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This paper proposed an image content description method within the context of specular surface inspection. Such a method is
based on a preliminary research concerning the generation of specific stripe patterns for the visual enhancement of defective surface
parts of cylindrical specular objects. The goal of this paper is to address the stripe pattern interpretation within a general approach.
For this purpose, different pattern recognition processes, consisting not only of the combination of different image segmentation,
feature retrieval, and classification, but also of feature combination and selection, will be considered. Three top-down and one
bottom-up approaches are evaluated for retrieving the most appropriate feature sets in terms of highest classification rates. It will
be demonstrated that following a combination and appropriate selection of these feature sets, even better rates can be reached.
With only half of the initial features, an increase of more than 2% is observable.
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1. INTRODUCTION

A major challenge of a typical machine vision process is
to provide a rugged and cost-effective solution for real-
time vision problems. Such an inline vision system ensures
identification and rejection of production defects and serves
as valuable process feedback and control utilities. A step
toward the cost reductions of such processes is to define a
general inspection approach that can be applied to a wide
range of applications, provided the efforts to adapt such a
solution to a specific task are minimal.

Within the field of industrial inspection, the quality
control of specular surfaces is most often a manual task. To
identify textural or geometrical defects on a specular surface,
the human inspector typically has to move the inspected
object under appropriate lighting to visually enhance the
defective parts. Most industrial machine vision solutions are
based on the same principle. They use the deflection of the
light rays onto the inspected surfaces to visually enhance the
defective parts. Many industrial applications are dedicated to
the inspection of metallic car parts [1], large steel plates [2],
or steel cylindrical surfaces [3].

In general, specular objects are more difficult to inspect
than matt objects. Indeed, in the first case, the camera
records the light source through the inspected surface,
whereas in the second case, the camera observes the light
source on the inspected surface. As a result, for quality
inspections of the surface, conventional inspection tech-
niques defined for matt surfaces such as 3D triangulation are
generally not suited for specular surfaces. These must first be
covered with a matt film before being inspected, which makes
inspection in a real-time environment difficult.

An alternative method to 3D triangulation is provided
by deflectometric techniques [4], which are based on the
measurement of the reflected light rays projected onto the
object of inspection. Different shapes of specular object
geometries can be recovered with micrometer resolutions by
means of such a technique [5, 6]. However, a preliminary cal-
ibration procedure of the recording setup (sensor, lighting) is
necessary.

Another possible approach for the inspection of specular
surfaces involves adapting the position and the geometry
of the projected light rays to visually enhance the defective
surface parts so that no 3D reconstruction is necessary
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(e.g., a specific lighting arrangement and processing tech-
nique for the detection of defects on specular surfaces as
proposed by [7, 8]). In a similar manner, [9] determines
the orientation of specular surfaces by interpreting the
deformations of a known projected light pattern. These
applications solely enable the detection of the geometrical
deformations of the inspected surface. The detection of other
defects is not addressed.

A further possibility is provided by Reindl and O’Leary
[10], who uses the light-sectioning technique for the inspec-
tion of cylindrical steel probes in an industrial process. In
this case, the intensity of the reflected light rays are used
to recover the geometry of the surface and to determine
the periodicity of a surface relief. A technique to reliably
retrieve the edges and the texture of metallic objects is
proposed by [11]. This method is based on the fusion of
different images of the same object recorded with varying
illumination directions. However, the recording conditions
of both approaches are not optimal in terms of a real-
time industrial inspection process. The first method implies
a complicated movement of the cylindrical objects during
their inspection (rotation and translation). With the second
method, the whole inspected surface must be recorded
several times, which is hardly applicable in an online
inspection process.

This paper proposes a general approach for real-time
quality control of specular surfaces for industrial surface
inspections application. The method is based on the combi-
nation of a specific illumination technique and an adapted
algorithmic procedure, which was recently proposed for
the inspection and characterization purposes of cylindrical
specular surfaces [12, 13]. The technique permits the visual
enhancement and discrimination of various defective parts of
the specular surfaces. The success of an inspection method
which uses stripe deformations to discriminate defective
from nondefective surfaces depends on the geometry of the
stripe pattern depicted in the images. It was demonstrated
that it is possible to obtain basic light pattern periodical and
vertical in case of the inspection of cylindrical shapes [13].

The necessary condition to adapt such an illumination to
further object shapes (planar, convex) is that the structured
lighting and the recording sensor can be positioned in such a
way that a periodical stripe pattern is depicted in the images.
It is assumed that such a hardware setup can be defined for
further inspection tasks. This paper is therefore dedicated
to the generalization of such periodical and vertical stripe
pattern interpretations.

Various pattern analysis techniques have been proposed
since the mid 1960s, that is, since computers were able to
solve information handling problems. According to Raudys
and Jain [14], the main steps defining a typical pattern
recognition process are the following: data collection, pattern
classes formation, characteristic features extraction, classifi-
cation algorithm specification, and estimation of the classi-
fication error. The results of each of these steps can be used
in a feedback procedure for optimization of the final result.
Then, depending on the size and the representativeness of the
reference dataset, various classification methodologies can be
applied [15].

With the interpretation of such stripe patterns, the task
consists in the computation of the most optimal pattern
analysis methods in terms of highest classification rates. The
core of our approach is dedicated to the retrieval and selection
of the most appropriate feature sets for the characterization
of vertical stripe structures.

For the purpose of optimizing the retrieval of the most
appropriate features for stripe patterns characterization, a
three-step method is proposed. Indeed, such hierarchical
feature selection procedures are considered to be particulary
suited to complex content-based image description tasks we
have here, [16, 17]. Furthermore, in order to address the
stripe classification task in general, and in accordance to the
recommendations of [14], we emphasis not only on the fact
that several feature extraction and feature selection methods,
but also various classification algorithms and classification
methodologies are taken into consideration.

The first step consists in the evaluation of three different
top-down and one bottom-up methodologies. The former
are defined within the field of textural analysis and consist
of a general approach, the latter are specially defined for the
characterization of such structures. This paper is therefore a
generalization of the bottom-up method described in [18].
The classification of specular surfaces is addressed by means
of fewer stripe features as proposed in this manuscript.
The second step is dedicated to the combination of the
most relevant features by applying appropriate selection
methods. The evaluation criteria for each of these steps is
the stripe pattern classification rates. Furthermore, in order
to find the most appropriate pattern analysis process and to
address such a classification task within a general scope, the
combination of five different reference image sets with three
different classifiers is considered. The last step consists in the
selection of the most appropriate features. For generalization
purpose, the use of two different feature selection approaches
is taken into consideration.

The new contributions of this article are

(i) at first, to address the inspection of specular surfaces
within a general scope based on different image sets,
classificators, and classification procedures;

(ii) then, the most appropriate textural features for an
automatic inspection of specular surfaces by means
of the existing structured illumination are searched;

(iii) in a final step, a new set of adapted stripe features
is proposed, and combined with existing features
defined for the characterization of fringe patterns;

(iv) the detection accuracy is improved by combining
and selecting the most appropriate textural, stripe
and fringe features by means of two different and
complementary selection methods.

This paper is organized into five sections. Section 2
describes the principle of the specular surface inspection
methodology for the visual enhancement of defective surface
parts. The three textural top-down and the one adapted
bottom-up approaches are introduced in Section 3. Section 4
shows the achieved classification rates for each of the
five involved image description methods. The used feature
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Figure 1: Surface inspection principle for specular objects. The
illumination L projects a structured pattern, which is reflected by
the inspected surface S and then projected/recorded by a camera
C. The generated stripe image depicts a periodical bright and dark
stripe structure of period dP,px whose disturbances are synonymous
of defective parts. The illumination technique must be defined in
such a way that all relevant defects are visually enhanced.

selection methodologies and the corresponding classification
rates are addressed in Section 5. Section 6 concludes this
paper discussing the classification results.

2. DESCRIPTION OF THE DEFECTIVE SURFACES
ENHANCEMENTMETHODS

In Section 1, we have seen how a structured light pattern can
be adapted for the purpose of specular surface inspection as
far as the detection of several defective parts is concerned.
An industrial application of such a method is provided as
an example [13]. In this case, two types of defects situated
on cylindrical metallic objects of approximately 10 mm
diameter and up to 2× 103 mm length must be detected.

The same inspection principle can be adapted to other
geometries (planar, convex) of specular objects, where
different types of defective parts must be visually enhanced
and discriminated. Two conditions are necessary. First, a
periodical pattern must be projected onto the imaging
sensor. Second, the defective surfaces to discriminate must
induce visible deformations of the periodical pattern. Visible
means that the deformations synonymous of defective
surfaces can be automatically segmented and classified with
image processing methods.

Figure 1 shows the inspection principle of a free-form
surface based on the method proposed in [13] (the depicted
stripe image was recorded with the industrial application).

The figure shows the adapted illumination L whose
reflected light rays from the surface S are projected as a
periodical stripe pattern onto the recording sensor C. The
image resolution in pixel not only along the u- and the v-
axis but also along the stripe period dP,px must be chosen
according to the minimal size of the defect to detect. Here,
a depth defect synonymous of a structural change on the
inspected surface of size du,px and dv,px is depicted.

The pattern recognition process now consists of the auto-
matical characterization and classification of such visually
enhanced defects. For the evaluation of the different classi-
fication procedures, the images recorded with the industrial

application are used. Figure 2 provides an overview of the
involved stripe images.

The depicted images were divided into three classes:
the acceptable surfaces ΩA,OK , the rejected nonacceptable
2D surfaces ΩR,2D, and the rejected nonacceptable 3D
surfaces ΩR,3D. Figure 2(a) shows the three examples of
patterns of nondefective surfaces. Figures 2(b) and 2(c) show
stripe patterns depicting defective 3D and 2D surfaces. The
evaluation criteria for a particular classification procedure
was chosen to be the classification rate of such stripe patterns.

3. TEXTURAL AND ADAPTED FEATURE SETS

The main reason for using textural features to characterize
stripe structures is to evaluate the classification possibilities
offered by such textural algorithms since, to our knowledge,
such an elaborate evaluation has never been done before.
Textural features were defined to address a broad range
of various pattern characterization tasks. The concept of
textural analysis is based on the description of local or global
image properties. This is closely related to Haralick’s concept
[19], who defines two basic dimensions: the tonal primitives
composing the texture, and their spatial organizations. There
is a tremendous number of different pattern characterization
approaches which are proposed within the textural analysis
community [20]. Thus concerning the interpretation of
stripe structures by means of such techniques, a selection of
the most appropriate methods is essential.

The selection of representative textural methods for
comparisons is partially based on work by Wagner [21], who
conducted and presented an extensive comparative study
of 18 families of different texture analysis methods from
literature, and applied them to seven different reference
image datasets in the grey scale domain. The three reference
methods selected in this manuscript correlate to the methods
described by Wagner with the highest recognition rates from
his studies. Moreover, each of these methods is part of the
main texture families as considered by [22], namely, the
structural, the statistical and the transform approaches. We
try to optimize each textural procedure by adapting the
innate parameters of each method to the depicted disturbed
or nondisturbed stripe pattern, for example, its shape or its
intensity.

In terms of stripe structures characterization with specific
features, most publications are dedicated to identification
for classification purposes of fringe patterns depicting bright
and dark structures within the field of coherent lighting.
A set of six principal fringe structures to characterize and
synonymous of defective objects structures is described in
[23]. Zhi and Johansson [24] propose a set of 14 geometrical
and statistical features for the interpretation of holographical
interferometrical fringes for medical purposes. Some features
are specifically defined for very particular types of fringe
structures, as the “eyes” or the “eyes chains” structures [23],
others are defined for the characterization of structures that
are similar to the stripe patterns considered in this paper.
Further methods involving wavelet [25–27] or Fourier [28]
transformations for the characterization of faults have also
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Figure 2: Stripe image examples: (a) three examples of patterns depicting non-defective surfaces, (b) three patterns of defective 3D surfaces
and (c) three patterns of defective 2D surfaces. All of the images have a size of [Mu ×Mv] = [64× 64] pixels.

been suggested. Such approaches are part of the “transform”
methods within the field of textural analysis.

For our purposes, four geometry- and two statistic-based
features proposed by [24] for the characterization of bright
stripe patterns are applied. The improvement consists of the
completion of these features with further four specific features
defined within the field of stripe structure characterization.
Another novel aspect concerns the use of all of these features
not only for the characterization of the bright stripes, but also
of the dark stripes in the pattern.

3.1. Textural feature: structural approach

The considered structural approach is Chen’s [29] method
based on statistical and geometrical features of the charac-
terized pattern. The feature computation consists of a two-
step procedure. First, the patterns are binarized in the grey
level domain by means of several thresholds τ. Then, the
connected regions of each binary image are computed. The
feature vector cC of the pattern is filled with the statistical
characteristics of the connected regions of all binarized
images. The advantage of using multiple binarizations is to
consider different intensity levels of image regions, and to
thereby integrate the intensity information in the feature
computation.

The stripe patterns present the particularity to have a
bimodal grey level distribution corresponding to the distri-
butions of the bright and dark stripe structures. Thus the
assumption is made that the consideration of various groups
of binarization thresholds τ could lead to an optimization
of Chen’s feature extraction process. The following four
different feature vectors were considered:

cC
255: Nc = 16, τ ∈ {0, . . . , 255};
cC

7 : Nc = 16, τ ∈ {32, 64, . . . , 192, 224};
cC

3 : Nc = 16, τ ∈ {64, 128, 192};
cC

1 : Nc = 16, τ ∈ {128};

(1)

Each of these vectors integrates a different number of
binarized patterns, however, their lengths all equals 16. In
case of vector cC255, all possible binarization thresholds τ
are used, as only grey level images with a depth of 28 are
considered.

3.2. Textural feature: statistical approach

The next textural method considered is based on the feature
computation as stated by Haralick et al. [30], and is part
of the statistical texture analysis approach. Such pattern
characterization techniques are based on the cooccurrence
matrices, a second-order statistical measure of the grey level
variation. These matrices indicate the joint probability of the
grey level occurrences of all pixel pairs in u- and v-directions
in a pattern. Thus optimizing this statistical approach for our
purposes consisted of adapting the values of the pixel pair
distances du and dv according to the geometry of the stripe
structure depicted in the pattern.

The values of du were chosen to correspond to the period
of the stripe structure, which is a priori known. The values of
dv were chosen to cover the whole range of the disturbance
sizes in the v-direction. The following four different feature
vectors were considered:

cH
1,1: Nc = 14, du = 1 dv = 1;

cH
8,1: Nc = 14, du = 8 dv = 1;

cH
8,10: Nc = 14, du = 8 dv = 10;

cH
8,30: Nc = 14, du = 8 dv = 30.

(2)

Each vector is made up of 14 features as defined by Haralick
et al. in [30]. The characterized stripe structures have a
period of approximately 8 pixels, so that a value of du = 8
was repeatedly chosen.
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3.3. Textural feature: transform approach

The textural transform approach proposed by Weska [31],
and based on the Fourier analysis was used for the character-
ization of the stripe structures in the spectral domain. The
features are computed from amounts of values in the Fourier
spectrum corresponding to different spectral regions. Weska
[31] defines rF radial, and dθ directional frequency regions.
His aim is to use the particularity of the spectral domain
by selecting various frequency subbands, which is equivalent
to retaining certain levels of details and directions in the
analyzed patterns. Thus uF and vF spectral regions defined
along the u-horizontal and the v-vertical image axes were
used for the computation of the feature vectors based on the
Fourier analysis.

The characterized stripes have a vertical and periodical
structure. Thus the directional components in the frequency
domain may be strongly discriminative in terms of stripe
pattern characterizations. In terms of the stripe pattern
analysis, feature vectors integrating diverse subbands of
the frequency domain were taken into consideration. The
following five different feature vectors were used:

cF
r,θ,v,h = {cF

r ; cF
θ ; cF

v ; cF
h}: Nc = 33;

cF
r : Nc = 8;

cF
θ : Nc = 10;

cF
v : Nc = 5;

cF
u: Nc = 10.

(3)

The length of each feature vector depends on the considered
frequency regions. The vector cF,rθvu, considers all possible
regions has a maximal length of Nc = 33.

3.4. Adapted fringe and stripes features

In contrast to top-down methodologies, as with the three
studies cited above, some bottom-up approaches dedicated
to the characterization of stripe structures are also described
in the literature. Specific geometry-based and intensity-
based features have been considered for an adapted char-
acterization of the bright and the dark stripe structures
depicted in a stripe pattern F. The description of such
a pattern is a two-step procedure. It first consists of the
segmentation at subpixel level of the bright and dark stripes
structures, and second of the characterization of these
segmented structures. Each process is characterized by one
parameter: the involved segmentation function f , and the
image areas a covered by local windows w sliding over the
whole described pattern.

A good overview of existing subpixel segmentation
techniques is provided by Fisher and Naidu [32]. Such
methods are based on the estimation of the peaks to be
localized. Specific mathematical functions or local grey level
interpolations can be considered. In case of stripe structure
characterization, the “Blais-and-Rioux” and the “Center-
of-Mass” peak detectors were implemented [32, 33]. Both
operators are used for the detection at subpixel level of
the bright and the dark stripes along the u-axis of the

pattern. In order to be comparable, the same operator’s size
is considered. A size of 5 elements is retained, as this value
corresponds to the length of the bright and the dark peaks to
be characterized. The notation for these two peak detectors
is br5 for the “Blais-and-Rioux” and cm5 for the “Center-
of-Mass”. Hence two types of segmentation function are
considered f ∈ {br5; cm5}.

A total of 20 stripe features are used for the character-
ization of the extracted bright and dark regions. 8 of these
features are specially developed for the present purposes, in
addition, 12 features were described within the context of
fringe structure characterization [24] and adapted for our
purposes. Each of these 20 stripe features cSa(m)(m), m ∈
{0, . . . , 19}, represents the average result of an operation
Oa(m)(m) applied to a bright or dark stripe element. The
computation of Oa(m)(m) is applied on an image area
a(m), whose magnitude is feature dependent; see Figure 4.
Notations and detailed expressions of the 20 operators
Oa(m)(00) to Oa(m)(19) can be found in Appendix A.

As the minimal possible size of the reference patterns
F of the involved image sets is about 20 pixels, the
following area magnitudes a(i) is considered for our pur-
poses: [52]; [72]; [92]; [112]; [132]; [152]; [172]; [Mu ×
Mv]. The description of the stripe feature vector is as follows:

cS
f ,a: Nc = 20;

f ∈ { fbr5; fcm5};
a = [a(0), . . . , a(m), . . . , a(19)];

a(m) ∈ {[52]; [72]; [92]; [112] . . .

. . . [132]; [152]; [172]; [Mu ×Mv]}.

(4)

As mentioned above, the computation of the stripe feature
vector relies on two segmentation functions f . Then, each
of the stripe feature vector 20 elements can be computed by
means of 8 different area sizes of a(m). Hence 2 × 820 stripe
feature vectors can be retrieved according to the definition
given in (4).

In order to reduce the number of possible feature stripe
vectors, and thus avoid dimensionality-based problems,
a preliminary optimization process to retrieve the most
adequate area size of a(m) for each feature cSa(m)(m) is
necessary.

Considering the definitions of the 20 operators outlined
in Appendix A, we can distinguish between the features
whose computation rely on fixed and adapted image areas
a(m), where m is the feature index. If we take the two
intensity operators as an example, we note that their values
computed at pixels (B)sic or (D)sic are independent on the area
sizes of a(00) or a(01) centered at these pixels. The only
condition is that the area sizes are large enough so that both
operators can be applied. In case of the intensity operators,
these areas must at least cover the central pixels. The same
reasoning can be applied to the operators describing the
minimum distance, the maximum distance, and the tangent
direction. Hence concerning the 8 features computed with
fixed image areas, maximal possible magnitudes of [Mu×Mv]
are considered.
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As far as the 12 remaining operators whose computation
relies on adapted image areas are concerned, the most
appropriate size of each area must be defined according to
the stripe structures needed to be characterized. Extensive
tests have been conducted in this area and are described
previously [18]. These investigations show that an optimal
set of image areas can be defined. Such an optimal set is noted
a1. In order to validate the tests described in [18], a further
“nonoptimal” set a2 is taken into consideration. In terms of
the adapted image areas, the values of set a2 are defined as
the complementary values of a1. With respect to the fixed
image areas, the values of both sets are identical. These sets
are provided in Table 1.

4. CLASSIFICATION OF HIGHLY SPECULAR SURFACES

4.1. Classification procedure

As stated in Section 1, the main purpose of our approach
consists of the definition and the selection of the most
appropriate feature sets for the characterization of vertical
stripe structures as far as the quality control of specular
surfaces is concerned.

The feature sets described in Section 3 are evaluated by
means of 5 different image sets and 3 different classificators.
Hence for each of the four feature sets, 15 different pattern
analysis procedures are considered.

4.1.1. Image sets

One important step in a pattern analysis procedure involves
the selection of the characterized image region. With
unsupervised image segmentation techniques, segmentation
errors are virtually unavoidable [34]. Moreover, among the
different stripe pattern characterization techniques described
in the literature, none of them propose an automatic
segmentation procedure for stripe structures. This is in
fact a rather complex task, as the depicted defective surfaces
are usually not characterized by sharp contours. Extensive
tests and research procedures are necessary to solve the
segmentation problem of stripe structures.

As a consequence, hand-segmented image regions have
proven to be more reliable. In order to overcome the
subjective approach of manually fixing the size of each
pattern so that only the disturbed stripe structure is depicted,
three sets of inspected surfaces are considered. Segmentation
of each set has been done by three different persons. Two
other sets of reference patterns with fixed sizes of 642 pixels
and 1282 pixels were involved.

Thus, image sets Φad1, Φad2, Φad3, Φ642
, and Φ1282

will
be considered. The size of each set is the same, and the same
defects are depicted. These five sets differ only from the size
of the depicted images region. The stripe patterns were all
recorded with the industrial system [13], typical patterns are
depicted in Figure 2.

4.1.2. Classificators

One aim is to evaluate the proposed features and not a
certain classificator. Hence we “restrain” the classification
methodology using two classificators: the Naive Bayes NB
and the Nearest-Neighbour k-NN. The two major reasons for
using these classifiers are as follows.

First, both methods are based on two classification
models. The NB method is a probabilistic learner which
makes the assumption that the feature distributions of each
class can be described by a normal-distribution. The k-NN
is an instance-based prediction model [15] (instance in the
sense of pattern) which does not try to create “rules”, but
works directly on the patterns themselves. Second, the NB
classifier is often seen as a simple, but powerful approach.
Witten and Frank [15] considers that this classificator
often outperforms more sophisticated classifiers. Duda even
considers that this classifier led to lowest classification errors
from all possible classifiers. In terms of the k-NN, Cover and
Hart [35] and Gutierrez-Osuna [36] show that this method
is known to approach the results of the NB classifier in case
of a large dataset as we have here.

Hence three classifiers were used our classification pur-
poses: the Naive Bayes NB, the One-Nearest-Neighbour 1-
NN, and the Three-Nearest-Neighbour 3-NN.

4.1.3. Classificationmethodology

One important aspect concerning the selection of an
appropriate classification methodology is the size and the
representativeness of the reference data which are used for the
evaluation of the whole classification process. The former is
particularly important for the model-based classifiers as the
statistical NB method is involved. The latter is directly related
with the problem of data over-fitting, which occurs when
the classificator is trained on a set of samples that are not
representative compared to the set of test samples.

Another possible method to such concerns is to split
the reference dataset Φ into multiple training and testing
subsets. This process is called the n-fold cross-validation.
A stratification guarantees the representativeness of each
class in the training and testing sets by forcing the folds
to retain the same distribution as the original data. Such
a cross-validation procedure mitigates any bias due to the
overfitting of the data, as the training and testing procedures
are repeated n-times. When the number of folds equals the
number of elements of Φ, the procedure is called leaving-
one-out approach. The number n of folds is here an impor-
tant variable. Increasing n signifies increasing the number
of training data and so reducing the bias due to overfitting.
But it is also synonymous to a huger discrepancy of correctly
classified patterns across folds as the number of testing data
decreases. It is also related to higher computational costs as
the entire dataset has to be processed n times.

Another splitting technique originally proposed by Efron
and Tibshirani [37] is the Bootstrap approach. This method
uses the resampling of the original dataset for the generation
of b multiple training and test sets. If the Bootstrap
procedure may be the best way for the classification of small
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Table 1: Values of the optimal and “nonoptimal” sets a1 and a2 for the 20 stripe features. The maximum possible area size is noted M2 =
[Mu ×Mv].

00 01 02 03 04 05 06 07 08 09

a1 M2 M2 M2 M2 M2 M2 172 172 M2 M2

a2 M2 M2 M2 M2 M2 M2 52 52 M2 M2

a1 172 172 172 172 172 172 52 52 172 172

a2 52 52 52 52 52 52 172 172 52 52

datasets, its major drawback is the high-computational costs
as far as the classification of the b datasets has to be done.
Moreover, it has not been demonstrated that a bootstrap-
based approach outperforms leaving-one-out or other cross-
validation procedures [38].

The mostly used approach is certainly the 10-fold
stratified cross-validation and according to Witten and Frank
[15], a ten times sampling is referred to as the right number
of folds to get the best estimation error. Extended tests with
various datasets and two classificators have been conducted
by Kohavi and John [39] to compare the detection accuracy
of the bootstrap technique and the n-fold cross-validation
approach for different values of n. Kohavi shows that a
stratified 10-fold cross-validation is the more appropriate
model in terms of classification accuracy.

Thus the classification methodology that will be used for
our stripe classification purposes is a stratified 10-F method.
Each pattern analysis procedure will be evaluated by means
of the classification rates CP , which gives the number of
corrected classified patterns after the stratified 10-fold cross
validation of the reference datasets.

CP is the rate in percent of correctly classified defective
surfaces belonging to the three classes {ΩA;ΩR,3D;ΩR,2D},
mentioned in the introduction.

4.2. Classification results

The results of the stripe patterns classification by means
of Chen’s, Haralick’s, Fourier’s, and Stripe’s features, as
described by (1), (2), (3) and (4) are provided in Table 4, 5, 6,
and 7. Each table provides the rates CP of correctly classified
patterns for the five image sets Φad1, Φad2, Φad3, Φ642

, Φ1282

and the three classifiers NB, 1-NN, and 3-NN.
The best results for each of the five image set for all the

three classifiers are highlighted with an ∗. The best results for
each of the five image sets for the 1-NN classifier are depicted
in brackets ( ). Then, best results for all the three classifiers
and for all the five image sets are provided in bold face.

These results show that the classification rates are hardly
dependent on various factors, such as the selected image
region to classify or the involved classificator. Nevertheless,
it is obvious that the Fourier method with a rate CP = 87.9%
and the adapted bottom-up approach with a rate CP =
88.9% both outperform Chen’s and Haralick’s approaches.
With the involved classificators, the Nearest-Neighbour
method leads to high rates than the Bayes method. In general,

the 1-NN leads to higher classification rates than the 3-NN
classifier.

With the textural transform approach, lower rates are
reached in case of adapted sizes of images patterns, the best
results concerns the fixed size of pattern of 642 pixels. It
is the contrary as far as the classification results using the
adapted features are concerned. Higher results in case of the
classification with the Φad1 image set are noticeable.

In a next step, we search to improve the reached classifica-
tion results by combining the Fourier and the adapted stripe
features. Different selection procedures are investigated to
evaluate if further improvements of the classification rates
can be achieved.

5. SELECTIONOF BEST FEATURE SUBSETS

5.1. Feature selection approach

The purpose of a feature subset selection (FSS) process is
the generation of a feature subset made of the most relevant
information in terms of classification accuracy. Primary
research concerning FSS has been addressed for decades by
the statisticians community, as [40] for the recognition of
handwritten characters or [41] in case of the classification
of EKG data. More recently, these FSS techniques have been
adapted and completed within the data mining research field,
which was primary defined to address the processing of a
broader range and huger amount of data.

However, diverse all the FSS techniques can be, such
techniques always consist of an iterative procedure, the gen-
eration and evaluation of each new subset, which terminates
according to a stopping criterion. The performances of each
FSS method are defined according to a validation process
[42].

Two generation methods are described in the literature:
the filter and wrapper techniques [15, 36, 43, 44]. The former
are independent of the classification process and consist of
filtering out the irrelevant data using the feature information
content. The latter use the machine learning algorithm or
classificator that is used for the learning procedure. In both
cases, similar feature search strategies can be applied. We
distinguish between a forward selection (the process starts
with no selected features), a backward elimination (the
process starts with the complete subset), or a bidirectional
search strategy which combines both methodologies and
starts with a random subset of features [45].
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Figure 3: Feature selection principle with the four major parts
generation, evaluation, stopping criterion, and result validation as
described by [42].

The evaluation of the generated subset, that is, its
goodness, is done according to certain criterion. Reference
[42] differentiates two groups: the independent criteria
typically are used in case of filter models and the dependent
evaluation criteria are mostly applied as far as wrapper-
based FSS models are concerned. The independent criteria
are based on the relations between the features eliminating
highly correlated characteristics which are redundant for
the prediction. Such criteria use the distances between
the features [46], such as the Bhattacharyya [47] or the
Hausdorff distance [48]. The information gain [49] or the
dependency between features [50] are further independent
criteria which are used by filter-based feature selection
approaches. With the dependent criteria, the evaluation and
the optimization of the accuracy rate is done according to the
performances of the involved classificator using the selected
feature subset. In case of small sets of reference patterns, a
cross-validation procedure can often improve the evaluation
determination [39].

According to the inspection task, various stopping cri-
terion can be addressed. The simplest one is to finish the
search of feature subset when all computed features have
been selected. The search procedure can also stop when
some threshold variables are reached. These can be, for
example, the minimum number of features, the maximum
number of iterations, or the minimum value of the error
rate. More complex procedures as the restriction of the
number of backtracking can also determine the stopping
conditions. Feature subset search algorithms can also stop
when subsequent addition or deletion of any feature does not
produce a better subset.

The FSS validation is generally done by comparing
the classification performances when the full feature is
considered and the performances as far as only the computed
feature subset are involved.

Figure 3 shows the feature selection principle with the
four major parts generation, evaluation, stopping criterion,
and result validation as described by [42].

The feature selection principle is similar to the pattern
classification task, where a learning and a testing phase are
considered. The task of selecting the most relevant features
is also divided in a training step and a testing step. Once the
best feature subset has been computed after a learning phase

by means of a reference set of patterns, the validation is done
using another set of patterns during the test phase.

5.2. Feature selection results

In order to address the FSS task within the field of stripe
pattern characterization, at least one of the two main genera-
tion and evaluation families should be involved. Indeed, it is
difficult to predict which of the filter or wrapper approaches
are more appropriate for our purposes. The latter are often
depicted to provide better classification results as the former,
as wrapper-based procedures find features better suited to
the learning algorithm [36, 44]. However, this should not be
considered as a general definition. Hall [43] demonstrated
that in small cases, the filter-based correlation-based feature
selection (CFS) approach outperforms some wrapper-based
approaches. A major drawback of the latter is that such
procedures induce high-computational costs, as the whole
learning procedure must be invoked at each selection step.

We will therefore consider the CFS filter-based method
and the 1-NN wrapper-based approach. The latter was
chosen according to the reported classification results of
Section 4.2. In order to be comparable, each involved FSS
method must be based on the same search procedures and
stopping criteria. For both selection processes a feature
forward selection procedure with an amount of backtracking
of 5 will be addressed. The iterative process starts with
an empty initial feature subset. The feature selection and
the pattern classification follow a 10-F cross-validation
procedure. The results are depicted in Table 2.

The results reported in Table 2 show the importance of
the reference dataset on the classification accuracy, as far as
a combined approach and a selection of the combined two
Fourier and stripe feature sets are concerned. In case of image
sets whose size is adapted to the characterized surface, the
CFS-filter-based approach outperforms the 1-NN-wrapper-
based method. Contrariwise, the two image sets with fixed
size lead to best classification rates in case of an FSS by means
of the wrapper-based method.

So far, we have shown that the directional Fourier and
the adapted stripe features are the most appropriate within
the context of stripe pattern characterization. We have also
seen that the classification accuracy can be increased when
appropriate feature selection methods are involved. This
means that only a subset of the 30 combined features is really
relevant in terms of stripe pattern characterization. Table 3
shows the selected features for the six best classification
results involving the 5 datasets and the 2 addressed features
selection methods.

The values in Table 3 correspond to the number of times
each of the 30 features has been selected after a 10-F cross-
validation. The values are comprised between 0 and 10, so
that the relevance of each feature is proportional to the
value. The 10-time, 9-time, and 8-time selections of a feature
are therefore marked with ∗∗∗, ∗∗, and ∗. We notice that
some features have never been selected regardless of the FSS
approach or the reference dataset. This is particulary the case
for the Fourier directional features. In the same manner,
the reported results demonstrate that some features have a
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Table 2: Rates CP of correctly classified patterns for the five image sets Φad1, Φad2, Φad3, Φ642
, and Φ1282

for the most appropriate Fourier
and stripe feature sets as far as a 1-NN classifier is used, see the rates shown by an ∗ in Tables 6 and 7. Classification rates for the five images
sets using the combined stripe and Fourier features cS,F. Classification rates after the selection of the most relevant features by means of a
filter-based CFS method CFScS,F and a wrapper-based 1-NN method 1-NNcS,F.

Φad1 Φad2 Φad3 Φ642
Φ1282

cS (88.9) (85.6) (85.8) (85.9) (86.2)

cF (79.2) (77.4) (74.7) (87.9) (84.4)

cS,F 84.9 84.9 83.7 88.4 84.1
CFScS,F 88.8 85.7 83.7 89.6 82.5
1-NNcS,F 85.3 84.9 83.7 91.2 88.4

high relevance in terms of stripe pattern characterization.
In particular, for the “number of elements” cS(18) and
cS(19) stripe features and the Fourier directional cFθ (5) and
horizontal cFu(4) features.

The goodness of a feature selection process can be
evaluated not only by means of the reached classification
rates, but also in terms of the number of relevant features.
This last value can also be retrieved by Table 3. The 1-NN-
wrapper-based FSS method applied for the classification of
images set Φ642

leads to a classification rate of 91.2%, which
is the highest rate depicted in Table 2. With respect to the
selected features using this FSS approach, we observe that
nearly half of the 30 initial features have a poor relevance,
as these have been selected only 0, 1, or 2 times after the
10-F cross-validation process. Moreover, only six parts of
the initial 30 features are highly relevant, as these have been
selected at least more than 8 times after the 10-F cross-
validation process.

6. CONCLUSION

A general approach of the automatic image-based inspection
of specular surfaces has been addressed in this paper. Based
on the stripe images generated by an existing illumination
technique for the visual enhancement of defective specular
surface parts, several pattern recognition processes have
been evaluated. The general scope of the stripe image
interpretation process as stated in this paper has been
addressed by means of the combination of different image
segmentation, feature retrieval, pattern classification, feature
combination, and feature selection techniques.

It has been showed that best classification rates can be
reached in case of a combination of specific top-down and
adapted bottom-up feature extraction approaches. It was
further demonstrated that higher classification rates could
be obtained when appropriate FSS techniques are used. Six
parts of the features were highly relevant, whereas only half
of them showed to be virtually irrelevant.

Such results are very encouraging, they demonstrate that
it was possible to tackle the optimization task of stripe
image content description by means of a stepwise and
adapted methodology. The optimization process consisted of
increasing the stripe pattern detection rates after each step of
the pattern recognition process by means of the combination
and selection of general and specific approaches.

v
(B)S2

uPattern F

i: Stripe index in F

j: Stripe element index in F

(B)Si
Stripe characterized
by Oa(m)(m)

(B)sic
Stripe element on which
Oa(m)(m) is applied

a(m)
Image region where
Oa(m)(m) is applied

Grey level

Position in u

Position in v

(B)s26 = ((B)k2
6 ; (B)l26; (B)g2

6 )

= (6; 5; 240)

Figure 4: Notation conventions for the computation of the 20 stripe
operators.

A similar methodology could be applied in case of the
optimization of any processing chain, where each element
of the chain interacts with the surrounding elements, and
at least influences the output of the chain. The number of
possible approaches for each element makes the testing of
all the resulting combinations quasi-impossible to realize.
Hence stepwise optimization approaches as addressed in this
paper are preferred.

APPENDICES

A. EXPRESSIONS OF THE 20 STRIPE OPERATORS

The notations are defined for the bright stripes (B), same
notations hold for the dark stripes, in that case (B) should
be replaced with (D); see Figure 4.
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Table 3: Selected stripe and fourier features for the 6 FSS methods marked in bold face in Table 2. The features are selected using a CFS-based
method and a wrapper-1-NN-based method and a 10-F cross-validation. The 10-time, 9-time, and 8-time selected features are marked with
∗∗∗, ∗∗, and ∗.

Φad1 Φad2 Φad3 Φad3 Φ642
Φ1282

CFS CFS CFS Wrp Wrp Wrp

cS(0) 10∗∗∗ 10∗∗∗ 10∗∗∗ 5 0 0

cS(1) 9∗∗ 10∗∗∗ 10∗∗∗ 4 0 0

cS(2) 4 0 0 7 0 1

cS(3) 3 10∗∗∗ 10∗∗∗ 6 2 0

cS(4) 1 9∗∗ 9∗∗ 0 0 0

cS(5) 0 0 0 5 5 1

cS(6) 6 8∗ 8∗ 5 8∗ 3

cS(7) 4 6 5 8∗ 6 7

cS(8) 0 0 0 2 5 5

cS(9) 0 0 0 0 8∗ 7

cS(10) 1 0 0 5 4 1

cS(11) 0 0 0 0 0 0

cS(12) 9∗∗ 9∗∗ 9∗∗ 6 3 4

cS(13) 1 3 3 7 4 5

cS(14) 6 9∗∗ 9∗∗ 3 3 1

cS(15) 7 0 0 2 1 5

cS(16) 0 0 0 0 1 0

cS(17) 0 0 0 0 0 0

cS(18) 10∗∗∗ 10∗∗∗ 10∗∗∗ 8∗ 10∗∗∗ 10∗∗∗

cS(19) 10∗∗∗ 10∗∗∗ 10∗∗∗ 6 8∗ 7

cF
r (0) 0 0 0 0 — 0

cF
r (1) 1 0 0 2 — 0

cF
r (2) 0 0 2 0 — 0

cF
r (3) 0 0 0 1 — 0

cF
r (4) 0 0 0 3 — 0

cF
r (5) 0 1 2 1 — 0

cF
r (6) 0 0 0 0 — 0

cF
r (7) 0 0 0 0 — 0

cF
θ(0) 0 0 0 2 0 0

cF
θ(1) 0 0 0 5 2 7

cF
θ(2) 0 0 0 1 4 1

cF
θ(3) 1 0 0 0 4 4

cF
θ(4) 0 0 0 1 6 8∗

cF
θ(5) 10∗∗∗ 10∗∗∗ 10∗∗∗ 2 10∗∗∗ 6

cF
θ(6) 0 0 0 1 0 3

cF
θ(7) 0 0 0 0 1 7

cF
θ(8) 0 0 0 0 1 5

cF
θ(9) 0 0 4 2 2 6

cF
v (0) 0 0 0 0 — 0

cF
v (1) 0 0 0 1 — 3

cF
v (2) 0 0 0 0 — 0

cF
v (3) 0 0 0 0 — 0

cF
v (4) 0 0 0 1 — 0

cF
u(0) 0 0 0 0 — 0

cF
u(1) 0 0 0 2 — 0

cF
u(2) 5 0 0 0 — 4

cF
u(3) 0 0 0 0 — 9∗∗
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Table 3: Continued.

Φad1 Φad2 Φad3 Φad3 Φ642
Φ1282

CFS CFS CFS Wrp Wrp Wrp

cF
u(4) 10∗∗∗ 10∗∗∗ 9∗∗ 1 — 5

cF
u(5) 0 0 0 0 — 0

cF
u(6) 7 0 0 1 — 0

cF
u(7) 0 0 0 0 — 0

cF
u(8) 0 0 0 1 — 0

cF
u(9) 0 0 0 3 — 0

Table 4: Rate CP of correctly classified patterns for five image sets with Chen’s textural features. The best rate CP for each image set is shown
by an ∗.

Vector Φad1 Φad2 Φad3 Φ642
Φ1282

NB

cC
255 74.9 79.5 76.4 77.5 74.8

cC
7 74.9 77.1 75.7 77.5 74.9

cC
3 70.9 67.3 66.0 77.3 73.8

cC
1 57.5 60.4 62.3 77.1 75.9

1-NN

cC
255 81.8 82.4 80.3∗ 82.4∗ 75.7∗

cC
7 82.8 80.7 80.4 65.2 72.6

cC
3 80.1 81.2 80.1 60.8 73.5

cC
1 75.6 72.6 72.0 57.9 69.8

3-NN

cC
255 82.3∗ 83.3∗ 80.3∗ 79.4 75.8

cC
7 80.8 80.8 80.2 78.2 76.6

cC
3 77.6 75.1 76.2 77.0 76.3

cC
1 77.4 76.1 77.1 77.2 74.6

(B)kis,
(B)kie: first and last elements positions of (B)Si in a(m);

dist1�N((B)sij )
: distance of (B)sic to next bright stripe along �u;

dist2�N((B)sic)
: distance of (B)sic to next bright stripe along �u;

lengthwF
: length of a stripe in a(m);

(B)sis,
(B)sie: first and last elements of (B)Si in a(m);

(B)distline: distance of (B)Si to lines ((B)sis;
(B)sis);

(B)#a(m): number of elements defining (B)Si in a(m);
Intensity (grey level) of (B)sij , a(m) fixed

Oa(00)(00) =(B)gij ; (A.1)

Minimum distance of (B)Si, a(m) fixed

Oa(02)(02) = min
[

dist1�k((B)sij )
; dist2�k((B)sij )

]
; (A.2)

Maximum distance of (B)Si, a(m) fixed

Oa(04)(04) = max
[

dist1�k((B)sij )
; dist2�k((B)sij )

]
; (A.3)

Deviation of (B)Si, a(m) variable

Oa(06)(06) = ∣∣((B)
kie−(B)kis

)∣∣; (A.4)

tangent direction of (B)Si at (B)sij , a(m) fixed

Oa(08)(08) = tan−1((B)
sij
)
; (A.5)

curvature of (B)Si at (B)sij , a(m) variable

Oa(10)(10) = tan′
((B)

sij
)
; (A.6)

length of (B)Si, a(m) variable

Oa(12)(12) = length a(m)
((B)

Si
)
; (A.7)

shape of (B)Si, a(m) variable

Oa(14)(14) = (B)distline/
(B)#a(m); (A.8)

straightness of (B)Si, a(m) variable

Oa(16)(16) =
∑(B)ni

j=2

∣∣∣ tan
((B)

sij
)− tan

((B)
sij−1

)∣∣∣
(B)#a(m) − 1

; (A.9)

number of elements of (B)Si in a(m), a(m) variable

Oa(18)(18) =(B)#a(m). (A.10)

B. CLASSIFICATION RESULTS

The classification results are shown in Tables 4–7.
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Table 5: Rate CP of correctly classified patterns for five image sets with Haralick’s textural features. The best rate CP for each image set is
shown by an ∗.

Vector Φad1 Φad2 Φad3 Φ642
Φ1282

NB

cH
1,1 71.2 69.8 70.2 68.4 55.9

cH
8,1 69.0 68.5 67.9 58.9 58.7

cH
8,10 68.1 62.3 61.9 58.0 54.6

cH
8,30 63.5 59.2 59.8 57.9 52.3

1-NN

cH
1,1 77.2 76.2 77.2 71.0 66.3

cH
8,1 80.9 80.0∗ 79.3∗ 79.4 65.1

cH
8,10 78.7 77.6 75.4 74.1 62.6

cH
8,30 81.2 77.9 77.5 72.8∗ 65.6∗

3-NN

cH
1,1 77.1 74.2 76.2 71.6 66.2

cH
8,1 83.6∗ 78.6 76.1 75.6 65.9

cH
8,10 79.9 77.0 73.9 72.6 62.4

cH
8,30 80.4 78.2 76.3 69.1 63.1

Table 6: Rate CP of correctly classified patterns for five image sets with Fourier’s textural features. The best rates CP for each image set are
shown by an ∗. The best rates CP for each image set and for a 1-NN classifier are depicted in brackets.

Vector Φad1 Φad2 Φad3 Φ642
Φ1282

NB

cF
rθvu 63.4 62.1 57.2 75.4 61.5

cF
r 58.3 60.0 58.4 67.2 57.8

cF
θ 66.4 64.5 64.5 80.4 55.8

cF
v 49.2 41.0 44.1 79.3 58.8

cF
h 54.8 53.9 54.8 41.0 36.2

1-NN

cF
rθvu (79.2∗) (77.4) (74.7) 84.9 (84.4)

cF
r 72.7 69.1 65.7 69.8 65.7

cF
θ 78.2 73.2 72.5 (87.9∗) 83.6∗

cF
v 76.9 72.7 71.6 79.2 75.9

cF
h 65.0 63.0 63.8 75.6 61.5

3-NN

cF
rθvu 76.2 77.9∗ 76.3∗ 85.3 81.3

cF
r 68.6 67.2 66.2 70.6 65.8

cF
θ 75.8 70.4 69.5 81.2 82.5

cF
v 74.3 70.3 72.0 77.8 75.7

cF
h 63.9 60.0 61.1 75.6 64.7

Table 7: Rate CP of correctly classified patterns for five image sets with Stripe’s features. The best rates CP for each image set are shown by
an ∗. The best rates CP for each image set and for a 1-NN classifier are depicted in brackets.

Vector Φad1 Φad2 Φad3 Φ642
Φ1282

NB

cS
a1,br5 84.9 85.9 83.6 84.5 78.3

cS
a1,cm5 83.7 86.1∗ 85.2 82.8 60.0

cS
a2,br5 79.6 85.6 84.3 75.8 61.4

cS
a2,cm5 77.6 85.7 85.0 73.8 57.1

1-NN

cS
a1,br5 88.1 (85.6) (85.8∗) 85.3 (86.2∗)

cS
a1,cm5 (88.9∗) 82.9 83.5 81.6 82.8

cS
a2,br5 86.1 85.2 84.8 (85.9∗) 83.5

cS
a2,cm5 84.6 84.7 83.6 78.4 78.8

3-NN

cS
a1,br5 86.5 82.7 83.0 84.3 80.5

cS
a1,cm5 88.9 82.9 83.5 81.6 82.8

cS
a2,br5 86.1 85.2 84.8 85.9∗ 83.5

cS
a2,cm5 84.6 84.7 83.6 78.4 74.8
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