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We describe an offline unconstrained Arabic handwritten word recognition system based on segmentation-free approach and
discrete hidden Markov models (HMMs) with explicit state duration. Character durations play a significant part in the recognition
of cursive handwriting. The duration information is still mostly disregarded in HMM-based automatic cursive handwriting
recognizers due to the fact that HMMs are deficient in modeling character durations properly. We will show experimentally that
explicit state duration modeling in the HMM framework can significantly improve the discriminating capacity of the HMMs to
deal with very difficult pattern recognition tasks such as unconstrained Arabic handwriting recognition. In order to carry out
the letter and word model training and recognition more efficiently, we propose a new version of the Viterbi algorithm taking
into account explicit state duration modeling. Three distributions (Gamma, Gauss, and Poisson) for the explicit state duration
modeling have been used, and a comparison between them has been reported. To perform word recognition, the described system
uses an original sliding window approach based on vertical projection histogram analysis of the word and extracts a new pertinent
set of statistical and structural features from the word image. Several experiments have been performed using the IFN/ENIT
benchmark database and the best recognition performances achieved by our system outperform those reported recently on the
same database.
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1. INTRODUCTION

The term handwriting recognition (HWR) refers to the
process of transforming a language, which is presented
in its spatial form of graphical marks, into its symbolic
representation. The problem of handwriting recognition can
be classified into two main groups, namely offline and online
recognition, according to the format of handwriting inputs.
In offline recognition, only the image of the handwriting
is available, while in the online case temporal informa-
tion such as pentip coordinates as a function of time is
also available. Typical data acquisition devices for offline
and online recognition are scanners and digitizing tablets,
respectively. Due to the lack of temporal information, offline
handwriting recognition is considered more difficult than
online. Furthermore, it is also clear that the offline case is
the one that corresponds to the conventional reading task
performed by humans.

Many applications require offline HWR capabilities
such as bank processing, mail sorting, document archiving,
commercial form-reading, and office automation. So far,
offline HWR remains a very challenging task in spite of
dramatic boost of research [1–3] in this field and the latest
improvement in recognition methodologies [4–7].

Studies on Arabic handwriting recognition, although
not as advanced as those devoted to other scripts (e.g.,
Latin), have recently shown a renewed interest [8–10]. We
point out that the techniques developed for Latin HWR
are not appropriate for Arabic handwriting because Arabic
script is based on alphabet and rules different from those
of Latin. Arabic writing, both handwritten and printed, is
semicursive (i.e., the word is a sequence of disjoint connected
components called pseudowords and each pseudoword is a
sequence of completely cursive characters and is written from
right to left). The character shape is context sensitive, that is,
depending on its position within a word. For instance, a letter
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as
�� has 4 different shapes: isolated “

�� ” as in “
��� � �� ,”

beginning as “ �� 	
 �� ”, middle as “ � � �� ”, and end as
“ ���� ��”. Arabic writing is very rich in diacritic marks (e.g.,
dots, Hamza, etc.) because some Arabic characters may have
exactly the same main shape, and are distinguished from each
other only by the presence or the absence of these diacritics
and their number and their position with respect to the
main shape. The main characteristics of Arabic writing are
summarized by Figure 1 [11].

One can classify the field of offline handwriting cursive
word recognition into four categories according to the size
and nature of the lexicon involved: very large; large; limited
but dynamic; and small and specific. Small lexicons do not
include more than 100 words, while limited lexicons may
go up to 1000. Large lexicons may contain thousands of
words, and very large lexicons refer to any lexicon beyond
that. When a dynamic lexicon (in contrast with specific or
constant) is used, it means that the words that will be relevant
during a recognition task are not available during training
because they belong to an unknown subset of a much larger
lexicon.

The lexicon is a key point to the success of any HWR
system, because it is a source of linguistic knowledge that
helps to disambiguate single characters by looking at the
entire context. As the number of words in the lexicon grows,
the more difficult the recognition task becomes, because
more similar words are more likely to be present in the
lexicon. The computational complexity is also related to the
lexicon, and it increases according to its size [1].

The word is the most natural unit of handwriting, and
its recognition process can be done either by an analytic
approach of recognizing individual characters in the word or
holistic approach of dealing with the entire word image as a
whole.

Analytical approaches (e.g., [13]) basically have two
steps, segmentation and combination. First the input image
is segmented into units no bigger than characters, then
segments are combined to match character models using
dynamic programming. Based on the granularity of seg-
mentation and combination, analytical approaches can be
further divided into three subcategories: (i) character-
based approaches [14] that recognize each character in
the word and combine the character recognition results
using either explicit or implicit segmentation and requiring
high-performance character recognizer; (ii) grapheme-based
approaches [4, 13] that use graphemes (i.e., structural parts
in characters, e.g., the loop part in “

��”, arcs, etc.) instead of

characters as the minimal unit being matched; and (iii) pixel-
based approaches [15–18] that use features extracted from
pixel columns in sliding window to form words models for
word recognition.

Holistic approaches [19] deal with the entire input
image. Holistic features, like translation/rotation invariant
quantities, word length, connected components, ascenders,
descenders, dots, and so forth, are usually used to eliminate
less likely choices in the lexicon. Since holistic models
must be trained for every word in the lexicon, compared
against analytical models that need only be trained for every
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Figure 1: An Arabic sentence demonstrating the main character-
istics of Arabic text [12]. (1) Written from right to left. (2) One
Arabic word includes three cursive subwords. (3) A word consisting
of six characters. (4) Some characters are not connectable from
the left side with the succeeding character. (5) The same character
with different shapes depends on its position in the word. (6)
Different characters with different sizes. (7) Different characters
with a different number of dots. (8) Different characters have the
same number of dots but different positions of dots.

character, their application is limited to those with small and
constant lexicons, such as reading the courtesy amount on
bank checks [20, 21].

The analytical approach is theoretically more efficient
in handling a large vocabulary. Indeed with a constant
number of classification classes (e.g., the number of letters
in the alphabet), it can handle any string of characters
and therefore an unlimited number of words. However, the
Sayere’s paradox (a word cannot be segmented before being
recognised and cannot be recognized before being segmented
[22]) was shown to be a significant limit of any analytical
approach. The holistic approach on the other hand must
generally rely on an established vocabulary of acceptable
words. Its number of classification classes increases with the
size of the lexicon. The “whole word” scheme is potentially
faster when considering a relatively small lexicon. It is also
more accurate having to consider only the legitimate word
possibilities. One disadvantage of a whole word recognizer
is its inability to identify a word not contained in the
vocabulary. On the other hand, it has greater tolerance in
the presence of noise, spelling mistakes, missing characters,
unreadable part of the word, and so forth.

Stochastic models, especially hidden Markov models
(HMMs) [23], have been successfully applied to offline HWR
in recent years [4, 6, 7]. This success can be attributed to
the probabilistic nature of HMM models, which can perform
a robust modeling of the handwriting signal with huge
variability and sometimes corrupted by noise. Moreover,
HMMs can efficiently integrate the contextual information
at different levels of the recognition process (morphological,
lexical, syntactical, etc.).

Character durations play a significant part in the recog-
nition of cursive handwriting. The duration information is
still mostly disregarded in HMMs-based automatic cursive
handwriting recognizers due to the fact that HMMs are
deficient in modeling character durations properly. We will
show experimentally that explicit state duration modeling
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in the HMM framework can significantly improve the
discriminating capacity of the HMMs to deal with very
difficult pattern recognition tasks such as unconstrained
Arabic handwriting recognition on a large lexicon. In order
to carry out the letter and word model training and
recognition more efficiently, we propose a new version of the
Viterbi algorithm taking into account explicit state duration
modeling.

This paper describes an extended version of an offline
unconstrained Arabic handwritten word recognition sys-
tem based on segmentation-free approach and discrete
HMMs with explicit state duration [24]. Three distributions
(Gamma, Gauss, and Poisson) for the explicit state duration
modeling have been used and a comparison between them
has been reported. To the best of our knowledge, this is the
first work that uses explicit state duration of discrete and
continuous distribution for the offline Arabic handwriting
recognition problem. After preprocessing intended to sim-
plify the later stages of the recognition process, the word
image is first divided according to two different schemes
(uniform and nonuniform) from right to left into frames
using a sliding window. We have introduced the nonuni-
form segmentation in order to tackle the morphological
complexity of Arabic handwriting characters. Then each
frame is analyzed and characterized by a vector having 42
components and combining a new set of relevant statistical
and structural features. The output of this stage is a
sequence of feature vectors which will be transformed by
vector quantization into a sequence of discrete observations.
This latter sequence is submitted to an HMM classifier to
carry out word discrimination by a modified version of
the Viterbi algorithm [15, 25]. The HMMs relating to the
word recognition lexicon are built during a training stage,
according to two different methods. In the first method, each
word model is created separately from its training samples.
The second method associates a distinct HMM for each basic
shape of Arabic character, and thus, each word model is
generated by linking its character models. This efficiently
allows character model sharing between word models using
a tree-structured lexicon.

Significant experiments have been performed on the
IFN/ENIT benchmark database [26]. They have shown on
the one hand a substantial improvement in the recognition
rate when HMMs with explicit state duration of either
discrete or continuous distribution is used instead of classical
HMMs (i.e., with implicit state duration, cf. Section 3.2). On
the other hand, the system has achieved best performances
with the Gamma distribution for state duration. Our
best recognition performances outperform those recently
reported on the same database. The HMM parameter
selection is discussed and the resulting performances are
presented with respect to the state duration distribution type,
as well as to the word segmentation scheme into frames and
the word model training method.

The rest of this paper is organized as follows. Section 2
sketches some related studies in HWR using HMMs.
Section 3 briefly introduces the classical HMMs and details
HMMs with different explicit state duration types and their
parameter estimation. A modified version of the Viterbi

algorithm used in the training and recognition of letter
and word models is also presented in this section. Section 4
summarizes the developed system architecture in a block
diagram. Section 5 explains the preprocessing applied to the
word image. Section 6 describes the features extraction stage.
Section 7 is devoted to the training and the classification
process. Section 8 illustrates and outlines the results achieved
by the experiments performed on the IFN/ENIT benchmark
database, and makes a comparison between our best recog-
nition performances and those recently reported on the same
database. Finally, a conclusion is drawn with some outlooks
in Section 9.

2. RELATEDWORKS

Since the end of 1980s, the very successful use of HMMs in
speech recognition has led many researchers to apply them
to various problems in the field of handwriting recognition
such as character recognition [27], offline word recognition
[28], and signature verification and identification [12]. These
HMM frameworks can be distinguished from each other
by the state meaning, the modeled units (stroke, character,
word, etc.), the unit model topology (ergodic or left-to-
right), the HMM type (discrete or continuous), the HMM
dimensionality (one-dimensional, planar, bidimensional, or
random fields), the state duration modeling type (implicit
or explicit), and the modeling level (morphological, lexical,
syntactical, etc.).

Gillies [29] has used an implicit segmentation-based
HMM for cursive word recognition. First, a label is given
to each pixel in the image according to its membership in
strokes, holes, and concavities. Then, the image is trans-
formed into a sequence of symbols by vector quantization
of each pixel column. Each letter is modeled by a different
discrete HMM whose parameters are estimated from hand-
segmented data. The Viterbi algorithm [25] is used for
recognition and it allows an implicit segmentation of the
word into letters by a by-product of the word matching.

Mohamed and Gader [30] used continuous HMMs to
segmentation-free modeling of handwritten words in which
the observations are based on the location of black-white
and white-black transitions on each image column. They
designed a 12-state left-to-right HMM for each character.

Chen et al. [28] used HMMs with explicit state duration
named continuous density variable duration HMM. After
explicit segmentation of the word into subcharacters, the
observations used are based on geometrical and topological
features (pixel distribution, etc.). Each letter is identified
with a state which can account for up to four segments per
letter. The parameters of the HMM are estimated using the
lexicon and the manually labeled data. A modified Viterbi
algorithm is applied to provide the N best paths, which are
postprocessed using a general string edit distance method.

Vinciarelli and Bengio [31] employed continuous density
HMM to recognize offline cursive words written by a single
writer. Their system is based on a sliding window approach
to avoid the need of independent explicit segmentation
stage. As the sliding window blindly isolates the pattern
frames from which the feature vectors are extracted, the
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used features are computed by partitioning each frame
into cells regularly arranged in 4 × 4 grids and by locally
averaging the pixel distribution in each cell. The HMM
parameter number is reduced by using diagonal covariance
matrices in the emission probabilities. These matrices are
derived from the decorrelated feature vectors that result
from applying principal component analysis (PCA) and
independent component analysis (ICA) to the basic features.
A different HMM is created for each letter in which the
number of states and the number of Gaussian in the mixtures
are selected through the cross-validation method. The word
models are established as concatenations of letter models.

Bengio et al. [32] have proposed an online word
recognition system using convolutional neural networks and
HMMs. After word normalization by fitting a geometrical
model to the word structure using the expectation maximiza-
tion (EM) algorithm, an annotated image representation
(i.e., a low-resolution image in which each pixel contains
information about the local properties of the handwritten
strokes) is derived from the pen trajectory. Then, character
spotting and recognition is done by convolutional neural
network, and its outputs are interpreted by HMM that
takes into account word-level constraints to produce word
scores. A three-state HMM for each character with a left and
right state to model transitions and a center state for the
character itself are used to form an observation graph by
connecting these character models, allowing any character
to follow any other character. The word level constraints are
the constraints that are independent of observations (i.e.,
grammar graph) and can embody lexical constraints. The
recognition finds the best path in the observation graph that
is compatible with the grammar graph.

El-Yacoubi et al. [4] have designed an explicit
segmentation-based HMM approach to recognize offline
unconstrained handwritten words for a large but dynam-
ically limited vocabulary. Three sets of features have been
used: the first two are related to the shape of the segmented
units (letters or subletters) while the features of the third set
describe the segmentation points between these units. The
first set is based on global features, such as loops, ascenders,
and descenders; and the second set is based on features
obtained by the analysis of the bidimensional contour tran-
sition histogram of each segment. Finally, segmentation fea-
tures correspond to either spaces, possibly occurring between
letters or words, or to the vertical position of segmentation
points that split connected letters. The two shape-feature
sets are separately extracted from the segmented image; this
allows representing each word by two feature sequences of
equal length, each consisting of an alternating sequence of
segment shape symbols and associated segmentation points
symbols. Since the basic unit in the model is the letter, then
the word (or word sequence) model is dynamically made up
of the concatenation of appropriate letter models consisting
of elementary HMMs, and an interpolation technique is used
to optimally combine the shape symbols and the segmenta-
tion symbols. Character model is related to the behavior of
the segmentation process. This process can produce either
a correct segmentation of a letter, a letter omission, or an
oversegmentation of a letter into two or three segments. As

a result, an eight-state HMM having three paths, in order to
take into account these configurations, is built for each letter.
Observations are then emitted along transitions. Besides, a
special model is designed for interword space, in the case
in which the input image contains more than one word. It
consists of two states linked by two transitions, modeling a
space or no space between a pair of words.

Koerich et al. [13] have improved the system of El-
Yacoubi et al. [4] to deal with a large vocabulary of 30,000
words. The recognition is carried out with a tree-structured
lexicon, and the characters are modeled by multiple HMMs
that are concatenated to build the word models. The tree
structure of lexicon allows, during the recognition stage,
words to share the same computation steps. To avoid an
explosion of the search space due to presence of multiple
character models, a lexicon-driven level building algorithm
(LDLBA) has been developed to decode the lexicon tree
and to choose the more likely models at each level. Bigram
probabilities related to the variation of writing styles within
the word are inserted between the levels of the LDLBA to
improve the recognition accuracy. To further speed up the
recognition process, some constraints on the number of
levels and on the number of observations aligned at each level
are added to limit the search scope to more likely parts of the
search space.

Amara and Belaid [33] used planar HMMs [34] with
a holistic approach for offline-printed Arabic pseudowords
recognition. The adopted pseudoword model topology, in
which the main model (i.e., HMM with superstates) is
vertical, allows modeling of the different variations of the
Arabic writing such as elongation of the horizontal ligatures
and the presence of vertical ligatures. Firstly, the pseudoword
image is vertically segmented into strips according to the
considered pattern. These strips reflect the morphological
features of different characters forming the pseudoword
such as ascenders, the upper diacritic dots, holes and/or
vertical ligature position, the lower diacritic dots and/or
vertical ligature position, and descenders. Then, each strip
is modeled by a left-to-right horizontal secondary model
(1D HMM) whose parameters are tightly related to the
strip topology. In the horizontal model, the observations
are computed on the different segments (runs) of the
pseudoword image, and they consist of the segment color
(black or white) together with its length and its position
with respect to the segment situated above it. In the vertical
model, the duration (assimilated to the lines number in each
strip) in each superstate is explicitly modeled by a specific
function, in order to take into account the height of each
strip.

Khorsheed [35] has presented a method for offline-
handwritten script recognition, using a single HMM with
structural features extracted from the manuscript words.
The single HMM is composed of multiple character models
where each model is left-to-right HMM, and represents one
letter from the Arabic alphabet. After preprocessing, the
skeleton graph of the word is decomposed into a sequence
of links in the order in which the word is written. Then,
each link is further broken into several line segments using
a line approximation technique. The line segment sequence
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is transformed into discrete symbols by vector quantization.
The symbol sequence is presented to the single HMM which
outputs an order list of letter sequence associated with the
input pattern by applying a modified version of the Viterbi
algorithm.

Pechwitz and Maergner [17] have described an HMM-
based approach for offline-handwritten Arabic word recog-
nition using the IFN/ENIT benchmark database [26]. Pre-
processing is applied to normalize the height, length, and the
baseline of the word, and followed by a feature extraction
stage based on a sliding window approach. The features
used are collected directly from the gray values of the
normalized word image, and reduced by a Loeve-Karhunen
transformation. Due to the fact that Arabic characters might
have several shapes depending on their position in a word,
a semicontinuous HMM (SCHMM) is generated for each
character shape. This SCHMM has 7 states, in which each
state has 3 transitions: a self-transition, a transition to the
next state, and one allowing skipping a single state. The
training process is performed by a k-mean algorithm where
a model parameter initialization is done by a dynamic
programming clustering approach. The recognition is car-
ried out by applying a frame synchronous network Viterbi
search algorithm together with a tree-structured lexicon
representing the valid words.

From this quick survey, we can conclude that HMMs
dominate the field of cursive handwriting recognition, but
there are few works in this field in which HMMs with explicit
state duration have been employed.

3. HIDDENMARKOVMODELS (HMMS) AND
STATE DURATIONMODELING

Before introducing the notion of explicit state modeling
in HMMs, we will shortly recall the definition of one-
dimensional discrete HMMs.

3.1. HiddenMarkovmodels (HMMs)

A hidden Markov model (HMM) [23] is a type of stochastic
model appropriate for nonstationary stochastic sequences
with statistical properties that undergo distinct random
transitions among a set of different stationary processes.
In other words, the HMM allows to model a sequence
of observations as a piecewise stationary process. More
formally, an HMM is defined by N : the number of states, M:
the number of possible observation symbols, T : the length of
the observation sequence, Q = {qt}: the set of possible states,
qt ∈ {1, 2, . . . ,N}, 1 ≤ t ≤ T ,V = {vk}: the codebook or the
discrete set of possible observation symbols, 1 ≤ k ≤ M.
A = {ai j}: the state transition probability: ai j = P(qt+1 = j |
qt = i), 1 ≤ i, j ≤ N , B = {bj(vk)}: the observation symbol
probability distribution:

bj
(
vk
) = P

(
vk at t | qt = j

)
, 1 ≤ i ≤ N , 1 ≤ k ≤M,

(1)

π = {πi}: the initial state probability, πi = P(q1 = i), 1 ≤

i ≤ N. More compactly, an HMM can be represented by the
parameter λ(π,A,B).

To suitably use HMMs in handwriting recognition, three
problems must be solved. The first problem is concerned
with the probability evaluation of an observation sequence
given the model λ (i.e., the observation matching). The
second problem is that we attempt to determine the state
sequence (i.e., state decoding) that “best” explains the input
sequence of observations. The third problem consists of
determining a method to optimize the model parameters
(i.e., the parameter re-estimation) to satisfy a certain opti-
mization criterion.

The evaluation probability problem can be efficiently
solved by the forward-backward procedure [23]. A solution
to the state decoding problem, based on dynamic program-
ming, has been designed, namely, the Viterbi algorithm
[25]. The model parameter determination is usually done by
the Baum-Welch procedure based on the expectation max-
imization (EM) algorithm [23], and consists in iteratively
maximizing the observation likelihood given the model, and
often converges to a local maximum.

3.2. Durationmodeling in the HMM framework

We clearly distinguish between two discrete HMM types:
HMM with implicit state duration (i.e., classical HMM)
and HMM with explicit state duration. Classical HMMs do
not allow explicit duration modeling (i.e., duration that the
model can spend in some state). Indeed, the probability
distribution of staying for a duration d in the state i (i.e.,
probability of consecutively observing d symbols in state i),
noted Pi(d), is always considered as a geometric one with
parameter aii:

P(d/qi) = ad−1
ii

(
1− aii

)
. (2)

The form of this distribution is exponentially decreasing
(i.e., it gets to its maximal value at the minimal duration
d = 1, and decays exponentially as d increases). Described
with one parameter, the distribution can effectively depict
only the mean duration. Beyond that, it is unable to model
any variation in the duration distributions, and hence, its
use is not appropriate when the states have some explicit
significance. For example, in handwriting they represent the
letters or letter fragments, because, in this case, narrow letters

(e.g., “ �� ”) are modeled as being more probable than wide

letters (e.g., “�”). As a result, it is suitable to explicitly model
the duration spent in each state.

An HMM λ with explicit state duration probability
distribution is mainly defined by the following parameters:
A, B, N , p(d), and π that are, respectively, state transition
probability matrix, output probability matrix, a total number
of HMM states, a state duration probability vector, and initial
state probability vector.

In HMM with explicit state duration, the sequence of
observations is generated along the following steps.

(1) Generate q1 from the initial state distribution π.

(2) Set t = 1.
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(3) Calculate the duration of the state qt, d, by sampling
from Pqt (d) (i.e., a duration d is chosen according to
the state duration density Pqt (d)).

(4) Generate d observations according to the joint obser-
vation density, bqt (Ot,Ot+1, . . . ,Ot+d).

(5) Set t = t + d.

(6) If t ≤ T , draw the next state qt from the transition
probabilities aqt−1qt , where qt−1 /=qt, and go to step (3);
otherwise, terminate the procedure.

The probability P(O/λ) of an HMM λ with explicit
state duration, for a discrete observation sequence O, can
be computed by a generalized forward-backward algorithm
[34], as follows:

P(O/λ) =
N∑

i=1

N∑

j=1,i /= j

t∑

d=1

αt−d(i)ai j p j(d)
t∏

s=t−d+1

bj
(
os
)
βt( j),

(3)

where αt and βt are, respectively, the partial forward and
backward likelihoods that are recursively computed as

α0( j) = πj , 1 ≤ j ≤ N ,

αt( j) =
t∑

d=1

N∑

i=1
i /= j

αt−d(i)ai j p j(d)
t∏

s=t−d+1

bj
(
os
)
,

1 ≤ j ≤ N , 1 ≤ t ≤ T ,

βT(i) = 1, 1 ≤ i ≤ N ,

βt(i) =
T−t∑

d=1

N∑

j=1
j /=i

ai j p j(d)
t+d∏

s=t+1

bj
(
os
)
βt+d( j),

1 ≤ i ≤ N , 1 ≤ t ≤ T.

(4)

To be useful, the HMMs with explicit state duration require
an efficient parameter reestimation algorithm for the state
duration probability (i.e., p(d)).

In the developed system, we have used one analytical
discrete distribution (i.e., Poisson [36]) and two other
continuous distributions (i.e., Normal and Gamma [37]) for
the state duration probability. This choice is justified by the
availability of the estimation formulas, which are derived
with respect to the likelihood criterion for the parameter set
of these distributions. Moreover, the number of parameters
to be estimated for these distributions is tiny. According to
the performed experiments on the IFN/ENIT benchmark
database, the Gamma distribution seems to be the best
approximation of the real distribution that remains very hard
to be determined.

3.2.1. Discrete distribution

For the speech recognition purpose, Russell and Moore
[36] have used a Poisson distribution for the state duration
probability in the HMM. This distribution is defined as
follows:

pj(d) = exp
(− μj

)· (μj)
d

d!
. (5)

The random variable d, which denotes the time spent in
state j and follows this distribution, has an expected value
μj representing one parameter of the Poisson density. This
parameter is reestimated by (6), and it is considered as the
expected spent duration in state j divided by the expected
occurrence of this state:

μj =
∑T

t0=1

∑T
t1=t0 χt0,t1 ( j)·(t1 − t0 + 1

)

∑T
t0=1

∑T
t1=t0 χt0,t1 ( j)

, (6)

where

χt0,t1 ( j)

=
∑N

i=1,i /= j αt0−1(i)ai j
∏t1

s=t0bj
(
os
)
pj
(
t1 − t0 + 1

)
βt1 ( j)

P(O/λ)
.

(7)

3.2.2. Continuous distribution

Levinson [37] has proposed, in the HMM-based speech
recognition framework, two continuous distributions for the
state duration based on the Gamma and Gaussian probability
density.

Gaussian distribution

With this distribution, the state duration probability distri-
bution is defined as follows:

pj(d) = 1

σj(2π)1/2 exp
(−(d −mj

)2

2σ2

)
, (8)

where mj and σj are the mean and variance of the Gaussian
distribution.

Gamma distribution

In this case, the state duration density is defined by

pj(d) =
η

ν j

j d
ν j−1 exp

(− ηjd
)

Γ
(
ν j
) , (9)

where the ηj and ν j are the parameters of the Gamma
distribution having a mean μj = ν jη j

−1 and a variance
σj = ν jη j

−2. Here, Γ(ν j) is the Gamma function on ν j .
The parameters of these continuous distributions are

estimated by applying (6) and (10):

σ j =
∑T

t0=1

∑T
t1=t0 χt0,t1 ( j)·(t1 − t0 + 1

)2

∑T
t0=1

∑T
t1=t0 χt0,t1 ( j)

− (μj

)2
, (10)

where μj is defined by (6).

3.3. Themodified Viterbi algorithm

We propose an extended Viterbi algorithm for sequence
decoding in HMMs with explicit state duration [15]. We
need to define two quantities: (1) δt(i) which is the proba-
bility of the best state sequence ending in state Si at time t,
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but which can be in another state at time t + 1; (2) ψt which
is a 2D vector used to memorize the state sequence of the
optimal path and the duration of each state in this sequence,
that is, ψt(i, 1): the time spent in state i; and ψt(i, 2) : the state
leading to state i.

The modified Viterbi algorithm is stated as follows.

(1) Initialisation 1 ≤ i ≤ N

δ1(i) = πibi
(
O1
)
pi(1)

ψ1(i) = (0, 0)
(11)

(2) Recursion 1 ≤ i ≤ N , 2 ≤ t ≤ T

δt(i) = max
1≤τ≤t−1

⎧
⎪⎪⎨

⎪⎪⎩
max

1≤j≤N
i /= j

{
δτ( j)aji

}
pi(t − τ)

t∏

k=τ+1

bi(Oτ)

⎫
⎪⎪⎬

⎪⎪⎭

ψt(i) = arg max
1≤τ≤t−1

⎧
⎪⎪⎨

⎪⎪⎩
arg max

1≤j≤N
i /= j

{
δτ( j)aji

}
pi(t − τ)

t∏

k=τ+1

bi(Oτ)

⎫
⎪⎪⎬

⎪⎪⎭

(12)

(3) Termination

P∗ = max
1≤ j≤N

[
δT( j)

]

q∗T = arg max
1≤ j≤N

[
δT( j)

]

τ∗ = T − ψT
(
q∗T , 1

)

q∗T−τ = q∗T , 1 ≤ τ < τ∗

(13)

(4) Path backtracking T − τ∗ ≥ t ≥ 1

q∗t = ψt+τ∗
(
q∗t+τ∗ , 2

)

τ∗ = t − ψt
(
q∗t , 1

)

q∗t−τ = q∗t , 1 ≤ τ < τ∗

t = t − τ∗

(14)

4. SYSTEMARCHITECTURE

The system architecture that we have developed for Arabic
handwritten word recognition is illustrated by Figure 2.
The input image goes through the steps of preprocessing,
feature extraction, vector quantization and classification.The
classification stage uses a discrete observation sequence
derived from the input image according to a sliding window
approach, a tree-structured lexicon, and a database of HMMs
with explicit state duration where each of them is related to
a lexicon entry. These steps are detailed in the subsequent
sections. The system output is a ranked list of the words
producing the best likelihood on the input image.

5. PREPROCESSING

The aim of preprocessing is the removal of all elements in
the word image that are not useful for recognition process.

Usually, preprocessing consists of some operations such as
binarization, smoothing, baseline estimation, and thinning.
Due to the fact that we use the cropped binary word images
coming from IFN/ENIT database [26], binarization is not
needed. A smoothing process was taken to perform noise
reduction by using the spatial filter proposed by Amin et al.
[8]. The extraction of some features (i.e., diacritic points)
requires baseline (i.e., writing line) estimation in the word
image. The method described in [17], based on projection
after transforming image into Hough parameter space, gives
a good estimation of the baseline. Thinning is used to reduce
handwriting style variability and to make straightforward
extraction of some features such as cusp points, loops,
and so forth. This operation is generally time-consuming,
and sometimes its application to Arabic handwriting can
remove diacritic points which are relevant primitives for
word discrimination. Pavlidis’s algorithm [38] has a lower
complexity and its application preserves the diacritic points.
Figure 3(b) shows the result of applying this algorithm
to Figure 3(a). The skeleton can be distorted (i.e., having
spurious branches and false feature points). To remedy this,
we apply the technique used in [35] that is based on using the
original and the thinned word image. Here, the maximum
circle technique is adopted to modify the thinning result.

6. FEATURE EXTRACTION AND VECTOR
QUANTIZATION

The straightforward recognition of a handwritten word
from its bitmap representation is almost impossible due to
the huge variability of the handwriting style and to noise
affecting the data. Hence, the need to a feature extraction
method that allows extracting a feature set from the word
image which is relevant for classification in the most general
sense of minimizing the intraclass pattern variability while
maximizing the interclass pattern variability. Moreover, these
features must be reliable, independent, small in number, and
reduce redundancy in the word image.

The feature extraction process is tightly related to the
adopted segmentation approach. Segmentation is a well-
known problem in handwritten word recognition due to
its high variability, especially when dealing with a large
lexicon for semicursive scripts as Arabic. In order to build
a feature vector sequence to describe each word, we use
implicit word segmentation where the image is divided from
right to left into many vertical windows or frames. We
have adopted two segmentation schemes into frames. The
first one is uniform where all frames have the same width
as illustrated in Figure 4(a). This uniform segmentation
approach is similar to those reported in [16–18], and the
best frame width has been empirically fixed to 20 pixels. The
second segmentation scheme that we have introduced to deal
with the morphological complexity of Arabic handwritten
characters is nonuniform as illustrated by Figure 4(b). In
this last scheme, the frames do not necessarily have the
same width and the boundaries of each frame are based
on minima and maxima analysis of the vertical projection
histogram (see Figure 4(c)). This analysis consists in defining
the frame boundaries to be the midpoints between adjacent



8 EURASIP Journal on Advances in Signal Processing

�لفايض
�لريا�

�لبطّا

Preprocessing

Smoothed image

Feature extraction
&

vector quantization

Thinned image

List of the
most likely words

Classification
Sequence

Tree structured lexicon HMM models database

1
2
3

· · ·

Figure 2: Recognition system architecture showing the main stages which must be carried out to identify the word image.

(a) Original image (b) Thinned image

Figure 3: Result of the thinning algorithm.

(a) (b) (c)

Figure 4: Word segmentation into frames: (a) uniform segmentation; (b) non-uniform segmentation obtained from vertical projection
histogram (c).

minimum/maximum pairs. These midpoints must verify
some heuristic rules related to the distance between the
corresponding adjacent minimum/maximum pairs. Both
these segmentation schemes have been tested and the
resulted performances are reported in the validation section
(cf. Section 8).

After word segmentation into frames, each frame is
described by a parameter vector that is a combination of
42 relevant statistical and structural features. 33 statistical
features have been computed from the histograms of the
projection and transition related to 4 directions: vertical,
horizontal, diagonal 45◦, and diagonal 135◦. The 9 structural
features are computed from the thinned image. These fea-
tures are detailed below. Word description is then performed
from right to left as a sequence of feature vectors gathered
from each frame.

6.1. Statistical features

These features consist of the mean μ, variance σ2, and the
mode (i.e., the most frequently occurring value) for the
projection histogram: the minimum and maximum value
for the white-to-black transition histogram. Therefore, 12

features are extracted from the projection histograms and 20
features from the transition histograms, in addition to the
frame aspect ratio (i.e., width/height ratio in a frame).

6.2. Structural features

The word skeleton representation allows getting some fea-
tures which are hard to extract from the bitmap representa-
tion. Works on handwriting recognition have shown that the
recognition system performance may be markedly improved
by using statistical and structural feature combination.
The features which are computed from the thinned image
correspond to the following.

(i) Feature points: represent the black pixels in the
word skeleton having a neighbor number different
from 0 and 2 (see Figures 5(a)–5(c)). There are
two types: end points and junction points. End
points correspond to a segment beginning/ending.
The junction points connect three or more branches
in the word skeleton, and are split into cross and
branch points.

(ii) Inflection points: correspond to a curvature sign
change in the word skeleton (see Figure 5(d)).
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(a) (b) (c) (d) (e)

Figure 5: Some structural features: (a) end points, (b) branch point, (c) cross point, (d) inflection point, (e) cusp points.

(iii) Cusp points: correspond to sharp changes in direction
and occur when two segments from a sharp angle in
th word skeleton (see Figure 5(e)). These points are
computed by Algorithm 1 [39].

The smoothed global curvature is defined as

δis = θ(i+1,S) − θ(i−1,S), (15)

such that

θik = Arctg
[(

yi − y(i−k)
)

(
xi − x(i−k)

)
]

, (16)

where, (xi, yi) are the point coordinates pi of the
analyzed curve (i.e., a point sequence in the skeleton),
and S is a smoothing factor (i.e., optimum interval
for which quantization noise is attenuated, and
meaningful details are conserved in each point of the
curve). To get a well-smoothed curve, S must be in
the range 5 ≤ S ≤ 15. After many attempts, the best
value for S was fixed to 7.

(iv) Diacritic points: are the black pixels having 0 fore-
ground neighbour with their location (above or
below the baseline). This type of point characterizes

characters having a secondary part such as (“�� ” and

“ ��”).

(v) Loops: represent the skeleton inner contours with
the information reflecting their partial or complete
including inside the frame.

6.3. Vector quantization

Because we use discrete HMMs, we have to map each
continuous feature vector representing a frame to a discrete
symbol. This mapping is done by a procedure called vector
quantization that implements the LBG [40] variant of the K-
means algorithm. The LBG algorithm partitions the feature
vectors representing the training samples into several classes,
where each class is represented by its centroid which is a
42-dimensional vector. Then, it considers the index of each
centroid as a codebook symbol. The best codebook size has
been empirically fixed to 84.

7. WORDMODEL TRAINING AND CLASSIFICATION

Word model training is carried out to build up an HMM
with explicit state duration for each word in the lexicon.
This task can be done by two methods. In the first method
(whole model training) a different HMM is created for each

word from the samples labeled by the word identity. With
this method we must cope with the problem of insufficient
training data. In the IFN/ENIT database [26] some words
are relatively well represented through a few hundreds of
samples, whereas other words are poorly represented with
solely three samples. To overcome the problem of insufficient
training data, the second method performs character model
training (analytical model training) and the word model
is built up by character model concatenation. This makes
the system flexible with respect to a change of lexicon
because any word is a string of characters. In this way,
it is sufficient to have, in the training set, samples of
characters composing the words to be modeled rather than
samples of the words themselves. Furthermore, the number
of parameters is kept lower because the word models share
the parameters belonging to the same characters. This can
improve the training quality given the same amount of
training data. In our case, we have no letter samples, however
we have word samples. As a result, we do not apply the
training algorithm directly to letter models, but to their
concatenations corresponding to the words in the training
set. This is called embedded training and has two important
advantages: the first one is that the characters are modeled
when being part of a word (that is the actual shape of the
characters in the cursive handwriting), the second one is that
it is not necessary to segment the words into characters to
perform the training.

Both methods of training have been used in experimental
tests, and the system performances were reported according
to each training method (cf. Section 8).

In our word modeling based on HMMs with explicit
state duration, the state meaning is associated to a logical
notion that is either the letter when performing whole model
training or the subletter (i.e., grapheme) when performing
analytical model training. As a result, the state number by
HMM model is varied with respect to the modeled word
length. For instance, when the state represents a letter, the

HMM model of the word (“ � ���
��� � � � ”) has 7 states (see

Figure 6) while the HMM model related to the word (“
������ �

� �
 ����”) has 12 states. In the analytical model training, each
character shape is modeled by HMM having 4 states. Also,
characters with additional marks (Hamza, Chedda, etc.) and
ligatures are labeled and modeled separately. Subsequently,
we have up to 160 different HMM models related to 28
Arabic basic characters.

The recognition lexicon is structured as tree, this allows
efficient sharing of the character HMM models between the
words, and hence reduces the storage space and processing
time.
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For each skeleton point pi between two feature points, and having 2 black neighbours do
{

1- Compute the smoothed global curvature sum SGCS1 of the points sequence prior to pi.
2- Compute the smoothed global curvature sum SGCS2 of the points sequence following pi.
3- If (SGCS1 > 0 and SGCS2 > 0) or (SGCS1 < 0 and SGCS1 < 0) then pi is a cusp point.

}

Algorithm 1: Cusp points detection.

1234567

Figure 6: A right-to-left HMM with explicit state duration and

interstate skips for the word “����
���� � � ”.

The HMM topology is right to left with sole transitions
to the next state or the one allowing for skipping of a single
state. The state self-transitions are substituted by the explicit
state duration.

Training and classification are basically done by the
aforementioned modified version of the Viterbi algorithm. In
the training stage, a segmental k-mean algorithm [23] is per-
formed. In each iteration, only the state-vector assignments
resulting from the best path obtained from applying the
Viterbi algorithm are used to reestimate the model param-
eters. Moreover, we use formulas (6) and (10) to readjust
parameters of state duration probability distributions.

8. RESULTS ANDDISCUSSIONS

To test our system, we have carried out several experiments
on the IFN/ENIT [26] benchmark database. This database
consists of 26459 Arabic words written by 411 different
writers, related to a lexicon of 946 Tunisian town/village
names. Four distinct datasets (a, b, c, d) are predefined in the
database, and the ground truth of the character shape level
is available for each database sample. Therefore, character
model building is practical. As it is recommended in [26],
three datasets were used for training and one set for testing.
Several experiments were carried out in order to measure the
effect of the following issues on the recognition performance
of the system: (1) the distribution of the explicit state
duration; (2) the segmentation procedure into frames; (3)
the word model training method. They were performed by
selecting each time three datasets for training and one dataset
for testing (the total number of possible combinations is
four). Tables 1 and 2 summarize the mean results of these
tests. The best results are graphically illustrated by Figure 7.

The above results show that HMMs with explicit state
duration are more efficient for modeling unconstrained
Arabic handwriting, compared to classical HMMs. The
average performance gain is 11.07% (resp., 5.72) in top 1
with Gamma distribution and a whole (resp., analytical)word
model training method with the best recognition rate in top 1
of 89.57% (resp., 90.02%) when using the datasets (a, b, d)
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Figure 7: The best recognition performances of each training
method which are obtained with the dataset c (6477 images) for
test; NUS: nonuniform segmentation

for training and the data set (c) for generalization. Figure 8
shows some errors which can be avoided when using HMMs
with explicit state duration. With classical HMMs: the word

(see Figure 8(a)) “8 � �
 � !" � ” was recognized as “9 � �
 � !" � ” by
confusing “8” with “9”; the word (see Figure 8(b)) was

recognized as by confusing “ �#” with “ ��”, and “�” with

“$”; and the word (see Figure 8(c)) was recognized as “
���%&” by confusing “ ��” with “&”.

Gamma distribution seems to be more efficient for state
duration modeling. Such behaviors can be attributed to its
statistical proprieties and to the appropriateness of the data
used for estimating its parameters. The discrete Poisson
distribution results are less accurate than those of Gauss and
Gamma. This fact can be explained by insufficient training
data for some words which are needed to estimate the one
parameter of Poisson distribution sufficiently well. On the
other hand, the nonuniform segmentation scheme is more
suitable than the uniform one because the nonuniform
segmentation almost gives rise to a frame whose shape
represents a complete character or a subcharacter. By
contrast, the uniform segmentation can always produce a
frame representing a partial combination of 2 characters.
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(a) (b) (c)

Figure 8: Example of samples that are misrecognized by classical HMMs but they are correctly recognized by HMMs with explicit state
duration since the character duration allows accurate character identification.

Table 1: Mean recognition results using each time 3 datasets for training and one data set for testing, and a whole word model training
method.

State duration distribution Segmentation Type Top 1 Top 2 Top 5 Top 10

Classical HMMs
Uniform 69.56 74.02 75.76 79.84

Nonuniform 72.94 76.76 79.57 81.29

HMMs and Poisson
Uniform 74.58 77.57 78.57 82.50

Nonuniform 77.52 82.09 83.04 86.12

HMMs and Gauss
Uniform 79.11 82.91 84.15 86.94

Nonuniform 81.75 84.84 85.75 88.36

HMMs and Gamma
Uniform 84.99 87.88 88.89 91.03

Nonuniform 88.12 89.92 91.28 93.19

Table 2: Mean recognition results using each time 3 datasets for training and one data set for testing, and an analytical word model training
method.

State Duration Distribution Segmentation Type Top 1 Top 2 Top 5 Top 10

Classical HMMs
Uniform 79.71 84.04 87.66 90.74

Nonuniform 81.79 85.16 88.83 91.63

HMMs and Poisson
Uniform 80.78 85.18 88.49 91.74

Nonuniform 82.79 85.65 89.69 92.35

HMMs and Gauss
Uniform 81.97 86.04 89.33 92.68

Nonuniform 83.44 86.90 90.06 93.22

HMMs and Gamma
Uniform 85.88 88.78 90.11 93.50

Nonuniform 88.79 91.25 92.93 95.02

Table 3: Comparison with other word recognition systems which are presented in [41]: recognition results in % with the dataset d (6735
images).

System Top 1 Top 5 Top 10

ICRA 88.95 94.22 95.01

TH-OCR 30.13 41.95 46.59

UOB 85.00 91.88 93.56

REAM∗ 89.06 99.15 99.62

ARAB-IFN 87.94 91.42 95.62

Proposed system 89.08 93.27 95.98
∗

The system is trained on a reduced set with 1000 names.

In all performed tests, the analytical word model training
method has performed better than the holistic one. This is
due to the fact that the latter is shackled by the problem of
insufficient training data. We point out that our best results
outperform those reported recently on the same database
in the international competition in Arabic handwriting
recognition systems at ICDAR 2005 [41] (see Table 3).

Most of the recognition errors of the proposed system
can be attributed to failure in baseline detection method and
to the poor quality of some data samples. Also, using discrete
HMMs with extracted features that are naturally continuous
and that need to be quantized is problematic because the
discriminating power of these features is altered by the vector
quantization procedure.
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9. CONCLUSION

We have proposed a segmentation-free method for offline
unconstrained Arabic handwritten word recognition using
HMMs with different explicit distribution for state duration,
and combining statistical and structural features extracted
by a sliding window approach that operates according to
two segmentation (uniform and nonuniform) schemes into
frames. The word model training has been done by two
methods. In the first method, the unit directly targeted by
the training process is the word as a whole, whereas the
second method performs the training of the character shapes
based on the word samples without explicit segmentation
into characters (embedded training), and the word model
is built up by concatenating its character models. The
results obtained are very promising and have shown that the
explicit state duration modeling within HMM framework
can improve the recognition rate significantly. Moreover,
continuous distributions (i.e., Gamma and Gauss) of state
duration are more suitable than discrete ones (i.e., Poisson)
for Arabic handwriting modeling, and the nonuniform
segmentation scheme is more recommended. The main
drawback of discrete HMMs is the imperfect observation
probability estimation. Hence, our foreseen perspective to
surpass this problem is searching an appropriate integration
method of artificial neural networks (ANNs) to discrete
HMMs with explicit state duration for best estimation of
observation probability. Also, one may improve the system
performance by using continuous HMMs that will allow
a straightforward modeling of the handwriting features
without the critical vector quantization required for discrete
HMMs.
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