as-
signed with s,, as discussed in Section 2.3 and four probabil-
ities with s;, s,, s3, and s4, respectively, as discussed in this
subsection.
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The five probabilities for each LMV are added to make a
single value, called a weight. In this addition, the probability
obtained with s, is multiplied by 1 whereas the probabilities
obtained with s;, s,, s3,and s, are multiplied by 0.9. A bigger
weight is given to the probability with s,, because the prob-
ability with s, is obtained by full-search subblock matching
and therefore it is more accurate than those with s1, 5, s3,
and s4. Note that each subblock s;, s, s3, or s4 requires only
five calculations of D(j, j) for the five candidate LMVs ob-
tained with s,,, respectively. Therefore, the additional com-
putational load for this calculation is small compared to the
derivation of the five candidate LMVs which require h(i, j)
calculations for an entire search range.

This addition based on the amount of D(j, j) for four
subblocks contribute to the detection of a subimage in a fore-
ground region. If D(j, j) is large, this subimage may be in a
foreground region so that a small value is added to the proba-
bility. On the other hand, D(j, j) is relatively small if the sub-
block is included in a background region.

Figure 4 shows the flowchart that summarizes the com-
puting process for the derivation of five candidate LM Vs and
their weights. Figure 4(a) shows the process computing five
LMVs for subblock s,. First, D(i, j) of (3) is computed for all
vectors in a search range. Second, h(i, ) of (8) is computed to
select the LMV with a small D(j, j) value and close to the pre-
vious GMV. Then, five LM Vs are selected based on the values
of h(i, j). Figure 4(b) shows the process for the derivation of
weights for the five LMVs. First, the GMV probabilities of
five LM Vs are assigned to 0.50, 0.20, 0.15, 0.10, and 0.05, re-
spectively, in the increasing order of the h(i, j) value. This
h(i, j) is derived with the subblock s,, as shown in Figure 3.
Second, D(i, j) values are calculated for five LMVs and then
the values of 0.40,0.24,0.18,0.12, and 0.06 are assigned, re-
spectively, to the GMV probabilities in the increasing order
of the D(j, j) value. These derivationsare repeated four times
for four subblocks s;, s, s3, and s4 of Figure 3(c). Finally,
the five probabilities designated for each LMV are added to
be the final weight of the LMV. In this addition, the probabil-
ities assigned with subblock s,, are weighted by 1, and those
with s;, s, s3, and s4 are weighted by 0.9.

3. PROBABILISTIC GMV ESTIMATION

The LMVs obtained from the subimages are used for the
derivation of the GMV. The five LMVs obtained from each
subimage are denoted by LMV[0],LMV[1],...,LMV[4],
and their weights are denoted by w([0], w[1],...,w[4], re-
spectively. The LMVs are sorted in the decreasing order of
their weight values, that is, the value of w[0] is the largest
and the value of w[4] is the smallest among all weights.
When four subimages as shown in Figure 1(b) are used for
the derivation of LMV, the first step for GMV derivation is
to select two subimages among the four subimages. This step
contributes to the elimination of subimages that are included
in a foreground region and generate inappropriate LMVs.
The selection step consists of two substeps. The first substep
is to select the first subimage while the second substep deter-
mines the other subimage.

The first subimage is selected as follows. The subimage
with the largest weight of LMV([0] is chosen first among
the four subimages. If two subimages have the same largest
weight, the subimage with the third largest weight of LMV[0]
is chosen and the Manhattan distances between the third
LMV[0] and the LMV[0]s with the two largest weights are
compared. Then, the subimage with the smaller Manhattan
distance is chosen. If these two Manhattan distances are the
same, any subimage is selected. For example, assume that
LMV|[0] of four subimages are (1,1), (2,3), (3,4), and (4,5)
and that their respective weights are 1.50, 1.50, 1.45, and
1.40. Note that (1,1) and (2,3) have the same largest weight
of 1.50. As the two vectors have the same weight, it is neces-
sary to check the Manhattan distance between these vectors
and the LMV[0] with the third largest weight. Note that the
vector with the third largest weight is (3,4). The Manhattan
distance between (1,1) and (3,4) is 5 while that between (2,3)
and (3,4) is 2. Thus, the vector (2,3) is finally chosen and
therefore the corresponding subimage is chosen as the first
subimage.

The second substep for the selection of the second subim-
age is as follows. For the selection of the second subimage, the
Manbhattan distances between LMV([0] of the first subimage
and LMV|[0]s of the remaining subimages are derived. Then,
the subimage with the smallest Manhattan distance is cho-
sen for the second subimage. If these Manhattan distances
are same, the subimage with the largest weight of LMV([0]
is selected. If these weights are also the same, any subim-
age among them is selected. Consider again the example dis-
cussed above. Recall that vector (2,3) is chosen for the first
subimage. From vector (2,3), the Manhattan distances of the
other vectors, (1,1), (3,4), and (4,5) are 3, 2, and 4, respec-
tively. Thus, the subimage with vector (3,4) is chosen for the
second subimage.

In case that the Manhattan distance between PGMV and
LMV[0] of a subimage is larger than 16, the corresponding
subimage is not chosen for the derivation of the GMV. How-
ever, if the Manhattan distance between PGMV and LMV|[0]
is larger than 16 for all subimages, the two LMVs with the
smallest Manhattan distance are chosen. The threshold value
of 16 is chosen based on experiments. This constraint for
the selection of the subimages is imposed because the GMV,
in general, is not changed suddenly from PGMV [4]. Con-
sider the above example again. Suppose that PGMV is (5,5).
Then, the Manhattan distances between PGMYV and the se-
lected two vectors (2,3) and (3,4) are 5 and 3, respectively.
As these distances are less than 16, the corresponding two
subimages are selected for the next step (the derivation of
GMYV from LMVs). Suppose that PGMV is (11,11). Then, the
Manbhattan distance between (2,3) and (11,11) is 17. Thus,
the corresponding subimage is not selected for the next step.
On the other hand, the Manhattan distance between (3,4)
and (11,11) is 15 which is less than 16. Thus, this subimage
is chosen. The other vector (4,5) is also chosen because its
Manhattan distance from PGMYV is less than 16. Thus, with
PGMV of (11,11), the two subimages corresponding to (3,4)
and (4,5) are chosen finally.

Once two subimages are chosen, the GMV is derived
from LMVs obtained from the two subimages. The algorithm



EURASIP Journal on Advances in Signal Processing

consists of five steps. If the condition of each step is satisfied,
the algorithm stops in that step and does not move to the
next step. The notations used in this algorithm are explained
first and then the algorithm is presented next. The five LM Vs
for the first subimage are denoted by LMVX[0], LMV![1],
...,LMV[4]. and their weights are denoted by w*[0], w-[1],

..,wl[4], respectively. The five LMVs for the second
subimage are denoted by LMV?[0], LMV®[1],...,LMV®[4].
and their respective weights are denoted by wR[0], wR[1],

..,wR[4]. The horizontal and vertical coordinates of
LMV™[i] are denoted by LMV,LC [7] and LMV; [i], respectively.
Similarly, the horizontal and vertical coordinates of LMVR[{]
are denoted by LMV%[i] and LMV§ [i], respectively.

Step 1. When there exists an LMV [i] (or LMV®[i]) that is
the same as LMVR[0] (or LMV[0]), it is chosen as the GMV
candidate. If the Manhattan distance between this GMV can-
didate and the PGMYV is less than or equal to 16, the GMV
candidate is chosen as the final GMV.

Step 2. If the value of w'[0] is greater than or equal to 1.49,
and w'[0]-wR[0] is greater than or equal to 0.25, LMV*[0]
is chosen to be the GMV candidate. Similarly, if the value
of wR[0] is greater than or equal to 1.49 and wR[0]-w![0]
is greater than or equal to 0.25, LMVE[0] is chosen to be
the GMV candidate. If the Manhattan distance between the
GMV candidate and the PGMYV is less than or equal to 16,
the candidate is chosen as the final GMV.

Step 3. The Manhattan distance between LMVL[0] and
LMVR[0] is computed. If this value is greater than or equal
to 9, go to step 4. Otherwise, go to step 5.

Step 4. The LMV with the smallest Manhattan distance with
the PGMV among the 10 LM Vs is chosen to be the GMV.

Step 5. The average of LMVE[0] and LMVR[0] is assigned to
be the final GMV.

steps 1 and 2 rectify the case when one subimage may
be in a foreground region and provide wrong LMVs. In this
case, the LMVs obtained from a wrong subimage are ignored
and the GMV is chosen from one subimage. In step 2, the
threshold 1.49 is obtained from experimental results as this
value is the largest value of w[0] (or wR[0]) used for step
2 that does not decrease the accuracy of the proposed algo-
rithm. Note that 1.49 represents 77% of the maximum value
of a weight (0.5 X 1 + 0.4 X 0.9 X 4 = 1.94) and the thresh-
old 0.25 represents 13% of the maximum value. For example,
suppose that the algorithm is at step 1 and both LMV*[1]
and LMVR[0] are (3,1). Then, LMV*[1] and LMV®[0] are
same, so that the final GMV candidate is chosen as (3,1). On
the other hand, suppose that the algorithm is at step 2 and
LMV*[0], LMV*[0], wt[0], and wR[0] are (—10,6), (7,-2),
1.28, and 1.60, respectively. Then, wR[0] is greater than 1.49,
and wL[0]-wR[0] is greater than 0.25. So, LMV®[0] is cho-
sen to be the GMV candidate. When the algorithm passes
step 3 and moves to step 4, the LMVs from both subimages
are used for the derivation of the GMV. The general method

.......... '\

. i

FIGURE 5: Sample frame of the foreman image sequence.

is to determine the GMV as the average of LMV*[0] and
LMVR[0] as in step 5. However, when the Manhattan dis-
tance between LMV®[0] and LMVR[0] is larger than 9, the
compensation may deteriorate the image quality. This is due
to the case when one of LMV*[0] and LMV®[0] is the cor-
rect GMV instead of the average of the two LMVs. There-
fore, step 3 checks the Manhattan distance between these two
LMV[0]s and performs different actions based on the Man-
hattan distance. Based on the experiment performed with
various Manhattan distances, the threshold is chosen as 9.
For example, suppose that the algorithm is at step 3 and
LMVL[0] and LMVR[0] are (2,5) and (4,3). Then, the Man-
hattan distance between these two vectors are 4. Then, the
next step is step 5 in which the final GMV is chosen as the
average of these two vectors that is (3,4). For another exam-
ple, LMV[0] and LMVR[0] are (—5,1) and (2,4). Then, the
algorithm goes to step 4 in which the final GMV is chosen as
the LMV which is closest to the PGMV.

With the final GMV obtained by the aforementioned al-
gorithm, a global motion correction is performed by the MVI
method as described in [4] for camera fluctuation.

4. EXPERIMENTAL RESULTS

Experimental results of the proposed algorithm are presented
and compared with existing algorithms in this section. The
foreman video sequence with the CIF size at 15 frames per
second is used. The foreman sequence includes clockwise ro-
tations as well as translational jitters. Figure 5 shows a sample
frame of the foreman sequence. As shown in this sample, the
image includes a single human as the only foreground ob-
ject. Therefore, two subimages are used to obtain LMVs. The
squares with solid lines in the upper corners of Figure 5 rep-
resent the subimages in the current image used for obtain-
ing LMVs. The squares with dotted lines represent the search
range in the previous image. The sizes of these squares are
64 % 64 and 96 X 96, respectively.



Nam-Joon Kim et al.

The performance evaluation uses the measure of root
mean square error (RMSE)

N
1 R R
RMSE = | 3 (v - %07 + (= ), (9)
k=1

where (Xk, Jx) is the optimal GMV and (x, yx) is the GMV
obtained by the proposed algorithm as well as other previous
algorithms to be compared. The optimal GMYV is obtained by
FS-BM based on the MSE criterion. The number of frames is
denoted by N which is 150 in the foreman sequence used in
this experiment.

The RMSE values obtained for various DIS algorithms
are shown in the Table 1. The SM-MAD represents the DIS
algorithm with the matching criterion of MAD. This algo-
rithm uses two subimages as shown in Figure 5 to perform
motion estimation and obtain two LMVs, one for each of
these two subimages. Then, the GMV is derived by averag-
ing these LMVs. FS-FM is not compared in this experiment
because the foreman sequence has a large foreground ob-
ject with a large movement, and therefore, the frame match-
ing using an entire frame does not lead to an accurate mo-
tion estimation. The SM-EPM algorithm performs match-
ing of edge regions in the subimage [6]. GCBPM-W and
GCBPM-4 represent gray coded bit-plane matching algo-
rithms [3, 4]. The GCBPM-W algorithm uses matching bit-
planes weighted by their respective levels of significance and
the GCBPM-4 algorithm uses matching only the 4th-order
bit-plane. 1BT represents the method with one-bit-per-pixel
transform [10]. Three phased-correlation-based motion es-
timation algorithms (PC-H, PC-2, and PC-W) are also com-
pared. PC-H represents the algorithm choosing the LMV
with the largest amplitude as the GMV [1]. In PC-2 algo-
rithm, the average of the two LMVs with the largest two
amplitudes is determined as the GMV [1]. In PC-W algo-
rithm, the GMV is the weighted average of all LM Vs based
on their peak amplitude values [1]. The proposed algorithm
is denoted by P-L2BT where P stands for the Probabilistic
global motion estimation. SM-L2BT also uses the Laplacian
transform to convert an image into two one-bit planes as de-
scribed in Section 2.2. Then, SM-L2BT performs full subim-
age matching with these two planes as SM-MAD. As a re-
sult, SM-L2BT requires a lot more computation than P-L2BT.
Table 1 shows that the proposed P-L2BT algorithm produces
the least RMSE among all the compared algorithms. When
compared with SM-MAD, P-L2BT reduces the RMSE by
27.7%.

Table 2 shows the contribution of each part of the pro-
posed algorithm to the performance improvement. To this
end, only certain parts of the proposed algorithm are per-
formed and their results are compared. The first column of
Table 2 shows which part of the algorithm is performed. The
second and third columns show the RMSE and the number
of execution cycles. The ARM Developer Suite 1.2 is used
for measuring the clock cycle, and the target processor is
ARM7TDMI processor. In the method represented by the
second row, the distance of (3) is used for the matching crite-
rion to obtain the LMV for each subimage. Then, the average

TaBLE 1: RMSE comparison of DIS algorithms experimented with
the foreman sequence.

DIS algorithms RMSE

SM-MAD 0.05201
SM-EPM 0.14237
GCBPM-W 0.11322
GCBPM-4 0.07688
IBT 0.14824
PC-H 0.12951
PC-2 0.08822
PC-W 0.09437
SM-L2BT 0.06766
P-L2BT 0.03756

TaBLE 2: Contribution of each part of the P-L2BT algorithm with
the foreman sequence.

Part gfthe L2BT RMSE Clock cycle
algorithm
Laplacian 2-bit  trans-

0.22377 42,612,036
form (L2BT)
L2BT + PGMYV weight 0.20955 42,641,911
L2BT +PGMV  weight
5 LMVs 0.09698 42,642,086
L2BT + PGMYV weight
+5LMVs + 4 subblocks 0.03756 44,029,002
(P-L2BT)

of the two LMVs derived from the two subimages is chosen
as the GMV. Note that the LMVs are derived with subblock
sm as shown in Figure 3. The method in the third row uses (8)
instead of (3) as the matching criterion. As a result, RMSE is
reduced by 6.35%, while the computation load is increased
by only 0.07%. The method in the fourth row shows how
much performance improvement is achieved by using five
LMVs for each subimage together with the algorithms de-
scribed in Section 3. Note that the method does not use the
four subblocks as described in Section 2.4. In other words,
it just uses the technique described in Section 2.3. The result
shows that the RMSE is significantly reduced while the in-
crease of the computational load is negligible. The final row
shows the result of the proposed algorithm including all tech-
niques described from Sections 2.1 to 3. RMSE is reduced
by 61.27% while the computational load is increased by only
3.25%. Each process contributes to the significant improve-
ment of RMSE while the increase of computational load is
small. The small increase of the computational load is be-
cause distance calculations for many possible positions in the
search range consume most of the computation.

The performance of the proposed algorithm is also exper-
imented with the dancing boy sequence. The dancing boy se-
quence shows larger fluctuations than the foreman sequence.
In addition, this sequence has more noises and blurs than
the foreman sequence. Figure 6 shows an example frame of
the QVGA (320 x 240) size. Since this is not a single human
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FIGURE 6: Sample frame of the dancing boy image sequence.

TaBLE 3: RMSE comparison of DIS algorithms experimented with
the dancing boy sequence.

DIS algorithms RMSE

SM-MAD 0.03779
SM-EPM 0.25934
GCBPM-W 0.11395
GCBPM-4 0.09691
1BT 0.06993
PC-H 0.19067
PC-2 0.14368
PC-W 0.14094
SM-L2BT 0.04967
P-L2BT 0.03836

TaBLE 4: Contribution of each part of the P-L2BT algorithm with
the dancing boy sequence.

Part of the L2BT algorithm RMSE Clock cycle
Laplacian 2-bit transform (L2BT) 0.15939 88,878,765
L2BT + PGMV weight 0.13800 88,942,015
L2BT + PGMYV weight + 5 LMVs 0.13450 88,942,253
L2BT + PGMYV weight + 5 LMVs 0.03836 91,815,708

+ 4 subblocks (P-L2BT)

image, four subimages are used to obtain LMVs. The subim-
ages with search ranges are shown as squares in Figure 6. The
squares with solid lines represent the subimages of the cur-
rent image and the squares with dotted lines represent search
ranges in the previous image. The size of these subimages is
the same as that of the foreman sequence.

Table 3 shows the RMSE values measured with various
DIS algorithms. SM-MAD and P-L2BT algorithms are the
two best algorithms. When compared with the foreman se-
quence, the SM-MAD algorithm is slightly improved while
the P-L2BT algorithm results in almost the same RMSE.

For the other algorithms, the RMSE values increase badly
except the GCBPM-W, GCBPM-4, and 1BT algorithms. This
is because these algorithms are sensitive to noises or blurs.

Table 4 shows the contributions of various techniques
used by the proposed DIS algorithm. Each row represents
the same part as Table 2. The third row shows that the use of

TaBLE 5: RMSE comparison of the probabilistic version of 1BT, SM-
EPM, GCBPM-4, first derivatives, and L2BT.

Foreman Dancing boy Motorcycle
P-1BT 0.08186 0.03223 0.08836
P-SM-EPM 0.10698 0.09868 0.25420
P-GCBPM-4 0.05080 0.06773 0.19413
P-first derivatives 0.04827 0.05659 0.16651
P-L2BT 0.03756 0.03836 0.08707

(8) instead of (3) reduces RMSE by about 13.42% while the
computational load is increased only by 0.07% when com-
pared with the second row. The fourth row shows that the
use of five LMV candidates with the decision algorithm in
Section 3 reduces RMSE by 2.54% while the increase of the
computational load is negligible. The bottom row shows that
the use of four subblocks reduces RMSE by 71.48% while
the computational load is only increased by 3.23%. The mea-
surement with the dancing boy sequence also shows that the
use of four subblocks gives the largest improvement.

Table 5 compares the RMSE of five correlation match-
ing methods, 1BT, SM-EPM, GCBPM-4, first derivatives, and
P-L2BT to which the probabilistic approach is applied, so
that all the probabilistic techniques used for P-L2BT are also
implemented for the other algorithms. These techniques in-
clude the use of 5 LMVs with probabilities, the use of (8) to
give a weight to PGMYV, the probabilistic adjustment with 4
subblocks of Figure 3(c), and the GMV derivation algorithm
proposed in Section 3. For the first derivatives method, two
spaces similar to L™ and L~ spaces are used. Therefore, two
bits are required to represent one pixel. Three test sequences,
foreman, dancing boy, and motorcycle sequences are used for
evaluation. In the table, the prefix P- represents the proba-
bilistic version of the previous algorithms. As shown in the
table, 1BT, SM-EPM and GCBPM-4 algorithms are signif-
icantly improved by the probabilistic approach when com-
pared with the results shown in Tables 1 and 3. The P-L2BT
algorithm achieves the smallest RMSE for foreman and mo-
torcycle sequences. For dancing boy sequence, the RMSE of
P-L2BT is slightly larger than that of 1BT but the difference
is negligible.

In general, the search operation for motion estimation
requires about 90% of the total computation of DIS [16].
Therefore, the number of operations required for the mo-
tion estimation is compared. Table 6 shows the comparison
of the computational complexity of DIS algorithms. Among
the algorithms presented in Tables 1 and 3, SM-MAD and
three phase-correlated-based motion estimation algorithms
(PC-H, PC-2, and PC-W) are excluded. SM-MAD requires
the sum of the absolute pixel-by-pixel difference (SAD) op-
erations between the target block and the block at a match-
ing location on the reference frame which are more com-
plex than the Boolean operations required for the other al-
gorithms. The three phase-correlated algorithms employ the
2D Fourier transform that also requires significantly larger
complexity than the others [10]. In Table 6, W and H rep-
resent the width and the height of a sub-image andr denotes
the search range as given in (3). SM-EPM, GCBPM-4, 1BT
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TaBLE 6: The number of operations required by motion estimation.

Algorithms Boolean Exclusive-Or Boolean-Or
SM-EPM, GCBPM-4, 1BT W x Hx (2r+1)° 0
GCBPM-W W x H x 9log,(2r +1) 0
SM-L2BT W x H x2(2r +1)? W x Hx (2r+ 1)
W X H 2
P-SM-EPM, P-GCBPM-4, P-1BT X (2r+1)"+20x W x H 0
W xH W xH

P-L2BT

X (2r+1)+40x W x H

X 2r+ 1) +20x W x H

TaBLE 7: Improvement of the compression efficiency by the pro-
posed DIS algorithm.

Frame Foreman Dancing boy
PSNRA [dB]  bitA [%] PSNRA [dB] A bit [%]

1-10 0.14 12.69 -0.17 1.48
11-20 0.05 2.88 —0.05 3.01
21-30 —-0.03 0.72 —0.03 -0.74
31-40 -0.13 -3.79 0.05 1.67
41-50 -0.06 -1.76 0.11 2.44
51-60 0.01 421 -0.06 1.07
61-70 0.03 4.69 —0.02 1.76
71-80 0.26 6.28 —0.08 8.29
Average 0.03 3.24 —-0.03 2.37

and GCBPM-W require one Boolean Exclusive-Or opera-
tion per each point in the search range. SM-EPM, GCBPM-
4, 1BT employs the full search algorithm while GCBMP-
W employs the three step search algorithm for motion es-
timation. Thus, the GCBPM-W requires the smallest num-
ber of operations. For L2BT, the number of the operations
to derive D(i, j) in (3) is used for this comparison. The
precise comparison needs to include the number of oper-
ations to derive h(i, j) in (8). However, the difference be-
tween the numbers for D(i, j) and h(i, j) is not large because
the number for D(j, j) is much larger than that for h(j, j).
The derivation of D(i, j) requires two Boolean Exclusive-
Or and one Boolean-Or operations in (3). For SM-L2BT,
W x Hx22r+1)> and W x H X 2(2r + 1)* operations
are required for Boolean Exclusive-Or and Boolean-Or, re-
spectively. On the other hand, the numbers of search points
for P-SM-EPM, P-GCBPM-4, P-1BT (the probabilistic ver-
sions of SM-EPM, GCBPM-4, 1BT) and P-L2BT are reduced
because the NNMP operations are performed for the sub-
block s, instead of the entire sub-image Si. For P-SM-EPM,
P-GCBPM-4, P-1BT and P-L2BT, NNMP operations are re-
quired to derive D(i, j) for each of the (W x H)/4 pixels. The
P-SM-EPM, P-GCBPM-4, P-1BT use 1 bit per pixel, and the
term 20X W x H for Boolean Exclusive-Or is needed to derive
D(i, j) for the four subblocks s;, s, s3, and s4. For P-L2BT
using 2 bits per pixel, the terms 40 X W x H for Boolean
Exclusive-Or and 20 X W X H for Boolean-Or are required to
derive D(i, j) for four subblocks s;, s;, s3, and Ss. Thus, P-
L2BT requires about 3 times larger amount of computation
than P-SM-EPM, P-GCBPM-4 or P-1BT.

If a video sequence is compensated by DIS, it may
be compressed more efficiently than the original video se-
quence. This is because the compensation of global motion
may reduce the prediction errors between the current and
previous frames. To evaluate the improvement of the com-
pression efficiency by DIS, the video sequences before and
after the execution of the P-L2BT algorithm are used as the
inputs to the H.264 encoder and the compression ratios for
these two sequences are compared. The version 7.3 of M ref-
erence software for the H.264/AVC baseline profile encoder is
used for experiments. Table 7 shows the improvement of the
compression ratio (denoted by Abit [%]) and the improve-
ment of PSNR (denoted by APSNR [dB]) by the proposed
DIS algorithm. The first frame is encoded as an I-frame and
all the remaining frames are encoded as a P-frame, and QP
value is set to 25. Note that the compression efficiency is not
improved for an I-frame which does not use temporal refer-
ence frames. Eighty frames of both foreman and dancing boy
sequences are used and the compression efficiencies are av-
eraged for every ten frames. For the first ten frames of the
foreman sequence, the compression ratio improvement of
12.69% is achieved. This is because these frames include large
fluctuations. For the dancing boy sequence, the biggest com-
pression ratio improvement of 8.29% is achieved for 71-80
frames which also include large fluctuations. On average, the
foreman sequence improves the PSNR and the compression
ratio by 0.03 dB and 3.24% per a P-frame, and the dancing
boy sequence achieves the compression ratio improvement of
2.37% per a P-frame while the PSNR is decreased by 0.03 dB
per a P-frame.

5. CONCLUSION

In the proposed algorithm, five LMVs with their respective
probabilities to be the GMV are assigned for each subimage
and then the GMV is derived from the LMVs. This proba-
bilistic approach is pretty effective while the additional com-
putation load is not heavy compared to the LMV derivation
which requires expensive matching operations over a large
search space. Therefore, the proposed DIS algorithm success-
fully reduces the computational burden while maintaining
the quality of the stabilized video. As a result, the algorithm
can be adopted in handheld devices for real-time video cap-
turing applications.

Many parameters used in this paper are also determined
by experimental results. Based on the experimental results,
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the proposed probability model is designed to be simple, but
it is not the optimal one. For example, the proposed proba-
bility model used in (8) is not the optimal one and the prob-
ability values chosen in the last paragraph of Section 2.3 are
also chosen to simplify the complexity of calculation. Thus,
the contribution of this paper is the proposal of the proba-
bilistic approach to derive GMV, but the probabilistic model
is not the optimal one and further research is necessary to
search the optimal probability model.

In [16], DIS is combined with a video encoder and the
complexity of DIS is reduced by using the motion estimation
information generated by the video encoder. The idea of the
above paper is promising, and its application to the L2BT DIS
is a good future research topic.
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