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bias in location estimation compared with a widely used weighted least-squares approach. In addition, although target tracking
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1. INTRODUCTION

Ultra-wideband (UWB) impulse radio (IR) technology is a
high-bandwidth communication scheme that offers several
advantages for location estimation of targets based on radio-
frequency emissions. In particular, the bandwidth of UWB-
IR signals is on the order of several gigahertz (GHz), which
translates to a time resolution in the subnanosecond range.
As a result of this fine time resolution, UWB-IR transmis-
sions are well suited for precise positioning using time do-
main techniques. In addition, the wide bandwidth of the sig-
nals results in very low power spectral densities, which re-
duces interference on other RF systems, and the short pulse
duration reduces or eliminates pulse distortion (fading) and
spurious signal detections due to multipath propagation.

In this paper, the theoretical and practical performance
limits of a 2D UWB-IR time-difference-of-arrival (TDOA)
localization system are studied. For purposes of this work,
we assume that the target is in the far field in the sense that
the range of the target is always much greater than the radius
of the smallest circle containing all of the receiving sensors.
Performance is evaluated in the presence of errors in both

the TDOA measurements and in the sensor position mea-
surements. In addition, although target tracking per se is not
considered in this paper, performance is evaluated both un-
der the assumption that sequential location estimates are not
aggregated (i.e., one-shot location estimation) and under the
assumption that some sort of tracker is available to aggregate
a sequence of location estimates. For the second scenario,
simple block averaging of individual location estimates for
a stationary target is adopted to simulate the behavior of a
tracker operating with a moving target.

It should be noted that consideration of the impact of a
tracker and errors in sensor positions is particularly impor-
tant for performance evaluation of UWB-IR localization sys-
tems, and both of these issues have so far been largely ignored
in studies of such systems [1–4]. The impact of a tracker on
the performance of the system is of interest because UWB
systems of all types are constrained by FCC regulations to
operate at very low power [5]. Hence, for tracking targets
in the far field (e.g., at ranges exceeding 100–200 meters for
a small sensor array), the signal-to-noise ratio (SNR) for a
single received UWB-IR pulse will generally be quite low. If
the target is either stationary or moving slowly relative to the



2 EURASIP Journal on Advances in Signal Processing

pulse repetition rate (which can be in the megahertz range),
consecutive pulses can be coherently averaged at the receiv-
ing sensors to increase the SNR and improve the accuracy of
the location estimates. However, if the target is moving with
moderate velocity, coherent pulse averaging over a period of
sufficient duration to increase the SNR to the desired level
will degrade the accuracy of the location estimates. Hence, in
these situations, it is necessary to aggregate the sequence of
location estimates noncoherently using a tracker. The diffi-
culty here is that while such noncoherent averaging will effec-
tively reduce the variance of the aggregate location estimate,
any bias in the original low-SNR location estimates will not
be removed. In such situations, the error floor introduced by
the bias will determine the asymptotic accuracy of the local-
ization system.

In addition, the impact of errors in sensor positions on
localization performance is of particular interest for UWB-
IR systems precisely because of the extreme precision that
such systems are theoretically capable of delivering. That is,
the large bandwidth and short duration of a UWB-IR pulse
means that it is possible with only moderate SNR to mea-
sure the difference in time of arrival between pairs of pulses
with a resolution in the 10–100 picoseconds range. Since this
corresponds to a distance-difference resolution on the order
of a few centimeters, it is clear that sensor positions errors
of only a few centimeters can become a dominant source of
error in the final location estimate. Hence, the localization
performance of a UWB-IR system can be severely impacted
by relatively small errors in sensor position, and such impact
must be considered in a comprehensive performance evalua-
tion.

To determine the theoretical performance limits of a
UWB-IR localization system in this paper, the Cramér-Rao
lower bound (CRLB) for the variance of unbiased TDOA es-
timates has been evaluated under the assumption that the
waveform transmitted from the target satisfies a root-mean-
square bandwidth constraint and that the channels of the
receiving sensors are well modeled as band-limited additive
white Gaussian noise (AWGN) channels. In addition, the
CRLB for unbiased estimates of location in 2D based on inac-
curate TDOA measurements has been derived under the as-
sumption that the sensor positions are known precisely and
that the TDOA measurement errors are independent iden-
tically distributed (i.i.d.) zero-mean Gaussian random vari-
ables with variance determined by the CRLB for TDOA es-
timation. Taken in conjunction, these two bounds provide a
lower bound on the achievable performance of a 2D UWB-
IR TDOA localization and tracking system in the absence of
errors in sensor position measurements, subject to the con-
straints imposed by other system parameters such as SNR,
number of receiving sensors, target range, and sensor geom-
etry.1 As we discuss below, under reasonable simplifying as-

1 Recent work on improved lower bounds for time-of-arrival estimation er-
ror in UWB channels [6, 7] indicates that tighter lower bounds on system
performance may be available using the Ziv-Zakai lower bound (ZZLB)
rather than the CRLB in realistic UWB systems. However, since the ZZLB
requires information regarding the autocorrelation function of the trans-
mitted pulse, the more straightforward CRLB is used in this paper.

sumptions, the CRLB for unbiased estimates of location in
the presence of sensor position errors as well as TDOA mea-
surement errors takes the same form as the CRLB with only
TDOA measurement errors. Hence, we are able to use the
same bound (with an appropriate adjustment for the increase
in aggregate measurement error variance) as a lower bound
on the achievable performance both with and without sensor
position errors in some cases.

To determine the more practical performance limits of
UWB-IR localization and compare these with the theoret-
ical limits presented in the paper, three different location
estimation algorithms have been explored to solve the sys-
tem of hyperbolic equations defined by the TDOA problem.
The algorithms studied are identified throughout the paper
as the weighted minimum least-squares (WMLS) technique,
the weighted total least-squares (WTLS) technique, and the
Newton-Raphson method (N-R). The WMLS approach uses
a constrained linear model described in [8] to compute an
estimate of the target location. The WTLS is a novel modifi-
cation of the WMLS method that compensates for the errors
in sensor positions as well as in the TDOA measurements.
The N-R method is equivalent to an approximate maximum-
likelihood (ML) technique, in which the nonlinear system of
TDOA equations is solved iteratively, using the location es-
timate provided by the WMLS algorithm as a starting value
for the iteration.

The performance of the three baseline algorithms was
evaluated using Monte Carlo simulations. Scenarios with and
without errors in sensor positions were considered. The per-
formance metrics evaluated and compared were the bias and
mean-squared error (MSE) of both one-shot and averaged
location estimates. The theoretical values of the bias and MSE
were also derived analytically for the WMLS algorithm and
used both to validate the simulation results and provide a
theoretical baseline for performance evaluation.

The contributions of this work can be summarized as fol-
lows:

(i) Most of the previous work on UWB-IR location esti-
mation has focused on target localization in the near
field; that is, when the target range is on the order
of the radius of the smallest circle containing all of
the receiving sensors. Such studies are sufficient for
many UWB applications, but UWB-IR localization can
also be applied effectively in the far field and such
systems are currently being developed for some ap-
plications [9, 10]. For the near-field case, SNR is of-
ten high and system performance is relatively insensi-
tive to changes in tracking geometry caused by small
sensor position errors or small changes in range. On
the other hand, non-line-of-sight (NLOS) and multi-
path propagation are often prevalent (particularly for
indoor environments), difficult to discriminate from
line-of-sight (LOS) propagation, and can cause seri-
ous performance degradation. In the far-field case, the
situation is somewhat reversed, particularly for out-
door applications such as those considered in [9, 10].
SNR can be quite low and system performance is ex-
tremely sensitive to both small sensor position errors
and relatively small changes in range, but NLOS and
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multipath propagation are often much less of a con-
cern. Hence, in this work, we have neglected the effects
of NLOS and multipath propagation and concentrated
instead on the effects of low SNR, range, and errors
in sensor position. The results presented in this paper
provide a comprehensive evaluation of the theoretical
and practical performance characteristics of UWB-IR
TDOA localization systems operating in the far field.
An attempt has been made to present sufficient de-
tail and breadth in the performance evaluations that
the results presented in this paper may prove useful for
practical system design.

(ii) We demonstrate that in low-SNR situations where
one-shot location estimates must be averaged using
a tracker in order to produce final location estimates
of acceptable accuracy, extreme care must be taken
to utilize an estimation algorithm that is as close
to unbiased as possible. In particular, we show that
the relatively small one-shot bias present in the most
commonly used constrained least-squares TDOA algo-
rithm rapidly dominates the overall MSE of the loca-
tion estimates in the low-SNR regime when a moder-
ate amount of block-averaging is performed on the se-
quence of estimates. We also demonstrate that this bias
can be greatly reduced without substantially increas-
ing the complexity of the location estimation algo-
rithms. In particular, we derive a new weighted total-
least-squares algorithm and show that both it and a
standard maximum-likelihood approach have much
smaller bias in the low-SNR regime with very little in-
crease in complexity.

(iii) Finally, we consider the effect of sensor position er-
rors on the performance of UWB-IR location estima-
tion. We demonstrate that relatively small sensor posi-
tion errors that are quite likely to occur in practice can
seriously bias the location estimates produced by al-
gorithms that make no attempt to account for them.
We also demonstrate that this bias cannot be read-
ily eliminated, as in the low-SNR regime discussed
above, by resorting to simple low-complexity algo-
rithmic modifications such as total-least-squares or
maximum-likelihood approaches.

The remainder of this paper is organized as follows. Section 2
discusses the relationship of the current work with other re-
cent work on UWB location estimation. Section 3 provides
some background on TDOA location estimation algorithms
and discusses the three localization algorithms studied in this
work. The performance analysis is summarized in Section 4,
including the results on the statistical performance character-
istics of the WMLS algorithm, discussion of the two CRLBs
utilized in the paper, description of the Monte-Carlo sim-
ulations, and the results of the performance evaluation are
presented. Section 5 discusses the implications of the perfor-
mance results and presents some concluding remarks.

2. RELATIONSHIPWITH PREVIOUSWORK

Various aspects of the problem of target localization using
UWB-IR signals have been studied recently by different au-

thors. In this section, we briefly review some of these studies
and discuss how they relate to the results presented in this
paper.

In [1], Gezici et al. discuss positioning techniques based
on time-of-arrival (TOA), direction-of-arrival (DOA), and
received signal strength (RSS), along with their feasibility for
use in UWB-IR systems. Theoretical limits on TOA estima-
tion and sources of error are explored in detail, and new ap-
proaches for low-complexity TOA estimation in dense multi-
path environments and hybrid RSS-TOA location estimation
are discussed. The emphasis in [1] is primarily on TOA ap-
proaches to location estimation. The performance of TDOA
techniques, which are the focus of the current paper, is largely
ignored.

The study in [11] investigates object tracking in a 2D
UWB-IR sensor network using multipath measurements in
different scenarios: a single transmitter with a single receiver,
multiple transmitters with a single receiver, and multiple
transmitters with multiple receivers. The study is not spe-
cific to any localization algorithm, but computes the CRLB
for the high-SNR case in each of the above scenarios. In the
third scenario, the additional process of sorting multipath ar-
rivals between different sensor pairs into sets corresponding
to a single physical object has been considered. The work in
[11] is particularly relevant for UWB-IR localization scenar-
ios in which there is either no LOS component or for which
the LOS component cannot be clearly differentiated from the
NLOS components of the received signal. In this paper, we
focus on the scenario in which the LOS component of the
signal is not distorted by NLOS or multipath components,
and localization is performed solely on the basis of LOS sig-
nals. The effects of multipath propagation have been ignored
under the assumption that the LOS path can be reliably de-
tected and discriminated from the later multipath arrivals.

In [3], the authors explore the use of TDOA location es-
timation techniques in conjunction with UWB-IR signals. A
novel method for combining TDOA estimates from multiple
antenna pairs to produce a final estimate of target location is
introduced and studied via experimentation in a controlled
environment. The primary emphasis in [3] is on reducing the
variance in the TDOA estimates themselves in order to im-
prove localization accuracy. In this paper, we assume that the
TDOA estimates themselves are optimal (i.e., unbiased esti-
mates that attain the CRLB) and focus on understanding the
effects of SNR, range, sensor geometry, and sensor position
errors on localization performance.

Other recent UWB-IR localization studies of interest in-
clude [2, 4, 6, 7, 12–16]; however, these studies are less closely
related to the current paper than the three discussed above.
The results in [2] relate entirely to targets in the near field and
deal primarily with target detection rather than localization.
The results in [4] are restricted to TOA rather than TDOA
techniques as are the results in [15, 16], which also consider
NLOS and multipath propagation. Monte Carlo localization
in dense multipath UWB environments is considered in [14].
The CRLBs for synchronization and time-delay of UWB sig-
nals are studied in detail in [12, 13], and ZZLBs are studied in
[6, 7]. Given a particular system with a known pulse shape,
such as a Gaussian monocycle, the theoretical performance
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bounds given in this paper could possibly be improved by
employing the ZZLB rather than the CRLB.

3. TDOA LOCALIZATION ALGORITHMS

The principle of using TDOA measurements to perform lo-
calization has been widely studied in the literature. In this
section, we give some background on the three TDOA lo-
calization algorithms studied in this paper and discuss their
implementation.

One of the most well-known approaches, which is related
to earlier work by Smith and Abel [17], was introduced by
Chan and Ho in [8]. In this approach, the TDOA equations
are solved using a two-stage, constrained, weighted linear
least-squares technique. The technique is not iterative and
does not suffer from convergence problems in the absence of
a good initial condition as other linearized approaches often
do. The performance of this estimation algorithm was also
studied in [8] under the assumption that the sensor positions
were known precisely and that the TDOA errors were small
enough that the inherent bias of the approach was negligible.
Both near-field and far-field target ranges were studied and
it was shown that the CRLB for one-shot location estimation
was approximately achieved in the high SNR regime studied.

Due to its low computational complexity, lack of con-
vergence problems, and near optimal performance in high
SNR situations, variations of the Chan and Ho algorithm are
still the most widely utilized and studied among TDOA loca-
tion estimation techniques. As such, we have adopted this ap-
proach as the baseline for our evaluation of the performance
of practical UWB-IR localization and tracking systems. The
main drawback of this approach is that it is not unbiased even
in the absence of sensor position errors. Since a systematic
bias cannot be removed by the operation of a conventional
tracker, which nevertheless will very effectively reduce the
variance in the resulting sequence of location estimates even
if the target is moving, this bias will quickly dominate the
performance in some situations. As a result, alternatives to
this algorithm must be considered when evaluating the per-
formance of UWB-IR localization systems.

The WMLS algorithm implemented and studied in this
paper is identical to the Chan and Ho algorithm; however,
in this study, both errors in sensor position and the effect
of the bias in the algorithm have been considered. To re-
duce the bias of the WMLS algorithm, and to some extent
its sensitivity to errors in sensor position, we have also mod-
ified the algorithm to compute location estimates using a
novel weighted, constrained, total-least-squares approach.2

The details regarding the implementation of the WTLS al-
gorithm are given below. For the same reasons, we have

2 The advantage of the total-least-squares (TLS) approach in this case is
that the bias of the solution to a TLS problem is generally smaller than
the solution to the corresponding least-squares (LS) problem when there
are unknown errors in the observation model [18]. The disadvantage is
that the variance of the solution generally increases as the bias decreases,
but in our case, that is a desirable tradeoff. The novelty the TLS algorithm
introduced here is the addition of a weighting matrix analogous to the
weighting matrix used in a conventional weighted LS approach.

also studied an approximate maximum-likelihood algorithm
for position estimation based on TDOA measurements cor-
rupted by additive white Gaussian noise (AWGN). In this
case, an approximate solution for the likelihood equation is
identified using the Newton-Raphson iterative method start-
ing from the WMLS solution. The details regarding imple-
mentation of the N-R algorithm are also given below.

A recent study by Kovaviasaruch and Ho [19] presents
an algebraic solution for estimating the position of an emit-
ter based on TDOA measurements from an arbitrary array
of sensors with random errors in the sensor position mea-
surements. The proposed method was found to be com-
putationally attractive and did not suffer from convergence
or initialization problems. A subsequent paper [20] by the
same authors presented an iterative algorithm for estimat-
ing the location of an emitter and the positions of the re-
ceivers simultaneously using TDOA measurements. The pro-
posed method was based on Taylor-series expansions and
suffered from poor convergence if a good initial solution was
not available. Although these and other similar approaches
are quite promising for application in UWB-IR systems in
the presence of sensor position errors, they have not yet been
widely utilized or studied, and we have not included them in
our performance evaluations here.

3.1. Implementation of theWMLS algorithm

Throughout the remainder of this paper, we assume that
there is one transmitter located at an unknown location
(x0, y0) in a two-dimensional space and that there are M + 1
receivers, with one receiver at the origin and M receivers lo-
cated symmetrically in a circle around it. This particular ge-
ometry was chosen for the applications considered in [9] that
motivated much of the current study; however, it has the ad-
ditional advantage that the location estimation performance
becomes isotropic as M becomes large. The true receiver po-
sitions are given by {(0, 0), (x1, y1), (x2, y2), . . . , (xM , yM)},
and the true relative time delays between the arrival of the
transmitted signal at receiver (0, 0) and each of the other lo-
cations (x1, y1), . . . , (xM , yM) are given by {τ1, τ2, . . . , τM}.

If the propagation velocity of the signals is given by the
constant c, the relative time delays can be translated into dis-
tance differences that satisfy the following constrained sys-
tem of linear equations in the absence of errors in the TDOA
measurements or sensor positions:

G0u0 = h0, (1)

where

G0 = −2·

⎡
⎢⎢⎢⎢⎣

x1 y1 cτ1

x2 y2 cτ2
...

...
...

xM yM cτM

⎤
⎥⎥⎥⎥⎦

, u0 =

⎡
⎢⎣
x0

y0

r0

⎤
⎥⎦ , (2)
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h0 =

⎡
⎢⎢⎢⎢⎢⎣

c2τ2
1 − x2

1 − y2
1

c2τ2
2 − x2

2 − y2
2

...
c2τ2

M − x2
M − y2

M

⎤
⎥⎥⎥⎥⎥⎦

, (3)

and r0 =
√
x2

0 + y2
0.

The system of equations has been made linear by intro-
ducing a third variable r0, which represents the range of the
transmitter from the origin. The solution of this constrained
system of equations is found using a two-state weighted min-
imum least-squares approach. The first stage involves solving
the linear system of equations, and the second stage refines
the estimate obtained in stage 1 by enforcing the nonlinear
constraint. This two-stage procedure, which was proposed by
Chan and Ho in [8], is developed below.

In the presence of additive noise in the sensor positions
and TDOA measurements, (1) becomes

G1u0 = h1 −
(
Δh1 − ΔG1u0

)
, (4)

where

G1 = G0 + ΔG1,

h1 = h0 + Δh1,

ΔG1 = −2·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε11 ε12 cδ1

ε21 ε22 cδ2
...

...
...

εM1 εM2 cδM

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Δh1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2δ2
1 + 2c2τ1δ1 − 2x1ε11 − 2y1ε12 − ε2

11 − ε2
12

c2δ2
2 + 2c2τ2δ2 − 2x2ε21 − 2y2ε22 − ε2

21 − ε2
22

...

c2δ2
M+2c2τMδM−2xMεM1−2yMεM2−ε2

M1−ε2
M2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

The vectors

ε1 =
[
ε11 ε21 · · · εM1

]T
,

ε2 =
[
ε12 ε22 · · · εM2

]T
,

δ = [δ1 δ2 · · · δM
]T

(6)

represent the errors in the x-coordinate of the sensor po-
sition, the y-coordinate of the sensor position, and the
TDOA measurement, respectively. The WMLS solution to
(4), which ignores the effect of errors in the matrix G0,3 is

given by

û1 =
(
GT

1 W1G1
)−1

GT
1 W1h1, (7)

where the weighting matrix W1 is an estimate of
the inverse of the autocorrelation matrix E{(Δh1 −
ΔG1u0)(Δh1 − ΔG1u0)T} under the assumption that there
are no sensor errors and δ is a vector of i.i.d. zero-mean
Gaussian random variables.4 The estimate given by (7) con-
stitutes the output of Stage 1 of the WMLS algorithm.

For the second stage of the algorithm, the possible in-
consistency between the estimated values for (x0, y0) and

r0 =
√
x2

0 + y2
0 obtained in the vector û1 is resolved by com-

puting a new estimate of (x2
0, y2

0) based on û1. The approach
is again weighted-least-squares, and we begin by defining

G2 =

⎡
⎢⎣

1 0
0 1
1 1

⎤
⎥⎦ , h2 = û1 ◦ û1 =

⎡
⎢⎢⎣

(
û1(1)

)2

(
û1(2)

)2

(
û1(3)

)2

⎤
⎥⎥⎦ ,

Δh2 = h2 − u0 ◦ u0 = h2 −G2

[
x2

0

y2
0

]
,

(8)

where the symbol “u ◦ u” indicates the Hadamard product
of the vector u with the vector v. It should be noted that the
equation

G2

[
x2

0

y2
0

]
= u0 ◦ u0 (9)

is always satisfied, while the associated equation

G2

[(
û1(1)

)2

(
û1(2)

)2

]
= h2 (10)

will not generally be satisfied. The estimate û2 of (x2
0, y2

0) is
computed as a weighted least-squares solution to (10) and is
given by

û2 =
(
GT

2 W2G2
)−1

GT
2 W2h2, (11)

where W2 is an estimate of the inverse of the autocorrela-
tion matrix E{Δh2ΔhT2 }. This estimate constitutes the output
from Stage 2 of the algorithm.

The estimated values of (x2
0, y2

0) obtained in the vector û2

are used to obtain a final estimate of (x0, y0) based on û2 and
û1 combined. The final estimate û3 of (x0, y0) is given by

û3 = P
√
û2, (12)

3 The explicit incorporation of sensor position errors in (4) will be utilized
later to derive the WTLS algorithm and is also exploited in our expression
for the bias of the WMLS algorithm. These errors have been ignored in
previous analyses of this algorithm that have appeared in the literature.

4 For example, for the simulations presented in this paper, the weighting
matrix W1 is just a scaled version of the identity, which is a good ap-
proximation for {(Δh1 − ΔG1u0)(Δh1 − ΔG1u0)T} in the far field in the
absence of sensor position errors.
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where, in this case, “
√·” indicates a componentwise square-

root operation and P = diag(sgn(û1(1)), sgn(û1(2))). Details
concerning the derivation of this algorithm can be found in
[8].

3.2. Implementation of theWTLS algorithm

To reduce the bias in the WMLS algorithm and to compen-
sate somewhat for errors in sensor positions, a weighted total
least-squares solution to (4) is used instead of the weighted
minimum least-squares solution. To the best of our knowl-
edge, such a weighted total least-squares algorithm has not
been previously proposed in the literature. As such, this al-
gorithm may be of interest in its own right.

To implement the algorithm, we define the matrices G0 =
[G0 | h0], G1 = [G1 | h1] and Δ1 = [ΔG1 | Δh1].

Note that (1) can now be rewritten as

G0

[
u0

−1

]
= 0 (13)

and (4) can be rewritten as

(
G1 − Δ1

)[ u0

−1

]
= 0. (14)

In order to solve this system of equations, Cholesky decom-
position is used. Let ΣL = E{ΔT

1 Δ1} and ΣR = E{Δ1Δ
T
1 } un-

der the assumption that ε1, ε2, and δ are mutually indepen-
dent vectors of i.i.d. zero-mean Gaussian random variables.
We seek a matrix Δ and an estimate û1 of u0 such that the
equation

(
G1 − Δ

)[ û1

−1

]
= 0 (15)

is satisfied, and the matrix Δ has minimum possible norm of
the form

∥∥Δ
∥∥ =

√
Tr
(
Δ
T
Σ−1

R ΔΣ−1
L

)
. (16)

To find û1 and Δ, we first factor ΣL and ΣR using the Cholesky
decomposition to get Σ−1

L = WLWT
L and Σ−1

R = WRWT
R and

note that (15) can be rewritten as

WT
R

(
G1 − Δ

)
WLW−1

L

[
û1

−1

]
= 0 (17)

or equivalently

(G̃1 − Δ̃)ũ = 0, (18)

where

G̃ =WT
RG1WL, Δ̃ =WT

RΔWL, ũ =W−1
L

[
û1

−1

]
.

(19)

Now to solve (15), we look first for Δ̃ and ũ that satisfy (18)
such that Δ has minimum possible Frobenius norm, which is

given by

∥∥Δ̃
∥∥

F =
√

Tr
(
Δ̃
T
Δ̃
)
. (20)

The desired solution for (18) is derived using singular value
decomposition (SVD). Let the SVD of G̃ be given by

G̃ = UDVT , (21)

where the columns of V are the orthonormal eigenvectors

of G̃
T
G̃. Let vmin be the column of V corresponding to the

smallest eigenvalue λmin of G̃
T
G̃. The desired solution to (18)

is given by

Δ̃ =
√
λmin vmin vTmin , ũ = αvmin , (22)

where α is chosen such that

ũ = αvmin =W−1
L

[
û1

−1

]
(23)

or equivalently

[
û1

−1

]
= αWLvmin . (24)

Hence, α is the negative of the inverse of the last component
of the vector WLvmin , and the vector û1 is the desired Stage
1 solution to the equation. Stage 2 and the final estimate for
the WTLS algorithm are identical to the original Stage 2 and
the final estimate for the WMLS algorithm.

It should be noted that the computational complexity of
the WTLS algorithm is higher than that of the WMLS algo-
rithm due solely to the computation of the SVD of an M × 4
matrix. Unless the value of M is extremely large, this repre-
sents a very slight increase in computational complexity.

3.3. Implementation of the N-R algorithm

The Newton-Raphson method was implemented to solve the
nonlinear TDOA equations iteratively by searching for the
roots of the likelihood equation [21]. The WMLS estimate
was used as a starting point for the iteration. Using the no-
tation established above and assuming the target is in the far
field and the errors in sensor positions are small relative to
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the target range, we can write

di =
√(

x0 − xi
)2

+
(
y0 − yi

)2 −
√
x2

0 + y2
0 + cδi

=
√[

x0 −
(
xi + εi1

)
+ εi1

]2
+
[
y0 −

(
yi + εi2

)
+ εi2

]2

−
√
x2

0 + y2
0 + cδi

=
√[

x0 − x̂i + εi1
]2

+
[
y0 − ŷi + εi2

]2 −
√
x2

0 + y2
0 + cδi

≈
√(

x0 − x̂i
)2

+
(
y0 − ŷi

)2 −
√
x2

0 + y2
0

+

(
x0 − x̂i

)
εi1 +

(
y0 − ŷi

)
εi2

r̂i
+ cδi

=
√(

x0 − x̂i
)2

+
(
y0 − ŷi

)2 −
√
x2

0 + y2
0 + ξi + cδi,

i = 1, . . . , M,
(25)

where di = cτi is the observed distance difference between
the signal at receiver (0, 0) and the signal at receiver (xi, yi),
(x̂i, ŷi) = (xi, yi) + (εi1, εi2) is the measured position of the ith
receiver, r̂i is the range of target from the measured position
of the ith receiver, and

ξi =
(
x0 − x̂i

)
εi1 +

(
y0 − ŷi

)
εi2

r̂i
(26)

represents the equivalent additive noise in the distance-
difference measurement at the ith receiver resulting from
sensor position error. If we now let

f
(
x0, y0

)=
M∑

i=1

(
di −

[√(
x0 − x̂i

)2
+
(
y0 − ŷi

)2 −
√
x2

0 + y2
0

])2

,

(27)

then, under the assumption that the random variables (ξi +
cδi), for i = 1, . . . , M, are i.i.d. zero-mean Gaussian,5 the
likelihood equation for the target position x � (x0, y0)T be-
comes

f(x) �

⎡
⎢⎢⎢⎢⎣

∂

∂x0
f (x0, y0)

∂

∂y0
f (x0, y0)

⎤
⎥⎥⎥⎥⎦
= 0. (28)

5 As a general rule, sensor position errors will be time-varying and well
modeled as random only if sensor positions are estimated along with tar-
get position. In that case, the error in target location resulting from sensor
position errors will not appear as a bias, but rather as an increase in the
variance of the location error. Throughout this paper, we generally treat
sensor position errors as fixed over time and represent the resulting tar-
get location error as a bias. Nevertheless, the CRLB including the effect of
random sensor errors is a useful reference point that has been included in
some of the simulation results presented in this paper.

Finally, letting

J(x) �

⎡
⎢⎢⎢⎢⎣

∂2

∂x2
0
f
(
x0, y0

) ∂2

∂x0∂y0
f
(
x0, y0

)

∂2

∂y0∂x0
f
(
x0, y0

) ∂2

∂y2
0
f
(
x0, y0

)

⎤
⎥⎥⎥⎥⎦

, (29)

the Newton-Raphson iteration for the (n + 1)st estimate of
the target position becomes

xn+1=xn − J−1(xn
)
f
(
xn
)
. (30)

The output of the N-R algorithm is the result of this iteration
given an appropriate stopping criterion.

If the initial location estimate for the N-R algorithm (i.e.,
the output from the WMLS algorithm) is reasonably accu-
rate, the increase in computational complexity of the WMLS
algorithm is minimal. In fact, although we did not perform
a careful study of the convergence of the N-R algorithm, our
simulation results indicate that in most cases, a significant
performance improvement is achieved with a single step of
the N-R iteration.

4. PERFORMANCE EVALUATION RESULTS

In this section, we present the results of a comprehensive per-
formance evaluation of a 2D UWB-IR localization system.
To establish the theoretical performance limits, we derived
the CRLB for TDOA location estimation in the far field un-
der the assumption that the aggregate measurement errors
in distance-difference due to both sensor position errors and
TDOA measurement errors were i.i.d. zero-mean Gaussian.
In order to state this bound in terms of received SNR rather
than the variance of the TDOA measurement error, we uti-
lized the CRLB for TDOA estimation for known signals in
AWGN as the assumed relationship between SNR and TDOA
error variance under the assumption that the bandwidth of
the UWB signal was 4 GHz.

To establish some practical performance limits and com-
pare these with the theoretical limits, we utilized both ana-
lytical and numerical performance evaluation. The statistical
characteristics (bias vector, autocorrelation matrix, total bias,
and MSE) of the WMLS algorithm were derived analytically
under the assumption that the sensor errors were determinis-
tic and the TDOA measurement errors were i.i.d. zero-mean
Gaussian. To validate these analytical results and compare
the performance of the WMLS algorithm with both the new
WTLS algorithm and the approximate ML estimate given by
the N-R algorithm, we conducted an extensive Monte Carlo
simulation study.

We begin by summarizing the analytical results on the
statistical characteristics of the WMLS algorithm and the
CRLB for TDOA location estimation. The details regarding
the derivation of these results are presented in an appendix
to this paper, which is available on request by contacting the
author at e-mail; rbarton@uh.edu.
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4.1. Analytical Results forWMLS Algorithm and CRLB

Throughout the remainder of this paper, we make the as-
sumption that the TDOA measurement error vector δ is a
zero-mean Gaussian random vector with covariance matrix
σ2
δI, where the variance σ2

δ is related to the SNR of the re-
ceived UWB signals by the formula (see, e.g., [1])

σ2
δ =

1
8π2SNR

(
16× 1018) sec 2. (31)

Under this assumption, the bias vector and autocorrelation
matrix for the location estimates produced by the WMLS al-
gorithm are given by

β =
[
β1
β2

]
=
[
x−1

0 0
0 y−1

0

]

×

⎛
⎜⎝
[
x−1

0 0 r−1
0

0 y−1
0 r−1

0

]
GT

0 W1G0

⎡
⎢⎣
x−1

0 0
0 y−1

0

r−1
0 r−1

0

⎤
⎥⎦

⎞
⎟⎠
−1

×
[
x−1

0 0 r−1
0

0 y−1
0 r−1

0

]

×

⎛
⎜⎜⎜⎜⎜⎝
GT

0 W1

⎡
⎢⎢⎢⎢⎢⎣
c2σ2

δ

⎡
⎢⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎥⎦
− ε1 ◦ ε1 − ε2 ◦ ε2 + 2

(
x0 − x

) ◦ ε1

+ 2
(
y0 − y

) ◦ ε2 + 4c2σ2
δr0W1G0

(
GT

0 W1G0
)−1

⎡
⎢⎣

0
0
1

⎤
⎥⎦

+ 2

⎛
⎜⎜⎜⎜⎝
c2σ2

δ

⎡
⎢⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎥⎦
εT1 + 2

[(
x0 − x

) ◦ ε1
]
εT1

+ 2
[(
y0 − y

) ◦ ε2
]
εT1

⎞
⎟⎟⎟⎟⎠

T

W1G0
(
GT

0 W1G0
)−1

⎡
⎢⎣

1
0
0

⎤
⎥⎦

+ 2

⎛
⎜⎜⎜⎜⎝
c2σ2

δ

⎡
⎢⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎥⎦
εT1 + 2

[(
x0 − x

) ◦ ε1
]
εT1

+ 2
[(
y0 − y

) ◦ ε2
]
εT1

⎞
⎟⎟⎟⎟⎠

T

W1G0
(
GT

0 W1G0
)−1

⎡
⎢⎣

0
1
0

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

+ 2

⎡
⎢⎢⎢⎢⎣

Tr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
W1G0

(
GT

0 W1G0
)−1

GT
0 − I

]

×W1

⎛
⎜⎜⎜⎝c

2σ2
δ

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ ε

T
1 +2

[(
x0 − x

) ◦ ε1
]
εT1

+ 2
[(
y0 − y

) ◦ ε2
]
εT1

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

× Tr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
W1G0

(
GT

0 W1G0
)−1

GT
0 − I

]

×W1

⎛
⎜⎜⎜⎝c

2σ2
δ

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ ε

T
2 + 2

[(
x0 − x

) ◦ ε1
]
εT2

+ 2[
(
y0 − y

) ◦ ε2
]
εT2

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

×2c2σ2
δr0Tr

{[
W1G0

(
GT

0 W1G0
)−1

GT
0 − I

]
W1

}

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

,

Σ =
[
x−1

0 0
0 y−1

0

]⎛
⎜⎝
[
x−1

0 0 r−1
0

0 y−1
0 r−1

0

]
GT

0 W1G0

⎡
⎢⎣
x−1

0 0
0 y−1

0

r−1
0 r−1

0

⎤
⎥⎦

⎞
⎟⎠
−1

·

⎛
⎜⎝
[
x−1

0 0 r−1
0

0 y−1
0 r−1

0

]
GT

0 W1W−1W1G0

⎡
⎢⎣
x−1

0 0
0 y−1

0

r−1
0 r−1

0

⎤
⎥⎦

⎞
⎟⎠

·

⎛
⎜⎝
[
x−1

0 0 r−1
0

0 y−1
0 r−1

0

]
GT

0 W1G0

⎡
⎢⎣
x−1

0 0
0 y−1

0

r−1
0 r−1

0

⎤
⎥⎦

⎞
⎟⎠
−1 [

x−1
0 0
0 y−1

0

]
,

(32)
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respectively, where W1 = (4c2σ2
δr

2
0 )
−1
I and

W =
(
E
{(
Δh1 − ΔG1u0

)(
Δh1 − ΔG1u0

)T})−1

=
[

4c2σ2
δr

2
0 I + 4

((
x0 − x

) ◦ ε1 +
(
y0 − y

) ◦ ε2
)

× ((x0 − x
) ◦ ε1 +

(
y0 − y

) ◦ ε2
)T]−1

= 1
4c2σ2

δr
2
0
·
[
I− (((x0 − x

) ◦ ε1 +
(
y0 − y

) ◦ ε2
)

× ((x0 − x
) ◦ ε1 +

(
y0 − y

) ◦ ε2
)T)

/(
c2σ2

δr
2
0 +
((
x0− x

) ◦ ε1 +
(
y0− y

) ◦ ε2
)T

× ((x0 − x
) ◦ ε1 +

(
y0 − y

) ◦ ε2
))]

.

(33)

The MSE for the algorithm is then given by E 2
WMLS = Tr(Σ),

the total bias by βWMLS = ‖β‖2 =
√
β2

1 + β2
1, and the total

variance by σ2
WMLS = E 2

WMLS − β2
WMLS.

Under the additional assumption that the aggregate sen-

sor position error vector ξ = [ξ1 ξ2 · · · ξM]
T

is also a
zero-mean Gaussian random vector with covariance matrix
σ2
ξI that varies from estimate to estimate, (32) is reduced to

β = −2
(
c2σ2

δ + σ2
ξ

)
⎡
⎣x

−1
0 0

0 y−1
0

⎤
⎦

·

⎛
⎜⎜⎜⎝

⎡
⎣x

−1
0 0 r−1

0

0 y−1
0 r−1

0

⎤
⎦ Ĝ

T

0 Ĝ0

⎡
⎢⎢⎢⎣

x−1
0 0

0 y−1
0

r−1
0 r−1

0

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

−1

·
⎡
⎣x

−1
0 0 r−1

0

0 y−1
0 r−1

0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M∑

i=1

x̂i

M∑

i=1

ŷi

M∑

i=1

cτ̂i − 2(4−M)r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Σ = 4
(
c2σ2

δ + σ2
ξ

)
r2

0

⎡
⎣
x−1

0 0

0 y−1
0

⎤
⎦

×

⎛
⎜⎜⎜⎜⎝

⎡
⎣
x−1

0 0 r−1
0

0 y−1
0 r−1

0

⎤
⎦ Ĝ

T

0 Ĝ0

⎡
⎢⎢⎢⎢⎣

x−1
0 0

0 y−1
0

r−1
0 r−1

0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

−1
⎡
⎣
x−1

0 0

0 y−1
0

⎤
⎦ ,

(34)

respectively, where

Ĝ0 = −2·

⎡
⎢⎢⎢⎢⎣

x̂1 ŷ1 cτ̂1

x̂2 ŷ2 cτ̂2
...

...
...

x̂M ŷM cτ̂M

⎤
⎥⎥⎥⎥⎦

,

cτ̂i =
√(

x0 − x̂i
)2

+
(
y0 − ŷi

)2 −
√
x2

0 + y2
0, i = 1, . . . , M.

(35)

Finally, if we make the additional simplifying assumption
that the receiving sensors are nominally (i.e., ignoring sensor
position error) arranged symmetrically in a circle of radius
r around the reference sensor at the origin, and we let x0 =
r0cosθ, y0 = r0 sin θ, and

x̂i � ρ̂icosφ̂i = rcosφ̂i,

ŷi � ρ̂i sin φ̂i = r sin φ̂i, i = 1, 2, . . . , M,

v̂i � sin
(
θ − φ̂i

)
,

(36)

then (34) can be simplified to give the following approxima-
tions for the total bias and the MSE:

βWMLS =
4|4−M|(σ2

ξ + c2σ2
δ

)
r3

0

Mr4v4
, (37)

E 2
WMLS =

4
(
σ2
ξ + c2σ2

δ

)
r4

0

Mr4v4
, (38)

where v 4 = (1/M)
∑M

i=1v̂
4
i = (1/M)

∑M
i=1sin4(θ − φ̂i).

Similarly, under the assumption that ξ and δ are zero-
mean Gaussian random vectors with covariance matrices σ2

ξI
and σ2

δI, respectively, the CRLB for the variance of an unbi-
ased location estimate derived from TDOA measurements in
the far field is given by

CRLBTDOA =
(
σ2
ξ + c2σ2

δ

)
r2

0

(‖x̃‖2 + ‖ ỹ‖2)

‖x̃‖2‖ ỹ‖2 − ∣∣〈x̃, ỹ〉∣∣2 , (39)

where

x̃ =
[
x̂1 + cτ̂1cosθ x̂2 + cτ̂2cosθ · · · x̂M + cτ̂Mcosθ

]T
,

ỹ =
[
ŷ1 + cτ̂1 sin θ ŷ2 + cτ̂2 sin θ · · · ŷM + cτ̂M sin θ

]T
,

cτ̂i ≈ − ρ̂icos
(
θ − φ̂i

)
+

ρ̂2
i

2r0
sin 2(θ − φ̂i

)
,

∀ i = 1, 2, . . . , M.
(40)

If the sensors are nominally distributed uniformly in a circle
of radius r around the origin, this is reduced to

CRLBTDOA =
4
(
σ2
ξ + c2σ2

δ

)
r4

0

Mr4v4
. (41)

Notice that (38) and (41) imply that when the target is in the
far field and the sensors are circularly symmetric with either
no sensor position errors or Gaussian sensor position errors
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that vary independently from estimate to estimate, the MSE
of the WMLS attains the CRLB for TDOA estimation. Unfor-
tunately, as discussed previously when the sensor errors are
fixed for long periods of time, the total bias of the algorithm
is not insignificant in the far field and will not be averaged
out by a tracker. Hence, the WMLS cannot be regarded as an
approximately optimal algorithm in this case. The simulation
results in the next section will demonstrate this quite clearly.

Notice also that the CRLB for TOA estimation in the far
field with circularly symmetric sensors can be shown to be
[22]

CRLBTOA =
2
(
σ2
ξ + c2σ2

δ

)
r2

0

Mr2
. (42)

Hence, we have

CRLBTDOA

CRLBTOA
= 2r2

0

v4r2
, (43)

so the lack of an absolute time reference for TDOA estima-
tion results in an extremely significant performance penalty
in the far field. Of course, this observation is valid for all lo-
cation estimation systems, not just those based on UWB-IR
signals, but the performance penalty is particularly signifi-
cant when the goal is precision location estimation as it gen-
erally is with a UWB system.

4.2. Simulation results

The location estimation simulations were implemented us-
ing MATLAB. For most of the simulations, a total of nine
receiver positions were used to compute the 2D location es-
timate of the target, with a reference sensor located at the
origin and the remaining eight sensors positioned symmet-
rically around it in a circle of varying radius r.6 The relatively
large number of sensors was selected in order to reduce the
influence of target azimuth angle on performance to a neg-
ligible level. Sensor position errors relative to the reference
sensor were simulated by adding i.i.d. AWGN samples with
variance σ2

ξ to each of the true coordinate positions for the
receivers located in the circular array around the reference
sensor. Once the receiver and target positions were simulated,
the relative distance differences were computed at the various
receivers and translated into relative time differences. TDOA
errors were simulated by adding i.i.d. AWGN samples with
variance σ2

δ to each of the computed relative time differences.

4.2.1. One-shotWMLS performance

To validate the analysis of the statistical performance char-
acteristics for the WMLS algorithm derived in the appendix
and summarized in Section 4.1 above, we conducted an ini-
tial set of simulations on the one-shot location estimation
performance of the WMLS algorithm. Our analytical results

6 Nine sensors were used in all simulation studies except for the study of
performance versus number of receiving sensors.

indicate that, under the assumption that the target is in the
far field and sensor errors are either absent or randomly dis-
tributed from estimate to estimate with a Gaussian distribu-
tion, the WMLS algorithm achieves the MSE of the best pos-
sible unbiased one-shot estimator. Thus these performance
results also provide a good indication of the achievable accu-
racy of any stand-alone location estimation algorithm based
on TDOA measurements of UWB-IR signals under simi-
lar system configurations. Accordingly, we have attempted
to simulate a broad range of system configurations in order
that these performance results may be used as a guideline for
practical system design.

Performance as a function of SNR

The performance of the WMLS algorithm as a function of
average received SNR is presented in Figure 1. For these
plots, the radius of the receiver array was set to 10 meters
and the target range to 100 meters, which corresponds to a
range/baseline ratio of 10. As the figure indicates, the simu-
lated results agree very well with the analytical results. In the
very low SNR region (−30 dB), the algorithm has an MSE of
approximately 1000 m2 and a total bias of approximately 32
meters. In the high SNR region (10 dB), the algorithm has an
MSE of approximately 0.079 m2 and a total bias of approx-
imately 0.003 meters. These results indicate that under high
SNR conditions, a one-shot TDOA UWB-IR localization sys-
tem with 4 GHz of bandwidth and a range/baseline radius
of 10 can achieve a relative location error (i.e., root MSE
over range) of approximately 0.28% at a range of 100 me-
ters. Similarly, under very low SNR conditions, such a system
can achieve a relative location error of only approximately
31.6%.

Performance as a function of range/baseline ratio

The performance of the WMLS algorithm as a function of
range/baseline ratio (r0/r) is presented in Figure 2. For these
plots, the radius of the receiver array was fixed at 10 meters
and the SNR was fixed at −10 dB. Once again, the simula-
tion results are in good agreement with the analytical re-
sults. At this relatively low SNR level, an MSE of approxi-
mately 0.50 m2 and a total bias of approximately 0.04 me-
ters are achievable with a range/baseline ratio of 5. For a
range/baseline ratio of 20, the MSE increases to approxi-
mately 125.9 m2 and the total bias increases to approximately
2.24 meters. In this case (baseline fixed at 10 meters), this
corresponds to a relative location error of approximately
0.71% for a range/baseline ratio of 5 and a relative location
error of approximately 11.2% for a range/baseline ratio of
20. As indicated in (38), if the range/baseline ratio remains
fixed, the relative location error decreases linearly as range
increases; whereas, for a fixed baseline radius, the relative lo-
cation error increases linearly with increasing range.

Performance as a function of number of receiver sensors

The performance of the WMLS algorithm as a function of
the number of sensors in the receiver array is presented in
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Figure 1: WMLS MSE (a) and total bias (b) as a function of SNR.

Figure 3. For these plots, the radius of the receiver array was
fixed at 10 meters, the target range was fixed at 100 meters,
and the SNR was fixed at −10 dB. The analytical results are
again in good agreement with the simulated results with the
exception of the case M = 4. For this case, the analytical ex-
pression for the bias clearly understates the actual bias of the
algorithm. This appears to result from the fact that some of
the “negligible” terms dropped in the derivation of the ana-
lytical expression for the bias are in fact not negligible when
M = 4.
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Figure 2: WMLS MSE (a) and total bias (b) as a function of
range/baseline ratio.

As Figure 3 indicates, the achievable MSE with 4 receiv-
ing sensor is approximately 19.95 m2 and the achievable total
bias is approximately 0.20 meters. With 11 receiving sensors,
the achievable MSE decreases to approximately 6.17 m2 but
the total bias increases to approximately 0.32 meters. Hence,
with only 4 receiving sensors, a relative location error of
approximately 4.46% can be achieved at 100 meters with a
range/baseline radius of 10 and an SNR of −10 dB. With 11
receiving sensors, the relative location error can be reduced
to 2.48%.
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Figure 3: WMLS MSE (a) and total bias (b) as a function of number
of receiving sensors.

Performance as a function of sensor position error variance

The performance of the WMLS algorithm as a function of
the variance of random sensor position error is presented
in Figure 4. Again for these plots, the radius of the receiver
array was fixed at 10 meters, the target range was fixed at
100 meters, and the SNR was fixed at −10 dB. To reflect
the fact that sensor errors will generally remain fixed over
a large number of independent location estimates, the au-
tocorrelation matrix and bias vector were estimated by av-
eraging over a large number of independent trials for each
set of randomly generated sensor errors before computing
the MSE and total bias estimates that are plotted in Figure 4.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

lo
g 10

M
SE

(m
2
)

10−6 10−5 10−4 10−3 10−2

Variance of sensor position error σ2
ε (m2)

MSE (simulation)
MSE (analytical 1)

MSE (analytical 2)
CRLB

Variation of MSE in WMLS estimate with errors in
sensor position (SNR= −10 dB, r0 = 100 m, r = 10 m)

(a)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

lo
g 10

bi
as

(m
)

10−6 10−5 10−4 10−3 10−2

Variance of sensor position error σ2
ε (m2)

Bias (simulation)
Bias (analytical 1)
Bias (analytical 2)

Variation of bias in WMLS estimate with errors in
sensor position (SNR= −10 dB, r0 = 100 m, r = 10 m)

(b)

Figure 4: WMLS MSE (a) and total bias (b) as a function of sensor
position error variance.

In this case, the plots show two different “analytical” curves:
Analytical 1 and Analytical 2. The curves labeled Analyti-
cal 1 correspond to the MSE and bias predicted by (32),
respectively, and these curves are in excellent agreement
with the simulation results. The curves labeled Analytical 2,
on the other hand, correspond to the MSE and bias pre-
dicted by (32) under the assumption that W1 = W. These
curves represent the performance of a “genie-aided” version
of the WMLS algorithm in which the weighting matrix W1

is computed using the true values of the sensor position
errors.

There are several interesting aspects of the results pre-
sented in Figure 4. First, both the bias and MSE are fairly
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small in the low-sensor-noise regime where the dominant
source of error is the TDOA measurement noise, but the
bias (and consequently the MSE) increases dramatically as
the sensor position errors become the dominant error mech-
anism. Second, the increase in bias due to the presence of
sensor position errors can be effectively eliminated from the
WMLS by using the “correct” version of the weighting ma-
trix W1 in the algorithm. Although this is not actually feasi-
ble without modifying the algorithm extensively to estimate
both sensor and target positions simultaneously, it does pro-
vide some insight into how the algorithm fails when sensor
position errors are present and indicates how critical it is to
account for possible sensor position errors in UWB location
estimation algorithms.

Finally, the behavior of the CRLB relative to the MSE
of the WMLS algorithm is of interest. First, notice that the
CRLB curve does not always fall below either the simulated
MSE or the Analytical 1 MSE curve. This is probably a re-
sult of the fact that the CRLB was derived assuming that the
sensor position errors were i.i.d. zero-mean Gaussian that
vary from estimate to estimate while the Analytical 1 curve
and the simulated MSE were both computed by averaging
over a relatively small number of random sensor position
error vectors that were held fixed over a large number of
independent location estimates. If the results had been av-
eraged over a much larger number of random sensor er-
rors (which would have required a much longer simulation
time), both the Analytical 1 curve and the simulation results
may well have fallen above the CRLB curve.7 Notice also that
the bias of the WMLS estimate accounts for almost the en-
tire MSE. Hence, while smoothing location estimates using
a tracker will significantly reduce the CRLB, the bias of the
WMLS will remain fixed and the MSE will remain corre-
spondingly high. Finally, the fact that the CRLB, which cor-
responds to purely random sensor position errors that can-
not be accurately determined, is much larger than the Ana-
lytical 2 MSE curve in the high-sensor-noise regime, which
again indicates that it is essential to design UWB location es-
timation algorithms that are able to adapt to and compensate
for the systematic sensor position errors that often occur in
practice.

4.2.2. Performance comparison ofWMLS, WTLS,
and N-R algorithms

In this subsection, we present simulation results compar-
ing the performance of the WMLS algorithm with the new
WTLS algorithm and the N-R algorithm. For these simu-
lations, the baseline radius was fixed at 10 meters and the
target range at 100 meters. Performance is compared both
with and without the introduction of random sensor er-
rors and both with and without averaging over multiple
estimates.

7 Recall, however, this is not a theoretical requirement since the CRLB is a
lower bound only for the variance (and therefore the MSE) of unbiased
estimates of location, while the WMLS has a significant bias.

One-shot estimation with no errors in sensor position

The performance of the three algorithms for one-shot lo-
cation estimates with no errors in sensor position is pre-
sented in Figure 5. For these results, the SNR was varied
across a very wide range from −10 to 30 dB. As expected,
the MSE of the WMLS algorithm is only slightly above the
CRLB across the entire SNR range and approaches the CRLB
asymptotically as the SNR becomes high. Further, as one
might anticipate given the excellent MSE performance of the
WMLS algorithm, the MSE for the (approximate maximum-
likelihood) N-R algorithm is virtually identical to that of the
WMLS algorithm, while the MSE of the WTLS algorithm is
consistently (except for extremely low SNR) higher than both
of the others. The degradation in MSE for the WTLS corre-
sponds to a loss of approximately 1 dB in SNR across most of
the SNR range.

Also as expected, the bias of both the WTLS and N-R al-
gorithms is considerably lower than the bias of the WMLS
algorithm for the entire range of SNR values. The reduc-
tion in bias seems to correspond to an average gain of ap-
proximately 5 dB in SNR across the SNR range. Note that
for the WMLS algorithm, the bias dominates the MSE in the
very low SNR regime but is negligible in the very high SNR
regime so that the variance of the estimate dominates the
MSE. For both the WTLS and N-R algorithms, the effect of
the bias on the MSE is much less severe in the very low SNR
regime.

Block averaging with no errors in sensor position

The performance of the three algorithms for smoothed es-
timates computed by averaging over a block of 100 consec-
utive one-shot estimates with no errors in sensor position
is presented in Figure 6. As expected, the bias of the three
algorithms has not changed as a result of the block averag-
ing, but the MSE has decreased overall. These results demon-
strate quite clearly the different manner in which the bias and
variance of the one-shot location estimates affects the final
smoothed estimate that would be produced by a tracker. In
particular, in the very high SNR regime, where the error in
the one-shot estimates is dominated by the variance of the
estimates, the MSE of the averaged estimate is reduced by
a factor of 100 for all three algorithms and approaches the
CRLB. In contrast, the behavior in the very low SNR regime
is quite different. In this case, the MSE of all three algo-
rithms is far above the CRLB, but the MSE of the WMLS
algorithm, which is dominated by the bias in this region,
has not been reduced at all. On the other hand, the MSE
of the WTLS and N-R algorithms, which are much closer
to unbiased in this region, has been reduced by a factor of
approximately 10.

One-shot estimation with errors in sensor position

The performance of the three algorithms for one-shot loca-
tion estimates with errors in sensor position is presented in
Figure 7. For these results, the SNR was fixed at−10 dB while
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Figure 5: Comparison of MSE (a) and total bias (b) for WMLS,
WTLS, and N-R algorithms for one-shot estimation with no sensor
errors.

the variance of the sensor position noise was varied from
10−6 m2 to 10−2 m2. This range was chosen so that the error
in the one-shot location estimates is dominated by TDOA
errors at the low end of the range of sensor position error
variance but dominated by sensor position errors at the high
end. Note however, that even at the high end of the range, the
standard deviation of the sensor positions from the nominal
position on a circle of radius 10 m is only 1 cm, which is still
quite small.

These results demonstrate quite clearly the detrimental
effects of even a small amount of sensor position error on
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Figure 6: Comparison of MSE (a) and total bias (b) for WMLS,
WTLS, and N-R algorithms for smoothed estimation with no sensor
errors.

the performance of UWB-IR location estimation algorithms.
As the standard deviation of the sensor position error varies
from 1 mm to only 1 cm, the MSE in the location estimates
for all of the algorithms studied here increases from approx-
imately 3 m or 3% of the target range to almost 13 m or
13% of the target range. Furthermore, in the region where
the estimation error is dominated by the sensor position er-
ror (above approximately 10 mm standard deviation of sen-
sor position error), the MSE is dominated by the bias of the
location estimates, which will not be reduced by the smooth-
ing effects of a tracker.
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Figure 7: Comparison of MSE (a) and total bias (b) for WMLS,
WTLS, and N-R algorithms for one-shot estimation with sensor er-
rors.

Block averaging with errors in sensor position

The performance of the three algorithms for smoothed esti-
mates computed by averaging over a block of 100 consecu-
tive one-shot estimates with errors in sensor position is pre-
sented in Figure 8. Again, as expected, the bias of the three
algorithms has not changed as a result of the block aver-
aging, but in this case, the MSE has decreased significantly
only in the region where the errors in location estimation are
dominated by TDOA errors. In the region above there is ap-
proximately 1 mm of standard deviation in sensor position
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Figure 8: Comparison of MSE (a) and total bias (b) for WMLS,
WTLS, and N-R algorithms for smoothed estimation with sensor
errors.

error, the MSE has decreased very little for any of the algo-
rithms. These results demonstrate even more dramatic im-
pact of sensor position error on the performance of UWB-IR
location estimation algorithms. In this case, as the standard
deviation of the sensor position error varies from 1 mm to
1 cm, the MSE in the location estimates for the WTLS and
N-R algorithms increases from approximately 30 cm or 0.3%
of the target range to almost 10 m or 10% of the target range.
The increase in MSE for the WMLS algorithm is not quite
as dramatic, but only because the algorithm performs much
worse in the presence of very low sensor position noise due
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to its increased bias. In all cases, the increase in MSE is quite
dramatic for a very small increase in sensor position error.

5. CONCLUSIONS

In this paper, we have explored both the theoretical and prac-
tical performance limits of long-range UWB-IR TDOA loca-
tion and tracking systems. The results presented in the pa-
per demonstrate that such systems can deliver very accu-
rate location estimates in the far field at reasonable SNR lev-
els and should provide some valuable guidelines for practi-
cal system design. In addition, the results demonstrate that
in order to achieve the high precision theoretically offered
by such a system, one must utilize location estimation algo-
rithms that are as nearly unbiased as possible in the absence
of sensor position errors. We have derived and studied one
such algorithm based on a novel constrained, weighted total-
least-squares approach and have shown that this algorithm
as well as an approximate maximum-likelihood algorithm
based on the Newton-Raphson method achieve an acceptably
low bias with very little increase in computational complex-
ity in comparison with a constrained, weighted minimum-
lease-squares algorithm widely studied in the literature.

Finally, the results demonstrate very clearly that relatively
small errors in sensor position can completely undermine the
potential utility of long-range UWB-IR location and tracking
systems. As a practical consideration, such sensor position
errors are probably unavoidable and must be adaptively es-
timated along with the target location in order to eliminate
any systematic bias in the target location estimates.
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