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This paper presents an adaptive motion segmentation algorithm utilizing spatiotemporal information of three most recent frames.
The algorithm initially extracts the moving edges applying a novel flexible edge matching technique which makes use of a combined
distance transformation image. Then watershed-based iterative algorithm is employed to segment the moving object region from
the extracted moving edges. The challenges of existing three-frame-based methods include slow movement, edge localization
error, minor movement of camera, and homogeneity of background and foreground region. The proposed method represents
edges as segments and uses a flexible edge matching algorithm to deal with edge localization error and minor movement of
camera. The combined distance transformation image works in favor of accumulating gradient information of overlapping region
which effectively improves the sensitivity to slow movement. The segmentation algorithm uses watershed, gradient information of
difference image, and extracted moving edges. It helps to segment moving object region with more accurate boundary even some
part of the moving edges cannot be detected due to region homogeneity or other reasons during the detection step. Experimental
results using different types of video sequences are presented to demonstrate the efficiency and accuracy of the proposed method.
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1. INTRODUCTION

Automatic segmentation of moving object is the funda-
mental technique for analyzing image sequence in video
surveillance, video conferencing, multimedia, or real-time
imaging applications. Successful detection of motion helps
to reduce the information redundancy in all of these
applications and thus motion detection has become an active
research issue. A lot of research works have been afforded in
this area and it is still challenging. Details of existing research
works can be found in [1]. One of the typical approaches
for moving object detection is background subtraction where
background modeling is an unavoidable part intending to
accommodate the changes in the environment. However,
most of the background-modeling approaches are complex
and time consuming for real-time processing [2]. Moreover,
these methods show poor performance due to lack of
compensation with the dynamism of real environments [3].

Some researchers use edge information instead of intensity as
edge shows more robustness against illumination variation
and noise [4]. Nonetheless, it is difficult to keep track
of the variations in the environment because of the poor
representation of edges by the existing edge pixel-based
methods.

To get rid of these challenges, some methods do not
utilize any background; instead they make use of temporal
information of consecutive frames [5, 6]. Because of region
homogeneity and high sensitivity of pixel intensity to
noise, these methods show poor performance in detecting
moving object region properly. With compare to region-
based methods, edge-based methods are robust, as the dif-
ference of consecutive frames produces significant difference
only on the boundary region of moving object [2, 7, 8].
However, these methods treat each edge point independently
without carrying shape and neighborhood information and
thus it is not convenient for matching, segmentation, and
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FiGure 1: Illustration of problems in existing methods. (a) I,,-;; (b)
L; (¢) Inw1; (d) left difference image edge map; (e) right difference
image edge map; (f) scattered moving edges obtained from exact
matching of left and right difference image edge maps; (g) moving
edges obtained using more than three consecutive frames; (h)
moving edges obtained allowing some distance threshold during
matching; (i) edges expected to be extracted for moving object in
I; (j) edges of left difference image edge map within the region
of moving object in I,;; (k) edges of left and right difference image
edge maps within the region of moving object in I,; (I) missing of
moving object region in three-frame based method due to region
homogeneity.

tracking. Due to illumination variation, quantization error
and speckle error, edge pixel may change its location in
subsequent frames which is termed as edge-localization
error. Hence, by pixel-wise matching, these methods result
in scattered moving edges and show frequent failures in
detecting moving object.

Figure 1 illustrates some of the limitations of existing
methods. Figures 1(a)-1(c) show three successive frames:
previous (I,—1), current (I,), and next (I,+1). Left and right
difference image edge maps computed from the difference
images of these three frames are shown in Figures 1(d) and
1(e), respectively. Figure 1(f) shows the scattered moving
edges obtained by exact matching among difference image
edge maps. This deterioration is resulted from the positional
variations of edge points in different frames. Some methods
utilize more than three successive frames and accumulate
moving edge information of I, to improve the detection
result [2] as shown in Figure 1(g). However, these methods

require more computation and still suffer from scattered
edges due to edge localization error. Figure 1(h) shows
the moving edges, where matching between two pixels is
considered if the distance is not greater than two. Still the
detected moving edges are scattered and deviate from the
ground truth of the moving object as shown in Figure 1(i).
Existing three frame-based methods perform worse while
detecting objects with slow movement in two successive
frames. This is due to the insignificant gradient values in
the respective edge location in overlapping region of the
difference image. Moreover, edges in the overlapping region
in difference image edge map deteriorate in size and shape
than that in current image, I,. So, it is difficult to recover
the actual moving edges in I, as shown in Figure 1(i) by
matching left and right difference image edge maps. For the
better visualization, the edges of left and right difference
image edge maps within the region of moving object in I,
are shown in Figures 1(j) and 1(k), respectively. Figure 1(1)
shows the missing of moving object region in the difference
image obtained by subtracting two successive frames as
shown in Figures 1(a) and 1(b), respectively. This problem
occurs due to the region homogeneity which discourages
region-based background-independent approaches to detect
moving object.

Considering the above-mentioned problems, we extract
moving edges from current image while removing the
background edges by comparing with spatiotemporal edge
information of three successive frames. We represent edges
as segments, where all the edge pixels belonging to a
segment are considered as a unit and processed together.
A distance transformation-based flexible edge matching is
proposed which is more robust than pixel-based matching.
Segment-based representation of edges and flexible edge
matching make the system efficient in terms of accuracy
and time, and reduce the occurrence of scattered moving
edges significantly. The proposed method is adaptive to
the illumination variation as it uses most recent frames.
A watershed-based algorithm is utilized which makes use
of the extracted moving edges to segment moving object
region with more accurate boundary. It ensures meaningful
representation of moving objects, which is essential in
video surveillance and many other image content-based
applications in multimedia communication.

2. RELATED WORKS

A good number of research efforts have been reported in
moving object detection during last few years. Background
subtraction-based methods are the typical approaches for
moving object detection because of its simplicity [9-11].
However, intensity of background pixel frequently changes
due to object motion, illumination variation, or noise effect.
To deal with these dynamisms, background subtraction-
based methods need to incorporate automatic background
estimation and update methods [3, 12, 13]. These methods
usually utilize temporal change information or optical flow-
based information to identify the appropriate pixel values
in a time series for the background model, which are
complex and time consuming for real-time processing. Some
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optical flow-based approaches are used for moving object
detection [14, 15]. For these methods, intensity changes are
important cues for locating object movement in time and
space. However, these methods may result false detection
if the temporal changes are generated by noise or other
external factors like illumination drift due to weather change.
Moreover, these methods are computationally expensive.
Methods that utilize temporal differencing [5, 6] use
pixel-wise difference between two/three consecutive frames.
Though these methods are very adaptive to the change of
environment, it shows poor performance in extracting entire
relevant feature pixels because of region homogeneity and
excessive responsiveness of pixels to the noise.

In [2, 7, 16], authors propose edge-based methods for
moving object detection utilizing double edge maps. In
[16], one edge map is generated from difference image of
background and I,. Another edge map is generated from
difference image of I, and I;+;. Finally, moving edge points
are detected applying logical OR operation on these two edge
maps. Due to illumination variation, random noise may vary
in the background which may cause false detection of edges
in the edge map. If any false edge appears in anyone of
the edge maps, it is finally conveyed to the detection result
because of applying logical OR operation on the edge maps.

In [7], one edge map is computed from the difference
image of I,_; and I,, and another edge map is computed
from I, and I,+1. Then the moving edges of I,, are extracted
by applying logical AND operation on these two edge maps.
However, due to random noise, edge pixel positions may be
changed to some extent in consecutive frames. Moreover,
edges located in the overlapping region of difference images
are deteriorated due to insignificant gradient values of
that region. Hence, exact matching like AND operation
is not sufficient to extract accurate shape information
of moving object. Moreover, pixel-based representation
of edges is not suitable for flexible edge matching and
tracking.

Some edge-based methods utilize more than three suc-
cessive frames to accumulate the edge information of nth
frame in the difference image. In [2], initially a coarse
moving edge representation is computed from a given frame
and two equidistant frames, and later on nondesired edges
are removed by means of a filtering. Finally, iterative accu-
mulation of detection result obtained with varying distance
images is used in this method to strengthen the respective
moving edge points of current image. However, this is
time consuming and requires many preceding/succeeding
frames in consideration which is not reasonable for real-time
detection.

A pseudogradient-based moving edge extraction method
is proposed in [17]. Though this method is computationally
faster but its background is not efficient enough to take
care of the situation when a new object arrives in the scene
and stops its movement. In this stage, a stopped object is
continuously detected as a moving object. As no background
update is adopted in this method, it is not much robust
against illumination change. Additionally, this method also
suffers with scattered edge pixels of moving objects. The
proposed method intends to address the drawbacks of
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F1GUrEe 2: Flow diagram of the proposed method.

the existing pixel-based methods by introducing an edge
segment-based fast and robust solution for moving object
detection.

3. THE PROPOSED METHOD
3.1. Overview

Figure 2 illustrates the overall flow diagram of the proposed
method. The proposed method makes use of three most
recent frames I,,_y, I, and I,+; for moving edge detection,
and later on the detected edges are utilized for segmentation
of moving object. Since this method does not require any
background, it is free from complex and time-consuming
background modeling technique. Moreover, it is adaptive to
the change of environment because of using most recent
frames.

In the first step of the proposed method, edges are
extracted from current image and represent as segments to
generate the current image edge map (E,). In segment-based
representation, all the edge pixels belonging to a segment are
processed together instead of considering each of the edge
pixels individually. It helps to take advantage of robust edge
matching and shape information for moving edge detection.
It also significantly reduces the occurrence of scattered edge
pixels in the detection result.

To identify the moving edges from E,, two edge maps:
left difference image edge map DE,_,, and right difference
image edge map DE,, ,+; are computed. DE,,_, , and DE,, 4+
are utilized to generate distance transformation images
DTy, and DT+, respectively. Distance transformation
image contains the distance values from the nearest edge
points of the respective edge map. It provides a linear
progression of distances from edge points and is used for
edge matching to detect moving edges. An accumulated
distance transformation image DT, is computed from
DT,_1,, and DT, ,11. It contains the lowest distance value in
the location of the difference image edge maps. This works
as an accumulator of gradient values of two difference image
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FiGure 3: Illustration of advantage in using DT, for matching. (a)
Infl; (b) In; (C) In+1; (d) DTnfl,n; (e) DTn,n+l; (f) DTn

edge maps and reduces the loss of moving edge information
on DT image due to overlapping of moving objects in the
consecutive frames. It provides more information of moving
edge location in current frame. It is to be noted here that
minor movement of camera between successive frames is
adjusted before obtaining the difference image, using the
extracted edge information as described in our previous
work [18, 19].

Figure 3 illustrates the advantage of using DT, during
matching. Figures 3(a)-3(c) show three consecutive frames,
where Figures 3(d)-3(f) show DT,_1,,, DT pu+1, and DT,
respectively. For better visualization, we focus only on the
moving object region in distance images and scale the
inverted distance values in range 0 ~ 255. Region with
brighter portion of DT images represents more likelihood
of containing moving edges. By accumulating DT, ,
and DT 41, DT, recovers gradient information on the
overlapping region to some extent. It improves the accuracy
of edge matching. It also helps to detect moving edges even
in slow movement, where the existing three frame-based
detection methods usually fail.

Moving edges are detected from E,, applying edge
segment-based matching by making use of DT,. However,
this process may detect some of the background edges
as moving edge because of accumulating more gradient
information in DT,. These background edges are removed
in the postprocessing step utilizing DE,_;, and DE, ,+
with a variability test of matching confidence (DM). After
detection, moving edges are grouped together, where each
group represents a moving object [20]. Each group of
moving edges is used to generate the region of interest
(ROI). Watershed algorithm with reduced oversegmentation
problem is applied on ROI of current image. Moving edges
and gradient infimum values of two difference images are
used by an iterative algorithm which removes background
segments from ROI to obtain moving object regions. Since
the proposed method is applied only on current image
ROI, it is faster and applicable for real-time detection. The
segmentation result is more accurate because of applying

watershed algorithm and it is suitable for content-based
applications, where motion information is important to
increase the efficiency. The proposed method is described in
detail in the following subsections.

3.2. Edge detection and representation as segment

Three edge maps: E,, DE,_;, and DE,;, are utilized in
the proposed method for moving edge detection. E, is
computed from I, by using Canny edge detection algorithm.
Two difference image edge maps, DE, -1, and DE, ,+1, are
obtained utilizing I,,_1, I;, and I ;4 as follows:

DEx,x+1 :¢(VG*|Ix_Ix+1|)> X e {71—1,1’1}, (1)
where ¢, V, and G represent Canny edge detector, gradient
operator, and Gaussian mask for noise filtering, respectively.
Though we use fixed camera for moving object detection,
minor displacement of camera frequently occurs in real
application and it is adjusted using distance transformation-
based translation with the help of edge segments. Camera
adjustment procedure is described in detail in our previous
work [18, 19]. Extracted edges from I, are represented as
segments to form E, utilizing an efficiently designed edge
class. In this representation, an edge segment consists of
a number of neighboring consecutive edge pixels, where
edge operations are performed on whole segment instead
of individual edge pixel. Detail description of the edge class
can be found in [18, 21]. This representation provides the
shape information of an edge and allows local geometric
operation. Segment-based representation of edges helps to
incorporate an efficient and flexible edge-matching algo-
rithm with higher accuracy and moderate computation time.
Since we extract edges from I, and apply segment-based
flexible edge matching, detected moving edges preserve the
shape information and missing of edge pixels is reduced
significantly.

Figure 4 illustrates the robustness and suitability of
using edge segment-based approach over edge pixel-based
approach during matching. Figures 4(a) and 4(b) show two
edge images of an object taken at different times. Due to
edge localization error, there are some displacements of edge
pixel position in these two different frames. As a result,
pixel-based matching is not suitable in this situation and
produces scattered edge pixels in the detection result which is
shown in Figure 4(c). Value of disparity threshold (matching
flexibility) was set to 1.5 for this illustration. However, in
the case of segment-based representation, no edge pixels are
missed as all the pixels belonging to a segment are processed
together. Result of segment-based matching is shown in
Figure 4(d). It is to be noted that about 17% of the edge pixels
are missed in the case of pixel-based matching as compared
to segment-based matching.

3.3. Moving edge detection

Moving edges are detected from E, by eliminating back-
ground edges using DE,_;, and DE,,;. Equation (1) is
used to compute DE,_;, and DE, .1 from the difference
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FIGURE 4: Advantages of segment-based matching. (a) Edge image
of an object; (b) edge image of the same object at different time; (c)
result obtained through pixel-based matching; (d) result obtained
through segment-based matching.

images of consecutive frames. These two edge maps can
also be computed by differencing edge points of E,_;, E,,
and E,;;. However, edge differencing approach is more
noise prone as random noise in one frame is different from
that of the successive frame [16]. Hence, (1) is utilized to
generate difference image edge maps instead of utilizing
edge differencing approach. Still, shape of edges on the
overlapping regions in DE,_; , and DE,, ,+1 changes to some
extent than that in E,. Thus, existing three frame-based
methods that match two difference image edge maps fail
to extract accurate shape information of moving object. To
solve this problem, we detect moving edges from E, by
making use of distance transformation images of DE,_;,
and DE, 1, instead of comparing these two difference
image edge maps directly. Since distance transformation
image provides a linear progression of distances from the
edge points, the combined distance transformation image
provides better information to extract moving edges using
E,. Moreover, segment-based representation of edges and
flexible edge matching increase the robustness in terms
of accuracy and computational speed. Figure 5 illustrates
some of the intermediate steps of moving edge detection
process. Figures 5(a)-5(c) show I,_i, I,, and I,.1, where
E,, DE,_,,, and DE, .+ are shown in Figures 5(d)-5(f),
respectively. Distance transformation and edge matching
procedure utilizing E,;, DE, 1 ,, and DE,, 4 are described as
follows.

3.3.1. Distance transformation

During edge matching, one edge map is converted to distance
transformation image, DT and another edge map is overlaid
on it to compute disparity in matching, DM for each of the
edge segments. In DT, each pixel contains the distance to

the nearest edge pixels. Since the true Euclidean is resource
demanding in terms of time and memory, therefore an
integer approximation (3/4 Chamfer [22]) is used. Thus,
distance image can be generated in linear time without
considering any floating point operation.

The basic idea behind DT image generation is that global
distances in the image are approximated by propagating local
distances. This transformation is performed in three steps. In
the first step, all the edge pixels are initialized with zero and
other pixels are initialized with high value. Second stage is
accomplished with a forward pass that scans the image from
left to right and top to bottom and update the distances as
follows:

DTli,j] = min (DT[i — 1][j — 1] + 4, DT[i — 1][j] +3,
DT[i—1][j+ 1] +4,DT[i][j — 1] + 3,

DTIi][j1).
2)

Finally, a backward pass scans the image from right to left
and bottom to top and modifies the DT image as follows:

DTli, j] = min (DT[i+1][j + 1] +4, DT[i+ 1][j] +3,
DT[i+1][j — 1] +4,DT[i][j + 1] + 3,

DTIi][}]).
(3)

Since, this algorithm uses only two passes to generate DT
image, it is faster and can be computed in linear time. Using
this algorithm, DT, and DT, are computed from
DE,_, and DE,,;, respectively. However, insignificant
gradient value in the overlapping region may result failure
of detecting moving edges in DE,,_; ,, and DE,, ,,+;. Hence, to
have more information in the distance image, we compute an
accumulated distance image DT, as depicted in the following
equation:

DT,, = min (DTn—l,naDTn,n+1)- (4)

3.3.2.  Computation of disparity in matching

DT,_,, contains moving edge information of I,,_; and I,,, as
it is computed from the difference image of these two frames.
Similarly, DT}, ,+1 contains moving edge information of I,
and I,,4. Therefore, DT, contains moving edge information
of I,_1, I, and I,+1. Moving edges in I, are detected by
making use of these three DT images, where DT, is used first
to detect the coarse moving edge list, and later on DT,_;
and DT+ are used for noise filtering.

During matching, edge segments in E, are overlaid on
DT, and respective distance values are accumulated. DM for
an edge segment is computed by taking a normalized average
of distance values in DT, that are hit by the edge segments of
E,,, shown as follows:

1 k 2
Ez{dist(li)} , (5)

i=1

DM =

where k is the number of edge points in the [th edge
segment of E, and dist(/;) is the distance value at ith edge
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Figure 5: Ilustration of the proposed moving edge detection
method. (a) I, 15 (b) I;; (¢) Lns1; (d) Eps (e) DE, 143 () DE, n+15 (g)
moving edges obtained from pixel-based matching of DE,_,, and
DE, .15 (h) coarse moving edge list; (i) moving edges after noise
filtering.

point of /th edge segment. A segment is aligned with the
distance transformation image by translation in a small
search window. As we represent edges as segments, this
translation is performed easily and very fast by just adding
the necessary displacement [18] with each of the edge points.
The translation which results in the lowest DM value is finally
selected.

During matching, two similar edge segments produce a
lower disparity value DM. An edge segment [ in E, with
distance image DT, having DM[I] < 7 is considered as
moving edge and enlisted in the coarse moving edge list
(CMEL). Here, 7 is the disparity threshold and we use
it to allow some flexibility during matching. Flexibility is
allowed as edges change their location in different frames
due to noise, illumination variation, and quantization error.
Edges in the overlapping region of difference image also
experience size, shape, and positional variations than that
in current frame (as shown in Figure 1). Moreover, if the
object movement is not very significant, low gradient values
in the overlapping region cause missing of some moving
object pixels in the difference image edge maps. We make
use of DT, along with 7 to handle this variation of edges
during matching. However, selection of a very high threshold
value for 7 might allow an edge segment E,, to be matched
with a different edge in the difference image edge maps and
thereby increases false positive in the detection result. On the
other hand, selection of a very low threshold value might
miss some of the moving edge segments to be matched with
and thereby increases false negative. In our implementation,
we set 7 = 1.5 empirically for all datasets as it gives
comparatively better result in most of the cases.

3.3.3.  Noise filtering

CMEL enlists the edge segments of E, that have higher
possibility of being moving edges in I,. However, some
background edges of I,, may erroneously enlisted in CMEL
due to excessive incorporation of moving edge information
in DT,. Hence, further filtering procedure is applied to make
the detection result more accurate. We perform a variability
test for each of the edge segments enlisted in CMEL for the
final classification as moving edge. Steps of variability test for
noise filtering are as follows.

(i) Select an unclassified edge segment from CMEL.

(ii) Use (5) to compute disparity of matching DM, ,
and DM+ utilizing DT,_1, and DT, 41, sepa-
rately.

(iii) If (|[DM,—1,y — DMy n411) > o, then it is discarded
from CMEL. Here, ¢ is a threshold to allow some
flexibility.

(iv) Repeat steps (i) to (iii) until all the edge segments of
CMEL are considered.

In noise filtering, our intension is to observe the variation
of DM,_1, and DM, . for each of the edge segments
in CMEL. Since moving edges of current image also exist
in both DT,_,, and DT, ,+1, absolute difference of their
matching confidence value is expected to be zero in the ideal
situation. However, due to noise and edge localization error,
some flexibility is needed and hence we use o. But selection of
high value for o might causes false matching of edges whereas
very low threshold might cause missing of true moving edges
in the final detection result. Considering the above issues, we
set 0 = 1.5 empirically in our experiment. Figure 5(h) shows
the edges initially enlisted in CMEL, where the final detection
result after noise filtering is shown in Figure 5(i). To show the
advantages of segment-based matching, we also present the
result of pixel-based matching in Figure 5(g), where most of
the moving edge pixels are missed due to edge-localization
error.

3.4. Segmentation of moving object

In segmentation, moving regions are extracted from moving
edges by using a watershed-based iterative background
removal technique. Detected moving edges do not provide
the complete boundary of moving object. Thus, a separate
algorithm is required for segmentation. The segmentation
algorithm is applied on ROI of I,, and it makes use of moving
edge segments and gradient infimum values of difference
image. Moving object segmentation procedure is described
in the following subsections.

3.4.1. ROl detection and segmentation

Rectangular bounding box of moving edges is used to
determine the ROI of moving object for segmentation.
Figure 6(a) shows the detected moving edges, where the
defined ROI using these edges is shown Figure 6(b). Use
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FIGURE 6: ROI detection and segmentation. (a) Moving edges; (b)
ROI; (c) gray-level topographic surface; (d) flooding process and
dam building.

of watershed only on ROI helps to reduce processing time
significantly. Since watershed has been proven to be very
useful and efficient for image segmentation [23], it extracts
more accurate moving object region during segmentation.

In watershed algorithm, image is split into areas known
as catchment basins based on the topology of the image.
Catchment basin is defined as the region over which all
points flow “downhill” to a common point as shown in
Figure 6(c). The local minima (black regions) and maxima
(dotted line) of the gray-level data yield catchment basins
and watershed lines (dam), respectively. An efficient water-
shed transformation is flooding process, where only the dams
emerge, defining the watershed of the image [23] as shown
in Figure 6(d). However, watershed segmentation frequently
results oversegmented image with hundreds or thousands
of catchment basins; each corresponds to a minimum of
the gradient, some of which may be due to small variations
caused by noise. Considering the accuracy and efficiency,
we have adopted Vincent-Soilly watershed algorithm [23]
in our proposed method for segmentation. To solve the
oversegmentation problem, we replace the gradient value by
zero, where it is less than a particular threshold, T;. Ty is
determined by mean of the gradient image minus one fourth
of its standard deviation. Thus, around fifty percent [24] of
the gradient values are replaced with zeros, which reduces the
oversegmentation problem significantly.

3.4.2. Computation of gradient infimum value

Gradient infimum value is computed from the gradient val-
ues of difference images of consecutive frames. It is utilized
for making decision on watershed segments for classification
as foreground or background. Left gradient image (V,—1,,)

and right gradient image (V,,.+1) are computed using the
following equation:

Vixsl = VG* |Ix — Lt |> x € {n—1,n}t (6)

Due to the above formulation, high gradient values in V,,_; ,
exist only in the region, where moving object boundaries
exist in I,—; and I,. Similarly, high gradient values in
Vuns1 exist on the boundaries of moving object of I,
and I,4+;. Hence, to obtain high gradient values only on
moving object boundary region in I,, gradient infimum
values, V;,r is computed from V,, 1, and V,, ;1. To achieve
more robustness, pixels including their eight neighbors are
considered while computing V;,s as shown in the following
equation:

Vinf[i][]]

= max
i—lek<it], j-lelejtl

min (Vo1 [k [1], Vier,a K] (1]).
(7)

3.4.3. lterative procedure for background removal

In background removal technique, it is tried to remove the
segments adjacent to the outer boundary of selected region in
every step if it is identified as background. At first iteration,
segments adjacent to the outer boundary of ROI are selected
for consideration. If the common boundary portion of
the selected segment and the outer boundary belongs to
a moving edge, the segment is marked as foreground.
Otherwise, gradient values in the position of boundary pixels
of selected segments are checked from V. If high gradient
values (greater than or equal to threshold, T5) exist in more
than NB * u pixels, the segment is marked as moving object
segment. Here, NB is the number of boundary pixels in a
segment and p is an adjusting parameter. In ideal situation,
high gradient values are expected to exist in the regions of
Vinf,» where boundary of moving object region exists. Due
to noise, illumination variation and existence of low contrast
between foreground and background regions, high gradient
values do not exist in many boundary pixel positions of
moving object region. Moreover, insignificant interframe
displacement of moving object in the consecutive frames also
reduces high gradient information on the boundary region.
Hence, to allow some flexibility during segment boundary
matching, we set y = 0.75 empirically.

If the boundary pixels of the selected segment do not
satisfy the above condition, it is considered as background
segment. At the end of the first iteration, all the background
segments neighboring to ROI are removed and the outer
boundary is updated as well. In the following iterations, adja-
cent segments of updated outer boundary are selected and
classified as foreground or background similarly. However,
the segments classified as foreground in the previous step are
not taken into consideration. This iterative process continues
until no further outer regions are classified as foreground.
In this stage, the remaining segments represent regions of
moving object. In the case of computing the value of T, we
utilize the same procedure as like T;. The convergence of the
algorithm depends on the amount of background segments
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presented inside bounding box after applying watershed
segmentation. The background segment removal procedure
is done as follows.

(i) All the segments are initialized as unmarked and
outer boundary pixels of ROI are enlisted as outer
boundary list, Log.

(ii) Segments neighboring to outer boundary and not
marked yet are enlisted in current segment list, Lcs.

(iii) A segment is selected from L¢s for marking. If the
common boundary portion of the selected segment
and Lop belongs to a moving edge, the segment is
marked as foreground. Else all its boundary positions
are checked inV, ¢. If more than NB * y pixels in V¢
contain high gradient values, the segment is marked
as foreground. Otherwise, the segment is marked as
background.

(iv) All the segments marked as background are removed.
Log is updated by removing the portion common to
the boundary of the removed background segment
and including the rest of the boundary of removed
segment. L¢s is updated accordingly.

(v) Stop the process and constitute moving object from
remaining segments if Log is not updated any more
in step (iv). Repeat step (ii) to step (iv) for all the
segments in Lcs.

Figure 7 illustrates the steps of the proposed segmentation
method. Figure 7(a) shows the segmented ROI of cur-
rent image, where Figure 7(b) shows only watershed lines.
Figure 7(c) shows V., where high gradient values exist
on the boundary region of moving object. Initially, Loy
contains the pixels of bounding box of ROI and is shown
in Figure 7(d). The shaded segments neighboring to L
in Figure 7(e) are selected for Lcs in the first iteration.
The segments belonging to white region are marked as
background and thus removed at the end of first iteration,
depicted in Figure 7(f). Updated Loy, is shown in Figure 7(g)
and thereby, its neighboring segments are enlisted in L
for consideration in second iteration. Figures 7(h) and
7(i) show the regions enlisted in L. and the segmentation
result in second iteration. Figures 7(j) and 7(k) show the
updated outer boundary and selected segments neighboring
to Lob of third iteration, respectively. Figure 7(1) shows the
segmentation result obtained in the final iteration. From the
result, it can be noticed that watershed algorithm is effective
to extract the complete and more accurate boundary of
moving object.

4. RESULTS AND ANALYSIS

Experiments were carried out with several video sequences
captured from indoor as well as outdoor environment to
verify the effectiveness of the proposed method. We utilized
a system with Intel Pentium IV 1.5GHz processor and
512 MB of RAM. Visual C++ 6.0 and Multimedia Technology
for Educational System (MTES [25]) were used as of our
working environment tools. The above system can process
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FIGURE 7: Segmentation of moving object from moving edges.

7 frames/second if the frame size is 320 x 260. Various image
sequences are utilized to investigate the performance of the
proposed method in different situations. Obtained results are
evaluated in two ways: subjective evaluation and quantitative
evaluation. In the case of subjective evaluation, detected
moving edges and segmented moving object are visualized
and compared with the results obtained by other related
edge-based methods. As for the quantitative evaluation, we
analyze the accuracy of the detected moving edge points
and these data are also compared with other methods to
investigate the robustness of the proposed method.

4.1. Subjective evaluation

Figure 8 shows the detection results obtained by the pro-
posed method in “Hall Monitor” sequence and a compar-
ison with two standard reference-independent moving edge
detection methods. Figures 8(a)—8(c) show three consecutive
frames, Iy, L7, and L, respectively. Figure 8(d) shows the
detection result using the method proposed by Dailey et al.
[7] (DC), which uses frame differences of three consecutive
frames followed by an AND operation for moving edge
detection. However, in the difference image edge maps,
edges change their shape (deteriorated) to some extent due
to extracting edges from the difference image. Moreover,
illumination variation and noise also cause edge localization
error. Hence, exact matching like AND operation fails to
produce better result in real scenario.

Sappa and Dornaika [2] (SD) tries to solve the problem
by considering a combination of m frame pairs equidistant
from current frame. Figure 8(e) depicts the result obtained
by this method, where value of m is 2. This iterative
solution improves the result in some extent but increases
the processing time significantly due to the usage of more
future and preceding frames. This method still results in
scattered moving edges because of pixel-based processing.
The proposed method does not suffer with the problem
as edges are extracted as segments from current image
and flexible matching is used to obtain the moving edges.
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(g) (h) (i)

FIGURE 8: Detection and segmentation of moving object in “Hall
Monitor” sequence. (a) Lig; (b) Lz; (¢) Ls; (d) detected moving
edges of I;; by DC; (e) detected moving edges of I; by SDj
(f) detected moving edges of I; by the proposed method; (g)
segmented moving edges by of I,; the proposed method; (h)
moving edges of Iig by the proposed method; (i) segmented moving
object of I45 by the proposed method.

Figure 8(f) shows moving edge detection result using pro-
posed method whereas Figure 8(g) shows the segmentation
result. Figures 8(h) and 8(i) show the moving edge detection
and segmentation result of Ig by the proposed method.

Figure 9 illustrates the performance of the proposed
method with the change of illumination. Figure 9(a) shows
the background frame. Figures 9(b) and 9(c) show Is;
and Is3 in different illumination conditions (more bright).
Figure 9(d) shows the result obtained by the method
proposed by Kim and Hwang [16] (KW), where many
background edge pixels are also detected as moving edges.
This is due to the inefficiency in updating background
to adapt with the illumination changes in KW. However,
the proposed method works with the most recent frames.
Thus, it is capable of adapting with the illumination change
without any requirement of background update. Figures 9(e)
and 9(f) show the moving edge detection and segmentation
result, respectively, by the proposed method.

Figure 10 shows that the proposed method is robust
against slight movement of camera. Figures 10(a)-10(c)
show three consecutive frames: Ipss, Ls6, and Ls7, respec-
tively. Frames Lss, Irss, and Ls; have movement of 2, 3,
and 4 pixels with respect to the background along the
upper left direction. Thus, each pair of consecutive frames
has movement of 1 pixel. Figure 10(d) is the frame Ips;
having similar movement of frame I,s5. These displacements
were manually adapted to illustrate the robustness of the
proposed method. Figure 10(e) shows the result obtained
by DC. It is noticeable that many background edge pixels
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FIGURE 9: Performance with the change of illumination. (a)
Background; (b) Isy; (¢) Is3; (d) detected moving edges of Is; by
KW; (e) detected moving edges of Is3 by the proposed method; (f)
segmented moving object by the proposed method.

are detected as foreground. Due to camera movement,
background edge pixels of one frame cannot cancel out that
of other frame during difference image edge map generation.
The result is even worse when previous (Figure 10(a)) and
next (Figure 10(d)) frames have similar movement with
respect to the current frame. In this case, AND operation
induces most of the background pixels in the detection
result. This result is shown in Figure 10(f). The result
obtained by KW is shown in Figure 10(g). Due to camera
movement, background edge pixels cannot cancel out the
background edge pixels in current frame. Thus, difference
image edge map contains some of the background edge
pixels which cause false detection in the final detection
result. However, our method overcomes this problem as we
align different successive frames before obtaining difference
image and apply a flexible matching for each of the edge
segments of current image which can tolerate the minor
movement of camera in video sequence. The result obtained
by the proposed method is shown in Figure 10(h), where
Figure 10(i) shows the segmentation result of moving object.

Figure 11 presents experimental results for moving edge
detection and segmentation of moving objects from “Hall
Monitor” and “Highway” sequences to illustrate the com-
prehensiveness of the proposed method in dynamic envi-
ronment. Figures 11(a)-11(f) illustrate the result obtained
from “Hall Monitor” sequence, where background is much
cluttered and high level of noise is present. Figures 11(a)
and 11(d) show I133 and Lo, respectively, of “Hall Monitor”
sequence. Figures 11(b) and 11(e) show the corresponding
moving edge detection results, where segmentation results
are shown in Figures 11(c) and 11(f), respectively. Fig-
ures 11(g)-11(1) show the detection results for “Highway”
sequence. Figures 11(g) and 11(j) show I36 and Is; whereas
Figures 11(h) and 11(k) show the corresponding moving
edge detection result. Figures 11(i) and 11(1) show the
final segmentation result, respectively. It is to be noted
that in Figure 11(j) top right and top left vehicles are
missed to be detected. “Highway” sequence is challenging
with background movement and cluttered scene. Moreover,
interframe displacement of some cars on top of the images is



10

EURASIP Journal on Advances in Signal Processing

=T

e e M
R %g s

o]

Al

g

o

7

2

(8) (h) @

FiGure 10: Results illustrating the performance in camera move-
ment. (a)-(c) Frames ILss, Lss and Ls; with different camera
movement, respectively; (d) frame Ls; having similar movement
with frame Iss; (e) result obtained by DC using frames in figures
(a), (b), and (c); (f) result obtained by DC using frames in figures
(a), (b), and (d); (g) result obtained by KW; (h) result obtained by
the proposed method; (i) segmentation result.

very insignificant, which results in less gradient information
in the difference image edge maps to detect moving edges. As
a result, some of the moving edges are missed to be detected,
which eventually results in the missing of moving objects.

Figure 12 illustrates the segmentation result of the
proposed method to comprehend its robustness even in
the absence of some moving edge pixels in the detection
result. Segmentation result of the proposed method is
compared with the result obtained from VOP extraction
method proposed by KW. In KW, moving object regions
are segmented out by horizontal and vertical scanning
followed by morphological operation. Figure 12(a) shows
the edge detection result by KW. Since moving edges form
almost complete boundary of the moving object, VOP
extraction method with the help of morphological closing
(with 9 X 9 structuring element) extracts moving object
region effectively as shown in Figure 12(b). In such situation,
the proposed method also works well as shown in Figures
12(c) and 12(d), respectively.

However, due to the presence of low contrast between
foreground and background in the scene or in presence
of illumination variation or noise, moving edge detection
result may be deteriorated which may eventually degrade
the segmentation result as well in KW. Figures 12(e) and
12(i) show moving edge detection result for two different
experiments by KW, where moving edges do not form com-
plete boundary. As a result, horizontal and vertical scanning-
basedVOP extraction method fails to extract moving object
region properly as shown in Figures 12(f) and 12(j).
Segmentation result of this method is largely dependent on
extracted moving edges and the size of the morphological
operator. Figures 12(h) and 12(I) illustrate the moving

S

FIGURE 11: Results obtained from “Hall Monitor” and “Highway”
video sequences by the proposed method. (a) I 33 “Hall Monitor”;
(b) edge image of Ij33; (c) segmented moving object of I;33; (d)
Lo “Hall Monitor”; (e) edge image of Lo; (f) segmented moving
objects of Ljo; (g) Iz of “Highway”; (h) edge image of I3 (i)
segmented moving object of I3¢; (j) Is; of “Highway”; (k) edge image
of Ig;; (1) segmented moving objects of ;.

object segmentation result by the proposed method whereas
respective moving edges are shown in Figures 12(g) and
12(k). In case of moving edge detection result, some of
the edges were missed as well. Since, we utilize watershed
segments of current image ROI with the gradient infimum
value instead of relying only on moving edges, the proposed
method segment out the moving object region properly even
in such challenging environment.

4.2. Quantitative evaluation

As for the quantitative evaluation, the accuracy of detected
moving edges is determined, where ground truth is obtained
by extracting moving edges manually. This evaluation is
done using two criteria: precision and recall, defined in the
following equations:

Actual moving edge pixels extracted

Precision —
FECION = o tal number of edge pixels extracted (8)
Actual moving edge pixels extracted
Recall = - .
Total number of acutual moving edge pixels
)
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FIGURE 12: Segmentation of moving object. (a), (e), (i) Moving edge
detection results by KW; (b), (f), (j) segmented moving objects
of corresponding edge images by KW; (¢), (g), (k) edge image
of detected moving object by the proposed method; (d), (h), (1)
segmented moving object of corresponding detected edge image by
the proposed method.

Precision tends to evaluate the accuracy of the detected
moving edges, while recall is used to measure how much
of the actual moving edges are extracted by a particular
method. Precision also helps to determine the number of
nonmoving edge pixels detected as moving edges whereas
the second parameter, recall, provides the quantity of moving
edges missed during the detection process.

Figure 13 shows the precision of detected moving edges
by the proposed method. For comparison, precision values
for KW and DC are also included. Results of five different
experiments each having 12 frames are included here, where
first two experiments are done for the image sequence
obtained in indoor environment. As indoor environment is
more challenging than outdoor environment, the results are
comparatively a bit worse than that in outdoor sequence.
Precision of the proposed method is better than other
approaches. Flexible edge matching based on distance trans-
formation and segment-based representation of edges of
current image contributes to this improvement. Moreover,
we apply a further refinement process on the detected coarse
moving edges to get rid of background noisy edge segments.
Results of experiment 5 are comparatively worse than that in
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FIGURe 13: Precision of detected moving edges by different
methods.

P—
153
S
0.6
0.5 T T T T T
1 2 3 4 5
Experiment
—— KW
—e— Proposed
-v= DC

FIGURE 14: Recall of detected moving edges by different methods.

two other outdoor experiments due to frequent variations of
scene constituent in the busy road scene and noise.

Figure 14 shows the values of recall by different methods.
Benefit of segment-based representation is clearly visible here
as recall is higher for the proposed method in comparison
to others. Due to the individual participation of edge pixel
in matching, many edge pixels are missed to be detected.
These results in scattered moving edges which eventually lead
lower recall value for KW and DC. Degradation of result
by DC occurred due to the loss of moving edges through
matching by AND operator. Because of false matching, some
of the moving edge pixels are classified as background and
removed in detection process, which results in degradation of
recall value in some extent in the proposed method. Some of
the moving edges are also removed during postprocessing to
filter out noisy edge segments. However, overall recall value
is satisfactory considering the dynamism of environment and
the obtained precision value together.
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5. CONCLUSIONS

The proposed method presents a novel solution for moving
object segmentation which is computationally efficient and
suitable for real-time automated video surveillance system.
This method overcomes some major limitations of existing
background-independent methods by utilizing segment-
based representation of edges and combining gradient
information of moving edges in accumulated distance image.
It also shows robustness against sensor noise, quantization
error, and edge-localization error. Since the method utilizes
most recent frames, it automatically adapts to the change of
environment and it does not require any reinitialization step.
The proposed edge matching method is performed in linear
time and it is effective considering both accuracy and speed
together. Segment-based representation of edges can be
easily extended to moving object tracking, recognition, and
classification. Extracted boundary of the segmented moving
object by the proposed method is more precise as we apply
watershed algorithm. Experimental results and comparative
studies justify the effectiveness of the proposed method for
moving object segmentation. However, the effectiveness of
the proposed method can be further improved by determin-
ing the application-specific suitable values for the threshold
parameters. Our future works focus on tracking of moving
object using edge segment. Tracking information may also
assist to adjust some of the threshold values dynamically to
achieve better performance.
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