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Complex approximately analytic wavelets provide a local multiscale description of images with good directional selectivity and
invariance to shifts and in-plane rotations. Similar to Gabor wavelets, they are insensitive to illumination variations and facial
expression changes. The complex wavelet transform is, however, less redundant and computationally efficient. In this paper, we
first construct complex approximately analytic wavelets in the single-tree context, which possess Gabor-like characteristics. We,
then, investigate the recently developed dual-tree complex wavelet transform (DT-CWT) and the single-tree complex wavelet
transform (ST-CWT) for the face recognition problem. Extensive experiments are carried out on standard databases. The resulting
complex wavelet-based feature vectors are as discriminating as the Gabor wavelet-derived features and at the same time are of lower
dimension when compared with that of Gabor wavelets. In all experiments, on two well-known databases, namely, FERET and
ORL databases, complex wavelets equaled or surpassed the performance of Gabor wavelets in recognition rate when equal number
of orientations and scales is used. These findings indicate that complex wavelets can provide a successful alternative to Gabor
wavelets for face recognition.
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1. INTRODUCTION

Identifying a person using geometric or statistical features
derived from a face image is an important and challenging
task [1–3]. This task becomes even more challenging due to
the fact that large variations in the visual stimulus arising
from illumination condition, viewing directions, poses, facial
expression, aging, disguises are all common in real applica-
tions. A face recognition system should, to a large extent, take
into account all the above-mentioned natural constraints
and cope with them in an effective manner. In order to
achieve this, one must have efficient and effective represen-
tations for faces. It is important that the representation of
face images have the following desirable properties. (1) It
should require minimum or no manual annotations, so that
the face recognition task can be performed automatically;
(2) representation should not be redundant. In other words,
the feature vector representing the face image should contain
critical amount of information in order to make sure that
the dimensionality of the representation is minimal; (3) the
representation should cope satisfactorily with the nonideal
effects such as illumination variations, pose, aging, facial
expression, and partial occlusions; (4) invariance to shifts,

in-plane rotations; (5) directional selectivity in many scales;
(6) low-computational complexity. Furthermore, it is also
desirable that the representation derives its roots in some
form from the principles of human visual processing.

Many techniques have been proposed in the literature
for representing face images. Some of these include principal
components analysis [2–4], discrete wavelet transform [5, 6],
and discrete cosine transform [7].

Gabor wavelet-based representation provides an excel-
lent solution when one considers all the above desirable
properties. For this reason, Gabor wavelets have been
extensively studied in many image processing applications
[8–11].

Lades et al. [12] used a dynamic link architecture
framework of the Gabor wavelet for face recognition. Wiskott
et al. [13] subsequently developed a Gabor wavelet-based
elastic bunch graph matching (EBGM) method to label
and recognize human faces. Zhang et al. [14] introduced
an object descriptor based on histogram of Gabor phase
pattern for face recognition. Liu et al. [15] proposed a
method to determine the optimal position for extracting
the Gabor feature such that the number of feature points is
minimized while the representation capability is maximized.
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Liu and Wechsler [16] presented an independent Gabor fea-
tures (IGFs) method based on the independent component
analysis [17]. For extensive review of invariant properties
of Gabor wavelets and their application to face recognition
using Gabor wavelets, one is referred to [18–20].

Even though Gabor wavelet-based face image represen-
tation is optimal in many respects, it has got two important
drawbacks that shadow its success. First, it is computationally
very complex. A full representation encompassing many
directions (e.g., 8 directions), and many scales (e.g., 5 scales)
requires the convolution of the face image with 40 Gabor
wavelet kernels.

Second, memory requirements for storing Gabor features
are very high. The size of the Gabor feature vector for an
input image of size 128×128 pixels is 128×128×40 = 655360
pixels when the representation uses 8 directions and 5 scales.

There have been many research works which try to
alleviate the above problems by using weighted sub-Gabor
[21], simplified Gabor wavelets [22], optimal sampling of
Gabor features [15], and so forth. None of these attempts,
however, approaches the problem in a structured fashion
and therefore in most cases it is questionable whether the
desirable properties of the Gabor representation is preserved
as a result of the respective approach used.

Complex approximately analytic wavelets provide a
multiscale representation of images with good directional
selectivity, invariance to shifts and in-plane rotation, and
phase information much like the Gabor wavelets. The
complex wavelets, however, are orthogonal and can be
implemented with short one-dimensional separable filters
which make them computationally very attractive. Unlike
the Gabor wavelets, where the redundancy is 40 times with
5 scales and 8 directions, complex wavelet representation is
4 times redundant in 2 dimensions and the redundancy is
independent of the number of scales used. Thus, complex
approximately analytic wavelets provide an excellent alter-
native to Gabor wavelets with the potential to overcome
the above-mentioned shortcomings of the Gabor wavelets.
Sankaran et al. [23] and Celik et al. [24] used the DT-CWT
and Gabor wavelets for facial feature extraction, where in
both papers authors report comparable performance of the
DT-CWT with more efficient computational complexity. In
[25], Sun and Du applied DT-CWT on spectral histogram
PCA space for face detection. In [26, 27], the authors used
orthogonal neighborhood preserving projections (ONPPs)
and supervised kernel ONPP with DT-CWT for face recogni-
tion. Their preliminary results indicate that KONPP produce
superior performance.

In this paper, we systematically study complex wavelets
for the face recognition problem. Specifically, we employ the
recently developed dual-tree complex wavelet transform and
a new single-tree complex wavelet transform with improved
shift invariance and directional selectivity properties. First,
Gabor wavelet and complex wavelet-based representations
of face images are obtained. For all the transforms, the
representations encompass 4 levels and 6 directions. PCA
is employed to further reduce the dimensionality of the
derived feature vectors. Finally, 3 types of similarity measures
used for identification. Results of experiments carried out on

FERET and ORL databases indicate that complex wavelets
indeed constitute an excellent alternative to Gabor wavelets
in face image representation and recognition.

The rest of the paper is organized as follows. Sections 2
and 3 briefly give an overview of Gabor wavelets, DT-CWT,
and ST-CWT. Section 4 describes the proposed method, and
Section 5 discusses the simulation results. Computational
complexity analysis for feature extraction can be found in
Section 6.

2. GABORWAVELETS

A Gabor wavelet filter is a Gaussian kernel function modu-
lated by a sinusoidal plane wave:

ψg(x, y) = f 2

ηγπ
exp

(
β2y′2 − α2x′2

)
exp(2π j f x′),

x′ = x cos θ + y sin θ,

y′ = y cos θ − x sin θ,

(1)

where f is the central frequency of the sinusoidal plane
wave, θ is the anticlockwise rotation of the Gaussian and the
envelope wave, α is the sharpness of the Gaussian along the
major axis parallel to the wave, and β is the sharpness of the
Gaussian minor axis perpendicular to the wave. γ = f /α and
η = f /β are defined to keep the ratio between frequency and
sharpness constant [8]. The 2D Gabor wavelet as defined in
(1) has Fourier transform:

Ψg(u, v) = exp

⎛

⎝−π2
((

u′ − f
)2

α2
+
v′2

β2

)
⎞

⎠ ,

u′ = u cos θ + v sin θ,

v′ = v cos θ − u sin θ.

(2)

Figures 1(a) and 1(b) show, respectively, the real part and
magnitude of the Gabor wavelets for 4 scales and 6 directions.
Figure 2 shows the 1D Gabor wavelets in the frequency
domain. At all levels, the wavelet is a Gaussian bandpass filter.

Gabor wavelets possess many properties which make
them attractive for many applications. Directional selectivity
is one of the most important of these properties. The Gabor
wavelets can be oriented to have excellent selectivity in any
desired direction. They respond strongly to image features
which are aligned in the same direction and their response
to other feature directions is weak. Invariance properties
to shifts and rotations also play an important role in their
success. In order to accurately capture local features in
face images, a space frequency analysis is desirable. Gabor
functions provide the best tradeoff between spatial resolution
and frequency resolution. The optimal frequency-space
localization property allows Gabor wavelets to extract the
maximum amount of information from local image regions.
This optimal local representation of Gabor wavelets makes
them insensitive and robust to facial expression changes
in face recognition applications. The representation is also
insensitive to illumination variations due to the fact that it
lacks the DC component. Last but not least, there is a strong
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(a)

(b)

Figure 1: Gabor wavelets. (a) The real part of the Gabor kernels at
four scales and six orientations. (b) The magnitude of the Gabor
kernels at four different scales.
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Figure 2: Frequency response of 1-dimensional Gabor wavelets
(f = [0.5, 0.25, 0.125, 0.0625] and η = 1).

biological relevance of processing images by Gabor wavelets
as they have similar shapes to the respective fields of simple
cells in the primary visual cortex.

Figures 3(a) and 3(b) show the magnitude and real
part of a Gabor wavelet-transformed face image, where the
parameters are f = [0.5, 0.25, 0.125, 0.0625] and η = 1.
Despite many advantages of Gabor wavelet-based algorithms
in face recognition, the high-computational complexity and
high memory capacity requirement are important disadvan-
tages. With a face image of size 128 × 128, the dimension
of the extracted Gabor features would be 655 360, when 40
wavelets are used. This feature is formed by concatenating
the result of convolving the face image with all the 40
wavelets. Such vector dimensions are extremely large and,

(a)

(b)

Figure 3: Gabor wavelet transformation of a sample image (top left
face in Figure 12). (a) The magnitude of the transformation. (b) The
real part of the transformation.

in most cases, downsampling is employed before further
dimensionality reduction techniques such as PCA is applied.
The computational complexity is high even when fast Fourier
transform (FFT) is employed.

Because of the above-mentioned shortcomings, one
usually looks for other transforms that can preserve most of
the desired properties of Gabor wavelets and at the same time
reduces the computational complexity and memory require-
ment. Complex wavelet transforms provide a satisfactory
alternative to this problem.

3. COMPLEXWAVELET TRANSFORM

3.1. Dual-tree complex wavelet transform

One of the most promising decompositions that remove
the above drawbacks satisfactorily is the dual-tree complex
wavelet transform (DT-CWT) [28–31]. Two classical wavelet
trees (with real filters) are developed in parallel, with the
wavelets forming (approximate) Hilbert pairs. One can
then interpret the wavelets in the two trees of the DT-
CWT as the real and imaginary parts of some complex
wavelet Ψc(t). The requirement for the dual-tree setting for
forming Hilbert transform pairs is the well-known half-
sample delay condition. The resulting complex wavelet is
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(a)

(b)

Figure 4: Impulse response of dual-tree complex wavelets at 4 levels
and 6 directions. (a) Real part. (b) Magnitude.

then approximately analytic (i.e., approximately one sided in
the frequency domain). The design of filter banks satisfying
the half-sample delay condition can be found in [32–35]. The
properties of the DT-CWT can be summarized as

(i) approximate shift invariance;

(ii) good directional selectivity in 2 dimensions;

(iii) phase information;

(iv) perfect reconstruction using short linear-phase fil-
ters;

(v) limited redundancy, independent of the number of
scales, 2 : 1 for 1D (2m : 1 for mD);

(vi) efficient order-N computation—only twice the sim-
ple DWT for 1D (2m times for mD).

The transform has the ability to differentiate positive and
negative frequencies and produces six subbands oriented in
±15,±45,±75. However, these directions are fixed unlike the
Gabor case, where the wavelets can be oriented in any desired
direction.

Figure 4 shows the impulse responses of the dual-tree
complex wavelets. It is evident that the transform is selective
in 6 directions in all of the scales except the first. Comparing
the directional selectivity at different directions using Figures
1 and 4 reveals that the selectivity of the DT-CWT is far from
Gabor. Figure 5 shows the frequency responses of the dual-
tree complex wavelets at four levels. It is evident that wavelets
at first level are not analytic. However, subsequent levels
become approximately analytic. The responses depicted for
levels above the first level are of bandpass nature, however,
their shapes are not Gaussian. Figures 6 shows the magnitude
and real part of a face image processed using the DT-CWT.

3.2. Single-tree complex wavelet transform

Complex wavelets with improved analytic property (better
suppression of the negative frequencies) are possible in the
single-tree context. With improved analyticity property, the
wavelets become more selective and respond more strongly
to the six-fixed directions of the DT-CWT. Additionally, as
a consequence of the improved analyticity, shift invariance
property of the wavelets also improves. Thus, it becomes
possible to design wavelets which can imitate Gabor wavelets
more closely. Complex wavelets with desired properties such
as symmetry and orthogonality have been extensively studied
in the literature [37–40]. These wavelets, however, are not
analytic and thus do not possess the properties associated
with analytic wavelets. We now describe the construction of
approximately analytic complex wavelet transforms which
possess all the properties of the DT-CWT with better
directional selectivity and better shift invariance properties.
Let the discrete-time complex sequences h0(n) and h1(n)
denote, respectively, the scaling and wavelet filters of a given
multiresolution analysis. They are associated with the scaling
function φh(t) and wavelet ψh(t) by the following dilation
equations:

φh(t) = 2
∑

n

h0(n)φ(2t − n) ,

ψh(t) = 2
∑

n

h1(n)φ(2t − n) .
(3)

The dual scaling function φf (t) and dual wavelet ψf (t) can
be defined similarly with sequences f0(n) and f1(n). The
frequency responses of the scaling function and the wavelet
on the analysis side are given, respectively, by the following
infinite products:

Φh(ω) =
∞∏

k=1

H0
(
e jω/2

k)
Φh(0) ,

Ψh(ω) = H1
(
e jω/2

)
Φh(ω/2)

= H1
(
e jω/2

) ∞∏

k=2

H0
(
e jω/2

k)
Φh(0) .

(4)

For convergence of the infinite products, one requires
H0(e0) = 1. Without loss of generality, we take Φh(0) = 1.
The frequency responses of the scaling function and the
wavelet on the synthesis side are defined similarly.

In order to achieve an analytic wavelet, one is forced
to make the frequency response of the scaling function
one sided. Thus, the scaling filter H0(e jω) becomes the
determining factor for establishing the analyticity of the
scaling function and consequently that of the wavelet. The
scaling filter can be written in terms of the real and imaginary
parts as

H0
(
e jω
) = Hr

0

(
e jω
)

+ jHi
0

(
e jω
)
. (5)

Defining the ratio of imaginary and real parts as

ΛH0

(
e jω
) = Hi

0

(
e jω
)

Hr
0

(
e jω
) , (6)
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Figure 5: Frequency response of 1-dimensional wavelets in the first 4 levels for the DT-CWT (filters in first level are from daubechies “db10”
filterbank and subsequent levels are filters from [36]).

the scaling function in (4) can be expressed as

Φh(ω) =
∞∏

k=1

Hr
0

(
e jω/2

k)
∞∏

k=1

(
1 + jΛH0

(
e jω/2

k))
. (7)

If the scaling filter H0(e jω) is analytic, the ratio defined in (6)
can be expressed as

ΛH0

(
e jω
) = e− jσ(ω)π/2, ω ∈ (−π,π) , (8)

where σ(ω) is the signum function (i.e., σ(ω) = 1 if ω > 0
and σ(ω) = −1 if ω < 0). The analyticity of the scaling filter
implies that 1 + jΛH0 (e jω) = 0 for any ω ∈ (−π, 0). Since
for any ω < 0 there exists an integer L > 0 such that ω/2k ∈
(−π, 0). For k > L, it follows that the second infinite product
in (7) becomes zero for any ω < 0 rendering Φh(ω)one sided.
Therefore, φh(t) becomes analytic and consequently ψh(t)
becomes analytic. Analyticity, however, can only be achieved
in an approximate sense due to the perfect reconstruction
and convergence requirements.

We now consider the design of two-band biorthogonal
filter banks which lead to complex biorthogonal wavelet
bases that are approximately analytic (see Figure 7). The
following setting is adopted for the design.

ΛH0

(
e jω
) ∼= e− jσ(ω)π/2,

ΛF0

(
e jω
) ∼= e jσ(ω)π/2,

ω ∈ (−π,π) . (9)

This implies that the frequency responses of the analysis
and synthesis wavelets are zero for negative and positive
frequencies, respectively. Phase parts of (9) are satisfied
exactly by picking conjugate symmetric filters for both h0(n)
and f0(n). One then imposes the desired approximation
orders Kh and Kf on the analysis and synthesis sides by
picking the filters with the following structure:

H0(z) = (1 + z−1)KhQh(z) , F0(z) = (1 + z−1)Kf Q f (z) ,

(10)

where Qh(z) and Qf (z) are arbitrary polynomials.
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(a)

(b)

Figure 6: DT-CWT transformation of a sample image (top left face
in Figure 12). (a) The magnitude of the transformation. (b) The real
part of the transformation.
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Figure 7: Two-band critically downsampled complex biorthogonal
filterbank (H0(z) and H1(z) are analysis filters; F0(z) and F1(z) are
synthesis filters).

Let us concentrate on solutions, where the lengths (L)
and approximation orders (Kh,Kf ) of the analysis and
synthesis scaling filters are the same. We further restrict the
filter lengths to be minimum, that is, L = 2K thus the
approximation orders are forced to be odd.

Since the scaling filters h0(n) and f0(n) are conjugate
symmetric, the sequences qh(n) and q f (n) (which are the
inverse z-transforms of Qh(z) and Qf (z)) are also conjugate
symmetric. This implies that the roots of polynomials Qh(z)
and Qf (z) come in conjugate reciprocal pairs. Note that the

halfband filter P(z) = H0(z)F̃0(z) is in general complex.
In the case where the halfband filter is real, the sequences
qh(n) and q f (n) are conjugates of each other. Thus, the roots
of P(z) (in addition to the ones at z = −1) are of the

Table 1: Filter coefficients of conjugate symmetric two-band
complex biorthogonal filterbank.

L = 6, Kh = Kf = 3 (real halfband filter case, minimum length)

n h0(n)

0 −0.09556007476958 + 0.05086277725442i

1 0.08121662052706 + 0.15258833176326i

2 0.72145023542907 + 0.10172555450884i

L=10, Kh=Kf =5 (real halfband filter case, minimum length)

n h0(n)

0 0.01047379228843− 0.02059993427869i

1 −0.06060208780796− 0.03081241286301i

2 −0.21092863561874 + 0.15493694986530i

3 0.10799981987069 + 0.44368598398706i

4 0.86016389245414 + 0.27853655553743i

L = 8, Kh = Kf = 3 (real halfband filter case, parameterized)

n h0(n)

0 −0.01538991564970− 0.04304682801003i

1 −0.19237063935158 + 0.06877551842869i

2 0.01518588724447 + 0.46460752334624i

3 0.89968144894336 + 0.35278517690752i

Table 2: Aliasing energy ratio in dB.

Level
DT-CWT ST-CWT

(filter from [30]) (length 10 filters)

Level 1 −∞ −∞
Level 2 −31.40 −33.54

Level 3 −27.93 −31.70

Level 4 −31.13 −32.27

form {zk, 1/z∗k , z∗k , 1/zk}. Here, if zk is a root of Qh(z), its
other root is 1/z∗k and the pair {z∗k , 1/zk} constitute the roots
of Qf (z). The design looks for filters for which ΛH0 (e jω)
and ΛF0 (e jω) have unity magnitude responses subject to the
biorthogonality constraint H0(z)F̃0(z) + H0(−z)F̃0(−z) = 1
[31]. With the minimum length solutions, there exist no free
parameters for optimizing the unity magnitude condition. If
one allows L > 2K then the solutions are parameterized and
the unity magnitude condition can be optimized.

Table 1 gives half of the coefficients of the low-pass
scaling filters. The first two filters correspond to minimum
length solutions with length L = 6, K = 3, and L = 10, K = 5,
where the third filter is a nonminimum length solution with
L = 8, K = 3.

Figure 8 shows the impulse response of the ST-CWT.
Similar to the DT-CWT, the ST-CWT is selective in 6
directions. Comparing Figures 1, 4, and 8, the selectivity
of ST-CWT is almost like that of Gabor. In order to asses
the shift invariant property of the ST-CWT and compare it
with DT-CWT, we use the aliasing energy ratio introduced
by Kingsbury [30].

Table 2 clearly indicates that the energy aliasing ratio for
the ST-CWT is better with more than 1 dB for all levels when
compared to that of DT-CWT.
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(a)

(b)

Figure 8: Impulse response of single-tree complex wavelet at 4
levels and 6 directions. (a) Real part. (b) Magnitude.

Figure 9 shows the frequency responses of the single-
tree complex wavelets at four levels. The wavelets at first
level are not analytic. However, subsequent levels become
approximately analytic. The responses depicted for levels
above the first level are of bandpass nature and they
better approximate a Gaussian shape. Figure 10 shows the
magnitude and real part of a face image processed using the
ST-CWT.

4. PROPOSEDMETHOD

In order to alleviate the computational burden and high
memory requirement of the Gabor wavelet-based face
recognition, and at the same time retain most of its
desired properties, we propose to use complex approximately
analytic wavelets instead of Gabor wavelets. We specifically
consider two alternatives; the complex dual-tree wavelet
transform and the complex single-tree wavelet transform
described in Section 3. For both approaches, the directional
multiscales decomposition of the gray level face image are
performed up to level 4. The DT-CWT or ST-CWT feature
vector X is formed by concatenating the results of the
multiscale representation. Given an image I(x, y) and a
wavelet ψμ,v(x, y), of level μ and direction v, vector X can be
formed by

X = (O0,0 O0,1 · · · O3,5
)t

, (11)

where Qμ,v(x, y) = I(x, y)∗ψμ,v(x, y) and Qμ,v μ =
0, . . . , 3, v = 0, 1, . . . , 5 is formed by concatenating the
rows or columns of Qμ,v(x, y). Here, ∗ and t denote
the convolution and transpose operators, respectively. This
representation encompasses different scales, spatial location,
and 6-fixed orientations similar to Gabor representation.

The size of such a feature vector is 32640 pixels which
is much smaller than the corresponding Gabor feature
vector where the size is 393216. For the Gabor setting,
we employed downsampling factor of 4, 16, and 32 in
order to reduce the dimensionality of the feature vector
to manageable sizes. For the complex wavelets, due to the
intrinsic downsampling of the multiscale transform, we
employed an extradyadic downsampling strategy to further
reduce the size of the feature vector. The feature vectors even
after downsampling are of very high dimension and therefore
not very convenient to be used directly for recognition.
To reduce the dimensionality of the feature vector space,
we employed PCA on the Gabor, DT-CWT, and ST-CWT
feature vectors. Figure 11 shows the block diagram of the
proposed method.

The similarity measures used in our experiments to
evaluate the efficiency of different representation and recog-
nition methods include L1 distance measure, δL1, L2 distance
measure, δL2, and cosine similarity measure, δcos. The
measures for n dimensional vectors are defined as follows
[41]:

δL1(x, y) = |x − y| =
n∑

i=1

∣
∣xi − yi

∣
∣,

δL2(x, y) = ‖x − y‖2 =
√√
√
√

n∑

i=1

(
xi − yi

)2
,

δcos(x, y) = − x·y
‖x‖ ‖y‖ = −

∑n
i=1xi yi√∑n

i=1 x
2
i

∑n
i=1y

2
i

.

(12)

We conducted experiments on two commonly used face
databases: FERET database [42] and ORL database [43]. For
FERET database, 600 frontal face images from 200 subjects
are selected, where all the subjects are in an upright, frontal
position. The 600 face images were acquired under varying
illumination conditions and facial expressions. Each subject
has three images of size 256 × 384 with 256 gray levels.
The following procedures were applied to normalize the face
images prior to the experiments:

(i) each face image is cropped to the size of 128 × 128 to
extract the facial region using the algorithm in [44],

(ii) each face image is normalized to zero mean and unit
variance.

Figure 12 shows sample images from the database. The
first two rows are the example training images while the
third row shows the example test images. It can be seen
from this figure that the test images all display variations in
illumination and facial expression.

To test the algorithms, two images of each subject are
randomly chosen for training, while the remaining one is
used for testing (i.e., 400 training and 200 test images).

The ORL database consists of 400 images acquired from
40 persons (i.e., ten different images of each of 40 distinct
subjects of both genders) taken over a period of two years
with variations in facial expression and facial details. All
images were taken under a dark background and the subjects
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Figure 9: Frequency response of 1-dimensional wavelets in the first 4 levels for the ST-CWT (length 10 complex filters from Table 1).

were in an upright frontal position with tilting and rotation
tolerance up to 20 degree and tolerance of up to about
10% scale. All images are grey scale with a 92 × 112 pixels
resolution. All images in the database are resized to 128 ×
128 pixels for our experiments.

Out of the 10 images per subject of the ORL face
database, the first 5 were selected for training and the
remaining 5 were used for testing (i.e., 200 training and 200
test images). Hence, no overlap exists between the training
and test face images. Figure 13 shows sample images from
the database.

5. SIMULATION RESULTS ANDDISCUSSIONS

In order to compare and assess the discriminating power of
the complex wavelet-based representations, we first obtain
the Gabor, DT-CWT, and ST-CWT features and use the
L1, L2, and cos distance measures to classify the face
images without any dimensionality reduction. The results
are given in Tables 3 and 4 for the Gabor, DT-CWT, and
ST-CWT, respectively, using the FERET face database. The
superscripts on the feature vector indicate the downsampling
factors employed. Note that for the complex wavelet-based

Table 3: Face recognition performance for Gabor wavelets with
different downsampling factors using FERET database and three
different similarity measures: L1 distance measure, δL1, L2 distance
measure, δL2 and cosine similarity measure, δcos.

Gabor dim δL1 δL2 δcos

X (1) 393216 93.83 91.67 91.67

X (4) 98304 93.5 91.17 91.17

X (16) 24576 92.5 89.5 89.5

X (32) 12288 88.33 84.67 84.67

representation, we employed a downsampling strategy that
is scale dependent unlike the Gabor representation, where
the downsampling strategy is independent of the scale.
The numbers on the superscript refer, in order, to the
downsampling factors from the first to fourth scales. The
resulting dimension of the feature vector after downsampling
is also indicated in the second column of the respective tables.

The results clearly indicate that the complex wavelet-
based representation is as discriminating as the Gabor-
based representation. When no downsampling is employed,
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(a)

(b)

Figure 10: ST-CWT transformation of a sample image (top left face
in Figure 12). (a) The magnitude of the transformation. (b) The real
part of the transformation.

Face database

Preprocessing stage
(GW/ST-CWT/DT-CWT)

Dimensionality
reduction

(PCA)

Decision
Similarity measure

(L1/L2/ cos)

Figure 11: The block diagram of the proposed method.

Figure 12: Example FERET images used in our experiments
(cropped to the size of 128 × 128 to extract the facial region). The
figure shows in the top two rows the examples of training images
used in our experiments and in the bottom row the examples of test
images.

Figure 13: Example ORL images used in our experiments (resized
to 128 × 128). The figure shows two subject images, where the first
2 rows used for training and the second 2 rows used for testing.

Table 4: Face recognition performance for DT-CWT and ST-CWT
with different downsampling factors using FERET database and
three different similarity measures: L1 distance measure, δL1, L2

distance measure, δL2 and cosine similarity measure, δcos.

DT-CWT / ST-CWT dim δL1 δL2 δcos

X ( 1 1 1 1 ) 32640 92.83/93.33 89.83/91.83 91.17/92.00

X ( 4 2 1 1 ) 11136 94.00/93.17 90.17/91.83 91.33/91.67

X ( 8 4 2 1 ) 5760 93.00/92.33 88.67/90.00 89.67/90.17

X ( 16 8 4 2 ) 2880 93.17/90.50 87.50/87.33 86.00/87.17

the Gabor features give 93.83% recognition whereas DT-
CWT and ST-CWT give, respectively, 92.83% and 93.33%
recognition rates when L1 distance measure is used. It
should be noted that with no downsampling, the dimension
of the Gabor feature vector is approximately twelve times
that of DT-CWT or ST-CWT. The same conclusion holds
even when the downsampling factors are high such that
the recognition uses less number of features. With 2880
features, the recognition rates of DT-CWT and ST-CWT
are over 90%, where that of Gabor with 12288 features
falls to 88.33% when L1 distance measure is used. Similar
observations can be made for the other two distance
measures considered. Thus, it can be concluded that complex
wavelet-based representations provide robust signatures for
the face recognition problem. Furthermore, a comparison
between the two complex wavelet transforms reveals that
their recognition rates are similar with the DT-CWT being
slightly better for higher downsampling factors for the L1

distance measure, whereas the ST-CWT is slightly better for
the L2 and cos distance measures.

We next use the derived features together with PCA as a
dimensionality reduction technique to asses the performance
of the complex wavelet-based representations.

Figures 14 and 15 show the face recognition performance
of PCA, Gabor+PCA, DT-CWT+PCA, and STCWT+PCA
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Figure 14: Face recognition performance of the FERET database
using PCA, Gabor+PCA, DT-CWT+PCA, and STCWT+PCA for
the δL1(L1) similarity measure. The recognition rate means the
accuracy rate for the top response being correct.

20018016014012010080604020

Number of features

100

95

90

85

80

75

R
ec

og
n

it
io

n
ra

te

Gabor + PCA
DT-CWT + PCA

ST-CWT + PCA
PCA

Figure 15: Face recognition performance of the ORL database
using PCA, Gabor+PCA, DT-CWT+PCA, and ST-CWT+PCA for
the δL1(L1) similarity measure. The recognition rate means that the
accuracy rate for the top response is correct.

for the δL1(L1) similarity measure using the FERET and ORL
databases, respectively. For the FERET database, PCA applied
on raw face images recorded a recognition rate which was
always less than 79%. The performances of the Gabor+PCA,
DT-CWT+PCA, and ST-CWT+PCA are significantly better
than that of raw PCA. With 100 features, the performance
of ST-CWT+PCA is just over 90%, where Gabor+PCA and
DT-CWT+PCA perform just under 89%. When 200 features
are employed, the recognition rates for Gabor+PCA, DT-
CWT+PCA, and ST-CWT+PCA are, respectively, 88.83%,
88.5%, and 91.67%. These results indicate that CWT-based
features are not as sensitive as PCA to illumination variations
and facial expression changes.

Table 5 summarizes the results for the FERET database
for all the distance measures considered in this paper when

Table 5: Face recognition performance for different approaches
using 200/400 features and FERET database with three different
similarity measures.

Approach δL1 δL2 δcos

PCA 74.17/77.33 78.0/78.17 78.33/78.5

Gabor+PCA 88.83/92.83 89.67/91.17 90.0/91.17

DT-CWT+PCA 88.50/93.0 87.67/89.83 90.5/91.17

ST-CWT+PCA 91.67/93.33 91.5/91.83 91.17/92.0

Table 6: Face recognition performance for different approaches
using 100/200 features and ORL database with three different
similarity measures.

Approach δL1 δL2 δcos

PCA 87.33/88.25 90.0/91.0 91.92/91.75

Gabor+PCA 91.17/93.1 91.33/92.5 93.25/93.59

DT-CWT+PCA 93.59/94.1 94.0/94.0 94.50/94.75

ST-CWT+PCA 93.83/94.59 93.41/94.33 94.67/94.92

200 and 400 features are used. We conclude that com-
plex wavelet representation-based face recognition performs
slightly better than Gabor+PCA and the ST-CWT+PCA does
slightly better than DT-CWT+PCA.

Similar results hold for the ORL database. PCA applied
on raw face images recorded a recognition rate which was
always less than 90%. The performances of the Gabor+PCA,
DT-CWT+PCA, and ST-CWT+PCA are again significantly
better than that of raw PCA. With 100 features, the per-
formances of ST-CWT+PCA and DT-CWT+PCA are close
to each other with 93.83% and 93.59%, respectively, where
Gabor+PCA performed slightly worse at 91.17%. When all
features are employed, the recognition rates for Gabor+PCA,
DT-CWT+PCA, and ST-CWT+PCA are, respectively, 93.1%,
94.1%, and 94.59% with L1 as the distance measure.

Table 6 summarizes the results for the ORL database
when 100 and 200 features are used. We again can conclude
that complex wavelet representation-based face recognition
performs slightly better than Gabor, and the ST-CWT does
slightly better than DT-CWT.

6. COMPUTATIONAL COMPLEXITY ANALYSIS FOR
FEATURE EXTRACTION

In this section, we will analyze and compare the computa-
tional complexity of extracting features using Gabor wavelets
and complex wavelets. Computations refer to the number of
real additions and real multiplications required for extracting
the features of an image. In our analysis, we assume that the
image size is a power of 2 so that the fast Fourier transform
(FFT) can be applied when using Gabor for faster feature
extraction.

Given an N × N image and a Gabor wavelet with an
arbitrary scale and orientation, Gabor wavelet features are
extracted by convolution. The convolution is implemented
by using the FFT, then point-by-point multiplications in
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Table 7: Computational complexity analysis of feature extraction
using Gabor wavelets, DT-CWT and ST-CWT (N2: total images
pixels).

Approach + ×
Gabor wavelets SD(6N2log2N

2+2N2) SD(4N2log2N
2+4N2)

Complex wavelets (32/3)N2L + 2N2 (32/3)N2L

Gain factor : (S = 4,
18.99 13.5

D = 6, L = 10, N = 128)

the frequency domain, and finally the inverse FFT (IFFT).
Assume that the FFTs of the Gabor wavelets are precom-
puted. The FFT of an N × N image requires N2log2N

2

complex additions and 0.5N2log2N
2 complex multiplica-

tions. The IFFT requires the same amount of computation
as the FFT. The point-by-point multiplications involve N2

complex multiplications. Performing one complex addition
requires 2 real additions, while one complex multiplication
requires 2 real additions and 4 real multiplications. There-
fore, feature extraction based on Gabor wavelets requires
a total of 2N2log2N

2 complex additions and N2log2N
2 +

N2 complex multiplications; this is equivalent to a total of
6N2log2N

2 + 2N2 real additions and 4N2log2N
2 + 4N2 real

multiplications. For S scales and D directions, one requires
SD(6N2log2N

2 + 2N2) real additions and SD(4N2log2N
2 +

4N2) real multiplications.
The DT-CWT and ST-CWT have similar computational

complexities and it is equivalent to implementing 2 real
DWTs. Due to the downsampling by 2, the complexity
goes down by a factor of 2 for each successive scale in 1
dimension and by a factor of 4 in 2 dimensions. Assuming
that the 1-dimensional filters implementing the complex
wavelet transform is of length L, in the first level, we have
8N2(L − 1) real additions and 8N2L real multiplications.
Thus, for a complex wavelet transform with S scales, one has
(32/3)N2(L−1)(1−(1/4)S) real additions and (32/3)N2L(1−
(1/4)S) real multiplications. For a scale S > 3, the total
real additions and real multiplications can, respectively,
be approximated as (32/3)N2L and (32/3)N2L. The last
piece of computation is the addition and subtraction of
respective subbands to create the six directional complex
wavelets in each scale. The real additions required for this
task are 2N2. Thus, the complex wavelet implementation
requires (32/3)N2L + 2N2 real additions and (32/3)N2L real
multiplications. Thus, compared to Gabor wavelets, for a face
image of size 128×128, a filter of length 10 and a multiscale
representation with 4 scales and 6 directions, the number of
real additions and real multiplications is reduced by factors
of 18.99 and 13.5, respectively. This reduction becomes
more significant for larger image sizes and more scales.
Table 7 summarizes the results of computational complexity
analysis.

7. CONCLUSIONS

Complex wavelets possess most of the properties of Gabor
wavelets such as good directional selectivity and invariance
to shifts and in-plane rotations and a representation that is

local. They, however, have important advantages: they are
computationally much more efficient and enjoy a much less
redundant representation.

In this paper, we first constructed filters for an approxi-
mately analytic complex wavelet transform in the single-tree
context with good directional selectivity and invariance to
shifts and in-plane rotations much like the Gabor wavelets.
We then systematically investigated the representation and
discrimination power of newly designed wavelets and the
recently developed dual-tree complex wavelets for the face
recognition problem. The resulting complex wavelet-based
feature vectors are as discriminating as the Gabor wavelet
derived features. This conclusion holds even when the feature
vectors are downsampled.

PCA is employed to further reduce the dimensional-
ity of the complex wavelet-based feature space. Extensive
experiments are carried out on standard databases. In all
experiments, complex wavelets performed equally well or
suppressed the performance of Gabor wavelets in recognition
rate when equal number of orientations and scales is
used. With 6 orientations and 4 scales, the performances
of Gabor+PCA, DT-CWT+PCA, and ST-CWT+PCA were
92.83%, 93.0%, and 93.33% for the FERET database and
93.1%, 94.1%, and 94.59% for the ORL database when
L1 distance measure was used. This finding indicates that
complex wavelets can provide a successful alternative to
Gabor wavelets for face recognition. Furthermore, our exper-
iments indicate that ST-CWT performs slightly better than
DT-CWT due to the fact that it has improved directional
selectivity and shift invariance properties.
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