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This article presents a multimodal approach to head pose estimation of individuals in environments equipped with multiple
cameras and microphones, such as SmartRooms or automatic video conferencing. Determining the individuals head orientation
is the basis for many forms of more sophisticated interactions between humans and technical devices and can also be used for
automatic sensor selection (camera, microphone) in communications or video surveillance systems. The use of particle filters
as a unified framework for the estimation of the head orientation for both monomodal and multimodal cases is proposed. In
video, we estimate head orientation from color information by exploiting spatial redundancy among cameras. Audio information
is processed to estimate the direction of the voice produced by a speaker making use of the directivity characteristics of the head
radiation pattern. Furthermore, two different particle filter multimodal information fusion schemes for combining the audio
and video streams are analyzed in terms of accuracy and robustness. In the first one, fusion is performed at a decision level by
combining each monomodal head pose estimation, while the second one uses a joint estimation system combining information
at data level. Experimental results conducted over the CLEAR 2006 evaluation database are reported and the comparison of the
proposed multimodal head pose estimation algorithms with the reference monomodal approaches proves the effectiveness of the
proposed approach.
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1. INTRODUCTION

The estimation of human head orientation has a wide range
of applications, including a variety of services in human-
computer interfaces, teleconferencing, virtual reality, and 3D
audio rendering. In recent years, significant research efforts
have been devoted to the development of human-computer
interfaces in intelligent environments aiming at supporting
humans in various tasks and situations. Examples of these
intelligent environments include the “digital office” [1], “in-
telligent house,” “intelligent classroom,” and “smart confer-
encing rooms” [2, 3]. The head orientation of a person pro-
vides important clues in order to construct perceptive capa-
bilities in such scenarios. This knowledge allows a better un-
derstanding of what users do or what they refer to. Further-
more, accurate head pose estimation allows the computers
to perform face identification or improved automatic speech
recognition by selecting a subset of sensors (cameras and mi-

crophones) adequately located for the task. Being focus of
attention directly related to the head orientation, it can also
be used to give personalized information to the users, for in-
stance, through a monitor or a beamer displaying text or im-
ages directly targeting their focus of attention. In synthesis,
determining the individuals head orientation is the basis for
many forms of more sophisticated interactions between hu-
mans and technical devices. In automatic video conferenc-
ing, a set of computer-controlled cameras capture the im-
ages of one or more individuals adjusting for orientation and
range, and compensating for any source motion [4]. In this
context, head orientation estimation is a crucial source of
information to decide which cameras and microphones are
more suited to capture the scene. In video surveillance appli-
cations, determination of the head orientation of the individ-
uals can also be used for camera selection. Other applications
include control of avatars in virtual environments or input to
a cross-talk cancellation system for 3D audio rendering.
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Previous approaches to estimate the head pose have
mostly used video technologies. The first techniques pro-
posed for head orientation estimation rely on facial feature
detection. The facial features extracted are compared to a
face model to determine the head orientation [5, 6]. These
approaches usually require high-resolution images which are
not commonly available in the aforementioned scenarios.
Global techniques that use the entire image of the face to es-
timate the head orientation are more suitable in these sce-
narios. Most of the global techniques produce a classifica-
tion of the head orientation based on a number of previously
learned classes using neural networks [7–10]. An analysis-
by-synthesis approach is proposed in [11]. The estimation
of head orientation based on audio is a very new and chal-
lenging task. An early work on speaker orientation based
on acoustic energy was defined in [12], which was using a
large microphone array consisting in hundreds of sensors
surrounding the environment. The oriented global coher-
ence field (OGCF) method has been proposed in a recent
work [13], which is a variation on GCF acoustic localization
algorithm.

In scenarios where both audio and video are available,
such as Smart Rooms or automatic video conferencing, a
multimodal approach can achieve more accurate and robust
results. Audio information is only available for the person
who is speaking, but this person is usually the center of at-
tention for the system. For this reason, audio information
will improve the precision of the head orientation system for
the speaking person and will correct errors produced in the
video analysis due to the estimation system or to the unavail-
ability of video data (when the person moves away from the
camera field of view).

Recently [14], the authors have presented two multi-
modal algorithms aiming to estimate the head pose using au-
diovisual information. The proposed architecture combines
the results of a former system from the authors based on
video [15] and a novel method using exclusively acoustic sig-
nals from a small set of microphones. In the monomodal
video system, the estimation is performed by fitting a 3D re-
construction of the head combining the views from a cali-
brated set of cameras. Audio head orientation is based on the
fact that the radiation pattern of the human head is frequency
dependent. Within this context, we propose a method for es-
timating the orientation of an active speaker using the ra-
tio of energy in different bands of frequency. The fusion was
made both at data level and also at decision level by means of
a decentralized Kalman filtering applied to the sequence of
the video and audio orientation estimates [16].

Particle filters have proved to be a very useful technique
for tracking and estimation tasks when the variables involved
do not hold Gaussianity uncertainty models and linear dy-
namics [17]. They have been successfully used for video ob-
ject tracking and for audio source localization. Information
of audio and video sources has also been effectively combined
employing PF strategies for active speaker tracking [18] or
audiovisual multiperson tracking [19].

In this article, we propose to use particle filters as a uni-
fied framework for the estimation of the head orientation for

both monomodal and multimodal case. Regarding particle
filter multimodal fusion, two different strategies for com-
bining the audio and video data are proposed. In the first
one, information is performed at a decision level combining
each monomodal head pose estimation, while the second one
uses a joint estimation system combining information at data
level.

The remainder of this paper is organized as follows. In
Section 2, we present the general architecture of the system
that we propose, and we introduce the particle filters that will
be the basis of the estimation techniques that we develop in
the following sections. In Section 3, the monomodal video
head estimation technique is introduced, and in Section 4,
we present the audio single modality system for speaker ori-
entation estimation. In Section 5, we propose two methods
to fuse audio and video modalities combining the estima-
tions provided by each system at the data and decision levels.
In Section 6, the performance obtained by each system is dis-
cussed, and we conclude the paper in Section 7.

2. ANALYSIS FRAMEWORK

Nowadays the decreasing cost of audio and visual sensors and
acquisition hardware makes the deployment of multisensor
systems for distributed audio visual observation common-
place. Intelligent scenarios requires the design of flexible and
reconfigurable perception networks feeding data to the per-
ceptual analysis front end [20]. The design of multicamera
configurations for continuous room video monitoring con-
sists of several calibrated cameras, connected to dedicated
computers, whose fields of view aim to cover completely
the scene of interest, usually with a certain amount of over-
lap allowing for triangulation and 3D data capture for vi-
sual tracking, face localization, object detection, person iden-
tification, gesture classification, and overall scene analysis.
A multimicrophone system for aural room analysis deploys
a flexible microphone network comprising microphone ar-
rays, microphone clusters, table top microphones, and close-
talking microphones, targeting the detection of multiple
acoustic events, voice activity detection, ASR and speaker lo-
cation and tracking. Also for acoustic sensors, a calibration
step is defined, according to the purpose of having a jointly
consistent description of the audio-video sensor geometry,
and timestamps are added to all the acquired data for tem-
poral synchronization.

The perceptual analysis front end of an intelligent envi-
ronment consists of a collection of perceptual components
detecting and classifying low-level features which can be later
interpreted at a higher semantical level. The perceptual com-
ponent analyzing the audio-visual data for head orientation
detection contributes a low-level feature yielding fundamen-
tal clues to drive the interaction strategy.

The angle of interest to be estimated for our purposes in
a multisensor scenario has been chosen as the orientation of
the head onto the xy plane. This angle provides semantical
information such as where people is looking at in the scene
and it can be used for further analysis such as tracking of
attention in meetings [21]. In the next subsection, particle
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filters will be introduced as the technological base for all the
systems described in this article.

2.1. Particle filtering

The estimation of the pan angle θt of the head of a person at
a given time t given a set of observations Ω1:t can be written
in the context of a state space estimation problem [22] driven
by the following state process equation:

θt = f
(
θt−1, vt

)
, (1)

and the observation equation:

Ωt = h
(
θt, nt

)
, (2)

where f(·) is a function describing the evolution of the model
and h(·) an observation function modeling the relation be-
tween the hidden variable θt and its measurable magnitude
Ωt. Noise components, vt and nt, are assumed to be inde-
pendent stochastic processes with a given distribution.

From a Bayesian perspective, the pan angle estimation
and tracking problem is to recursively estimate a certain de-
gree of belief in the state variable θt at time t, given the data
Ω1:t up to time t. Thus, it is required to calculate the pdf
p(θt | Ω1:t), and this can be done recursively in two steps,
namely, prediction and update. The prediction step uses the
process equation (1) to obtain the prior pdf by means of the
Chapman-Kolmogorov integral

p
(
θt | Ω1:t−1

) =
∫

p
(
θt | θt−1

)
p
(
θt−1 | Ω1:t−1

)
dθt−1 (3)

with p(θt−1 | Ω1:t−1) known from the previous iteration and
p(θt | θt−1) determined by (1). When a measurement Ωt be-
comes available, it may be used to update the prior pdf via
Bayes’ rule:

p
(
θt | Ω1:t

) = p
(
Ωt | θt

)
p
(
θt | Ω1:t−1

)

∫
p
(
Ωt | θt

)
p
(
θt | Ω1:t−1

)
dθt

, (4)

being p(Ωt | θt) the likelihood statistics derived from (2).
However, the posterior pdf p(θt | Ω1:t) in (4) cannot
be computed analytically unless linear-Gaussian models are
adopted, in which case the Kalman filter provides the optimal
solution.

Particle filtering (PF) [23] algorithms are sequential
Monte Carlo methods based on point mass (or “particle”)
representations of probability densities. These techniques are
employed to tackle estimation and tracking problems where
the variables involved do not hold Gaussianity uncertainty
models and linear dynamics. In this case, PF approximates
the posterior density p(θt | Ω1:t) with a sum of Ns Dirac

functions centered in {θ j
t }, 0 < j ≤ Ns as

p
(
θt | Ω1:t

) ≈
Ns∑

j=1

w
j
t δ
(
θt − θ

j
t

)
, (5)

where w
j
t are the weights associated to the particles fulfilling

∑Ns
j=1 w

j
t = 1. For this type of estimation and tracking prob-

lems, it is a common approach to employ a sampling im-
portance resampling (SIR) strategy to drive particles across

time [24]. This assumption leads to a recursive update of the
weights as

w
j
t ∝ w

j
t−1 p

(
Ωt | θ j

t

)
. (6)

SIR PF circumvents the particle degeneracy problem by
resampling with replacement at every time step [23], that is,
to dismiss the particles with lower weights and proportion-
ally replicate those with higher weights. In this case, weights

are set to w
j
t−1 = N−1

s for all j, therefore,

w
j
t ∝ p

(
Ωt | θ j

t

)
. (7)

Hence, the weights are proportional to the likelihood func-
tion that will be computed over the incoming data Ωt.
The resampling step derives the particles depending on the
weights of the previous step, then all the new particles re-
ceive a starting weight equal to N−1

s that will be updated by
the next likelihood evaluation.

The best state at time t, Θt, is derived based on the dis-
crete approximation of (5). The most common solution is
the Monte Carlo approximation of the expectation

Θt = E
[
θt | Ω1:t

] ≈
Ns∑

j=1

w
j
t θ

j
t . (8)

Finally, a propagation model is adopted to add a drift to

the angles θ
j
t of the resampled particles in order to progres-

sively sample the state space in the following iterations [23].
For complex PF problems involving a high-dimensional state
space such as in articulated human body tracking tasks [25],
an underlying motion pattern is employed in order to effi-
ciently sample the state space thus reducing the number of
particles required. Due to the single dimension of our head
pose estimation task, a Gaussian drift is employed and no
motion models are assumed.

PF have been successfully applied for a number of tasks
in both audio and video such as object tracking tasks with
cluttered backgrounds [17] or speech enhancement [26]. In-
formation of audio and video sources have been effectively
combined employing PF strategies for active speaker track-
ing [18] or audiovisual multiperson tracking [19].

2.2. PF applied tomultimodal head pose estimation

PF techniques will be applied to the problem under study
taking into account a common criteria when designing the
implementation of the PF for both audio and video modal-
ities. This common design criterion will allow natural mul-
timodal information fusion strategies at decision and data
level as it will be described in Section 5.

An input observation Ωt may be written as the set

Ωt =
[
ΩA

t ΩV
t

]
, (9)

where ΩA
t and ΩV

t refer to the audio and video observations,
respectively. For both sources, it may happen that these sets
are empty depending whether there is audio or video infor-
mation available or not. Typically, ΩA

t = ∅ when the subject
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under study is not speaking and ΩV
t = ∅ when there is not

a projection of the head of the person in any camera. From
this data perspective, three analysis possibilities can be de-
vised: audio, video, and audiovisual processing.

The main factor to be taken into account when employ-
ing PF is the construction of the likelihood evaluation func-
tion that will measure the similarity between the input data

set Ωt and a given pan angle θ
j
t . This function will assign the

weights to the particles as stated by (7).
Finally, it must be noted that if more than one person is

present in the scene, a PF estimating the head orientation will
be assigned for each of them.

3. VIDEO HEAD POSE ESTIMATION

Methods for head pose estimation from video signals pro-
posed in the literature can be classified as feature based or
appearance based [27]. Feature based methods [5, 6, 28] use
a general approach that involves estimating the position of
specific facial features in the image (typically eyes, nostrils
and mouth) and then fitting these data to a head model. In
practice, some of these methods might require manual ini-
tialization and are particularly sensitive to the selection of
feature points. Moreover, near-frontal views are assumed and
high-quality images are required. For the applications ad-
dressed in our work, such conditions are usually difficult to
satisfy. Specific facial features are typically not clearly visi-
ble due to lighting conditions and wide angle camera views.
They may also be entirely unavailable when faces are not ori-
ented towards the cameras. Methods which rely on a detailed
feature analysis followed by head model fitting would fail
under these circumstances. Furthermore, most of these ap-
proaches are based on monocular analysis of images but few
have addressed the multiocular case for face or head anal-
ysis [15, 28, 29]. On the contrary, appearance-based meth-
ods [8, 30] tend to achieve satisfactory results with low-
resolution images. However, in these techniques, head ori-
entation estimation is posed as a classification problem using
neural networks, thus producing an output angle resolution
limited to a discrete set. For example, in [7] angle estima-
tion is restricted to steps of 25◦ while in [31] steps of 45◦ are
employed. When performing a multimodal fusion, informa-
tive video outputs are desired, thus preferring data analysis
methods providing a real-valued angle output.

This section presents a new approach to multicamera
head pose estimation from low-resolution images based on
PF. A spatial and color analysis of these input images is per-
formed and redundancy among cameras is exploited to pro-
duce a synthetic reconstruction of the head of the person.
This information will be used to construct the likelihood
function that will weight the particles of this PF based on vi-
sual information. The estimation of the head orientation will
be computed as the expectation of the pan angle, as described
in Section 2, thus producing a real-valued output which will
increase the precision of our system as compared with classi-
fication approaches and will pave the way for the multimodal
integration.

3.1. Spatial analysis

Head localization is the first task to be performed before any
head orientation estimation process. This objective has been
addressed in the literature referred as person localization and
tracking [32, 33] or face localization [34]. Here, a head lo-
calization algorithm based on our previous research [35] is
reviewed.

Prior to any further image analysis, the analyzed scene
must be characterized in terms of space disposition and con-
figuration of the foreground volumes, that is, people candi-
dates, in order to select those potential 3D regions where the
head of a person could be present. Images obtained from a
multiple view camera system allow exploiting spatial redun-
dancies in order to detect these 3D regions of interest [36].
For a given frame in the video sequence, a set of NCAM im-
ages are obtained from the NCAM cameras. Each camera is
modeled using a pinhole camera model based on perspec-
tive projection. Accurate calibration information is available.
Foreground regions from input images are obtained using a
segmentation algorithm based on Stauffer-Grimson’s back-
ground learning and substraction technique [37]. It is as-
sumed that the moving objects are human people. Original
and segmented images are the input information for the rest
of image analysis modules described here.

Once foreground regions are extracted from the set of
NCAM original images at time t, a set of M 3D points xk,
0 ≤ k < M, corresponding to the top of each 3D detected vol-
ume in the room is obtained by applying the robust Bayesian
correspondence algorithm described in [35]. Information
coming from the tracking loop speeds up the process narrow-
ing the search space of these correspondences on time t + 1
and allows rejecting false head detections.

The information given by the established correspon-
dences allows defining a bounding box Bk, centered on each
3D top xk with an average size adequate to contain the
human head candidate (see an example of this output in
Figure 1(a)). Afterwards, a voxel reconstruction [38] is com-
puted on each bounding box Bk, thus obtaining a set of vox-
els Vk defining the kth 3D foreground volume candidate as a
head. In order to refine and verify whether the set Vk indeed
belongs to an ellipsoidal geometric shape, a template match-
ing evaluation [38] is performed.

3.2. Color analysis

Interest regions provided as a bounding box around the head
provide 2D masks within the original images where skin
color pixels are sought. In order to extract skin color-like pix-
els, a probabilistic classification is computed on the RGB in-
formation [39], where the color distribution of skin is esti-
mated from offline hand-selected samples of skin pixels.

Finally, color information is combined with spatial infor-
mation obtained from the former analysis step. For each pixel
classified as skin, pn

skin, in the view n, 0 ≤ n < NCAM, we check
whether

pn
skin ∈ Pn

(
Vk
)
, 0 ≤ k < M, (10)
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Figure 1: Example of the outputs from the spatial analysis and model fitting modules. In (a), multiview correspondences among heads are
correctly established. The projection of the bounding box B0 containing the head is depicted in white. In (b), voxel reconstruction is applied
to B0 thus obtaining the voxels belonging to the head (green cubes). Model fitting module result is depicted in red.

where Pn(·) is the perspective projection operator from 3D
to 2D coordinates on the view n [36]. In this way, pn

skin can be
identified as being a projection of a voxel of the set Vk and
therefore correctly handled when establishing orientation of
multiple heads and faces in later modules. Let us denote with
Sk
n all skin pixels in the nth view classified as belonging to the

kth voxel set. It should be recalled that there could be empty
sets Sk

n due to occlusions or under-performance of the skin
detection technique. However, tracking information and re-
dundancy among views would allow to overcome this prob-
lem.

3.3. Headmodel fitting

In order to achieve a good fitting performance, a geometrical
3D configuration of human head must be considered. For
our research work, an ellipsoid model of human head shape
has been adopted. In spite of this fairly simple approximation
compared to more complex geometries of head shape [11],
head fitting still achieves enough accuracy for our purposes
(see Figure 1(b), e.g.).

Let H k = {ck, Rk, sk} be the set of parameters that define
the ellipsoid modelling the kth detected human head candi-
date where ck is the center, Rk the rotation along each axis
centered on ck and sk the length of each axis. After obtain-
ing the set of voxels Vk belonging to kth candidate head H k,
the ellipsoid shell modelling it is fit to these voxels. Statistic
moment analysis is employed to estimate the parameters of
the ellipsoid from the centers of the marked voxels thus ob-

taining a 3D spatial mean V
k

and a covariance matrix CVk .
The covariance can be diagonalized via an eigenvalue decom-
position into CVk = ΦΔΦ�, where Φ is orthonormal and Δ
is diagonal. Identification of the defining parameters of the

estimated ellipsoid H k with moment analysis parameters is
then straightforward:

ck = V
k
, Rk = Φ, sk = diag(Δ). (11)

3.4. 3D head appearance generation

Combination of both color and space information is required
in order to perform a high-semantic level classification and
estimation of head orientation. Our information aggregation
procedure takes as input the information generated from the
low-level image analysis for each person: an ellipsoid estima-
tion H k of the head and a set of skin patches at each view
belonging to this head {Sk

n}, 0 ≤ n < NCAM. The output of
this technique is a fusion of color and space information set
denoted as Υk.

The procedure of information aggregation we define is
based on the assumption that all skin patches {Sk

n} are pro-
jections of a region of the surface of the estimated ellipsoid
defining the head of a person. Hence, color and space infor-
mation can be combined to produce a synthetic reconstruc-
tion of the head and face appearance in 3D. This fusion pro-
cess is performed for each head separately starting by back-
projecting the skin pixels of Sk

n from all NCAM views onto the
kth 3D ellipsoid model. Formally, for each pixel pk

n ∈ Sk
n , we

compute

Γ
(
pk
n

) ≡ P−1
n

(
pk
n

) = on + λv, λ ∈ R+, (12)

thus obtaining its back-projected ray in the world coordinate
frame passing through pk

n in the image plane with origin in
the camera center on and director vector v. In order to obtain
the back-projection of pk

n onto the surface of the ellipsoid
modelling the kth head, (12) is substituted into the equation
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Figure 2: In (a), color and spatial information fusion process scheme. Pixels in the set Sk
n are back-projected onto the surface of the ellipsoid

defined by H k , generating the set Sk
n with its weighting term αkn. In (b), result of information fusion obtaining a synthetic reconstruction of

face appearance from images in (c) where the skin patches are plot in red and the ellipsoid fitting in white.

of an ellipsoid defined by the set of parameters H k [36]. It
gives a quadratic in λ:

aλ2 + bλ + c = 0. (13)

The case of interest will be when (13) has two real roots.
That means that the ray intersects the ellipsoid twice in which
case the solution with the smaller value of λwill be chosen for
reasons of visibility consistency. See a scheme of this process
on Figure 2(a).

This process is applied to all pixels of a given patch Sk
n

obtaining a set Sk
n containing the 3D points being the inter-

sections of the back-projected skin pixels in the view n with
the kth ellipsoid surface. In order to perform a joint analysis
of the sets {Sk

n}, each set must have an associated weighting
factor that takes into account the real surface of the ellipsoid
represented by a single pixel in that view n. That is, to quan-
tize the effect of the different distances from the center of the
object to each camera. This weighting factor αkn can be es-
timated by projecting a sphere with radius r = max(sk) on
every camera plane, and computing the ratio between the
appearance area of the sphere and the number of projected
pixels. To be precise, αkn should be estimated for each element
in Sk

n but, since the far-field condition

max
(

sk
)
 ∥

∥ck − on

∥
∥

2, ∀n, (14)

is fulfilled, αkn can be considered constant for all intersections
in Sk

n . A schematic representation of the fusion procedure is
depicted in Figure 2(a). Finally, after applying this process to
all skin patches, we obtain a fusion of color and spatial infor-
mation set Υk = {Sk

n ,αkn, H k}, 0 ≤ n < NCAM, for every head
in the scene. A result of this process is shown in Figure 2(b).

3.5. Head pose video likelihood evaluation

In order to implement a PF that takes into account visual
information solely, the visual likelihood evaluation function
must be defined. For the sake of simplicity in the notation,
let us assume that only one person is present in the scene,
thus Υk ≡ Υ. The observation ΩV

t will be constructed upon
the information provided by the set Υ. The sets Sn contain-
ing the 3D Euclidean coordinates of the ray-ellipsoid inter-

sections are transformed on the plane θφ, in elliptical coor-
dinates with origin at c, describing the surface of H . Every
intersection has associated its weight factor αn and the whole
set of transformed intersections is quantized with a 2D quan-
tization step of size Δθ×Δφ. This process produces the visual
observation ΩV

t (nθ ,nφ) that might be understood as a face
map providing a planar representation of the appearance of
the head of the person. Some examples of this representation
are depicted in Figure 3.

Groundtruth information from a training database is
employed to compute an average normalized template face
map centered at θ = 0, namely, Ω̃V(nθ ,nφ), that is, the ap-
pearance that the head of a person would have if there were
no distorting factors (bad performance of the skin detector,
not enough cameras seeing the face of the person, etc.). This
information will be employed to define the likelihood func-
tion. The computed template face map is shown in Figure 4.

A cost function is defined as a sum-squared difference
function ΣV(θ,ΩV(nθ ,nφ)) and is computed using

ΣV(θ,ΩV(nθ ,nφ
))

=
Nθ∑

kθ=0

Nφ∑

kφ=0

(
1−
(
ΩV(kθ , kφ

) · Ω̃V
(
kθ �

⌊
θ

Δθ

⌋
, kφ

))2)
,

Nθ =
⌊

2π
Δθ

⌋
, Nφ =

⌊
π

Δφ

⌋
,

(15)

where � is the circular shift operator. This function will pro-
duce small values when the value of the pan angle hypothesis
θ matches the angle of the head that produced the visual ob-
servation ΩV(nθ ,nφ). Finally, the weights of the particles are
defined as

w
j
t

(
θ
j
t ,ΩV(nθ ,nφ

)) = exp
(− βV ΣV(θ

j
t ,ΩV(nθ ,nφ

)))
.

(16)
Inverse exponential functions are used in PF applications in
order to reflect the assumption that measurement errors are
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Figure 3: Two examples of the ΩV
t sets containing the visual information that will be fed to the video PF. This set may take different

configurations depending on the appearance of the head of the person under study. For our experiments, a quantization step of Δθ × Δφ =
0.02× 0.02 rads have been employed. These images are courtesy of the University of Karlsruhe.
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θ

Figure 4: Template face map obtained from an annotated training
database for 10 different subjects.

Gaussian [17]. It also has the advantage that even weak hy-
potheses have finite probability of being preserved, which is
desirable in the case of very sparse samples. The value of βV

is noncrucial and its value allows a faster convergence of the
tracking system when β > 1 [25]. It has been empirically fixed
at βV = 50.

4. MULTIMICROPHONE HEAD POSE ESTIMATION

In this section, we present a new monomodal approach for
estimating the head orientation from acoustic signals, which
makes use of the frequency dependence of the head radia-
tion pattern. The proposed method is very efficient in terms
of computational load due to its simplicity and also does not
require a large aperture microphone array as previous works
[12]. All results described in this work were derived using
only a set of four T-shaped 4-channel microphone clusters.
However, it is not necessary that the microphone clusters

have a specific geometry nor to be located at a predefined
position.

The acoustic speaker orientation approach presented in
this work consists essentially in finding a candidate source
location and classifying it as speech or nonspeech, compute
the high/low band ratio described in the following sections
for each microphone, and finally compute a likelihood eval-
uation function in order to implement a PF. Since the aim of
this work is to determine head orientation, we will assume
that the active speaker’s locations are known beforehand and
they are the same as those used in video. Robust speaker lo-
calization in multimicrophone scenario based on SRP-PHAT
algorithm has been addressed in our previous research [40].

4.1. Head radiation

Human speakers do not radiate speech uniformly in all direc-
tions. In general, any sound source (e.g., a loudspeaker) has
a radiation pattern determined by its size and shape and the
frequency distribution of the emitted sound. Like any acous-
tic radiator, the speaker’s directivity should increase with fre-
quency and mouth aperture. Infact, the radiation pattern is
time-varying during normal speech production, being de-
pendent on lip configuration. There are works that try to
simulate the human radiation pattern [41] and other works
that accurately measure the human radiation pattern, show-
ing the differences for male and female speaker and using dif-
ferent languages [42].

Figure 5(a) shows the A-weighted typical radiation pat-
tern of a human speaker in horizontal plane passing through
his mouth. This radiation pattern shows an attenuation of
−2 dB on the side of the speaker (90◦ or 270◦) and −6 dB at
his back. Similarly, the vertical radiation pattern is not uni-
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Figure 5: In (a), A-weighted head radiation diagram in the horizontal plane. In (b), HLBR of the head radiation pattern.

form, for example, there is about −3 dB attenuation above
the speaker head.

The knowledge of the human radiation pattern can be
used to estimate the head orientation of an active speaker by
simply computing the energy received at each microphone
and searching the angle that best fits the radiation pattern
with the energy measures. However, this simple approach has
several problems since the microphones should be perfectly
calibrated and different attenuation at each microphone due
to propagation must be accounted for, requiring the use of
sound propagation models. In our approach, we propose to
keep the computational simplicity using acoustic energy nor-
malization to solve the aforementioned problems.

The energy radiated at 200 Hz by an active speaker is low
directional. However, for frequencies above 4 kHz the radi-
ation pattern is highly directive [42]. Based on this fact, we
define the high/low band ratio (HLBR) of a radiation pattern
as the ratio between high and low bands of frequencies of the
radiation pattern and can be observed in Figure 5(b).

Instead of computing the absolute energy received at each
microphone, we propose the computation of the HLBR of
the acoustic energy. This value is directly comparable across
all microphones since, after this normalization, the effects of
bad calibration and propagation losses are cancelled.

4.2. High/low band ratio estimation

As for the video case, we assume that the active speaker’s lo-
cation is known beforehand and determined by c and the
vector ri from the speaker to each microphone mi is calcu-
lated. The projection of the vector ri on the xy plane forms
an angle θi with the x-axis. Let ρi be the value of the HLBR
of the acoustic energy at each microphone mi. The values ρi
are normalized with a softmax function [43], which is widely
used in neural networks, when the output units of a neural

network have to be interpreted as posterior probabilities. The
softmax normalized HLBR values ρi are given by

ρi = ek·ρi
∑n

k=1 e
k·ρk , (17)

where k is a design factor. In our experiments, k is set to 20.
The definition of the softmax function ensures that ρi lie

between 0 and 1 and that their sum is equal to 1.

4.3. Speaker orientation likelihood evaluation

In this work, the HLBR of the head radiation pattern (see
Figure 5(b)) has been used as the likelihood evaluation func-
tion of the PF. From the values of ρi, we compute a contin-
uous approximation of the HLBR of the head radiation pat-
tern as

W(θ) =
NMICS∑

i=0

ρi ∗ exp
(
−
(∣∣θ − θi

∣∣

π
C
)2)

, (18)

where the constant C in the interpolation function (18) is a
measure of confidence of the ρi and θi estimation.

In this work, C has been chosen as

C = η

ε
, (19)

where η is the likelihood of the SRP-PHAT acoustic localiza-
tion algorithm, and ε is a threshold dependent on the num-
ber of microphones used [40].

In order to maintain the parallelism with the video coun-
terpart, a cost function is defined as follows, being ΩA the
audio observations W(θ):

ΣA(θ,ΩA) = 1−W(θ). (20)
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Finally, the weights of the particles are defined as the vi-
sual likelihood evaluation function:

w
j
t

(
θ
j
t ,ΩA) = exp

(− βAΣ
A(θ,ΩA)). (21)

βA = 100 provided satisfactory results.

5. MULTIMODAL INTEGRATION

Multimodal head orientation tracking is based on the audio
and video technologies described in the previous sections. In
our framework, it is expected to have far more observations
from the video modality than from the audio modality since
persons in the SmartRoom are visible by the cameras dur-
ing most of the video frames. Moreover, the audio system
can estimate the person’s head orientation only if she/he is
speaking. Hence, the presented approach relies primarily on
the video system and the audio information is incorporated
to the corresponding video estimates in a multimodal fusion
process. This is achieved by first synchronizing the audio and
video estimates and fusing the two sources of information.

The combination of audio and video information with
particle filters has been addressed in the past for speaker
tracking applications. In [19, 44] a multiple people track-
ing system was based on integrated audio and visual state
and observation likelihood components. Thus, the combined
probability for audio and video data is obtained by multiply-
ing the corresponding probabilities from the audio and video
source, assuming independent estimations by the comple-
mentary modalities. In a different context, in [25], the same
approach is used for combining different data for articulated
body tracking. In [45] multiple speakers were tracked with a
set of independent PFs, one for each person. Each PF used
a mixture proposal distribution, in which the mixture com-
ponents were derived from the output of single-cue trackers.
In [18] the joint audio visual probability for speaker tracking
was computed as a weighted average of the single modality
probabilities.

In this paper, we will report the advantages of the two
modalities fusion at the data level by comparing it to a deci-
sion level fusion. The first decision level fusion that we will
consider will be based on two independent PF for the audio
and video modalities. Thus, the estimated angle will be com-
puted as a linear combination of the audio and video estima-
tions. A second strategy will also consider two independent
particle filters, but the estimated angle will be computed as
a joint expectation over the audio and video particles. These
two simple strategies will be compared to the data level fu-
sion that we will approach computing the combined proba-
bility for the audio and video data as in [19, 44].

5.1. Decision level fusion

Two strategies are presented to perform an information fu-
sion at decision level.

0
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Figure 6: Pan angle estimation error is correlated with the disper-
sion of the particle thus allowing the construction of multimodal
estimators.

(i) Linear combination of monomodal angle estimations

The pan angle estimation provided by the audio and video
particle filters, ΘA

t and ΘV
t , respectively, are linearly com-

bined to produce ΘAV1
t according to the formula

ΘAV1
t = 1

1/σA
t

2
+ 1/σV

t
2

(
1

σA
t

2 Θ
A
t +

1

σV
t

2 Θ
V
t

)

, (22)

where σA
t

2
and σV

t
2

refer to the variance of the audio and
video estimations after a normalization process. Moreover,
this variance figure (related to the dispersion of the parti-
cles) can be understood as a magnitude related with the es-
timation error. This effect is depicted in Figure 6 shown as a
correlation between the pan angle estimation error and the
variance.

(ii) Particle combination

A decision level fusion may be performed before the expec-
tation is taken at each monomodal PF (see (8)). Indeed, par-
ticles generated by each monomodal PF contain information
about the sampled audio and video pdf s: p(θt | ΩA

1:t) and
p(θt | ΩV

1:t). A joint expectation can be computed over the
particles coming from audio and video PFs as

ΘAV2
t = E

[
θt | ΩA

1:t,Ω
V
1:t

] ≈
Ns∑

j=1

(
w

A, j
t θ

A, j
t + w

V, j
t θ

V, j
t

)
, (23)

enforcing

Ns∑

j=1

w
A, j
t +

Ns∑

j=1

w
V, j
t = 1. (24)
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(a) (b)

Figure 7: Images from two experimental cases. In (a), speaker is bowing his head towards the laptop and video-based head orientation esti-
mation does not produce an accurate result (red vector) while audio estimation (green vector) generates a more accurate output. Estimation
reliability is proportional to vector length. In (b), an example where both estimators output a correct result.

5.2. Data level fusion

Video PF estimates the head orientation angle taking into ac-
count that the frontal part of the face defines the orienta-
tion. On the other hand, audio PF estimated this angle by ex-
ploiting the fact that the maximum of the HLBR function of
the head radiation pattern corresponds to the mouth region.
Multimodal information fusion at data level has been done
by taking into account that speech is produced by the frontal
part of the head. This correlation between the two modalities
is modeled in this work by defining a joint likelihood func-
tion p(θt | ΩA

1:t,Ω
V
1:t) which exploits the dependence between

audio and video sources. In this article, multimodal weights
have been defined as

w
MM, j
t

(
θ
j
t ,ΩA

t ,ΩV
t

)

= exp
(− βMM

(
λAΣ

A(θ
j
t ,ΩA

t

)
+ λVΣ

V(θ
j
t ,ΩV

t

)))
,

(25)

where λA and λV are empirically estimated weighting param-
eters controlling the influence of each modality. After com-
paring the performance of the monomodal estimators (see
Section 6), parameters λA and λB have been set for our exper-
iments as λA = 0.6, λV = 0.4 providing satisfactory results.
The convergence parameter has been set at βMM = 100.

6. RESULTS

In order to evaluate the performance of the proposed algo-
rithms, we employed the CLEAR 2006 head pose database
[31] containing a set of scenes in an indoor scenario were
a person is giving a talk, for approximately 15 minutes. In
order to provide meaningful and comparable results among
mono- and multimodal approaches, the subject under study
in this evaluation database is always speaking, that is, there
is always audio and video information available. The analysis
sequences were recorded with 4 fully calibrated cameras with
a resolution of 720 × 576 pixels at 25 fps and 4 microphone
cluster arrays with a sampling frequency of 44 KHz. All au-
dio and video sensors were synchronized. Head localization
is assumed to be available since the aim of our research is at
estimating its orientation. Nevertheless, results on head lo-
calization have been specifically reported by the authors in

Table 1: Quantitative results for the four presented systems
showing that multimodal approaches outperform monomodal ap-
proaches.

Method PMAE (◦) PCC (%) PCCR (%)

Video 59.52 24.68 64.21

Audio 47.84 31.84 71.90

MM Feature Fusion Type 1 49.09 28.21 73.29

MM Feature Fusion Type 2 44.04 34.54 75.27

MM Data Fusion 30.61 48.99 83.69

[15, 46]. Even though a more complete database might be
devised, this is the only existing database designed for this
task up to authors knowledge.

The metrics proposed in [31] for head pose evaluation
have been adopted: the pan mean average error (PMAE), that
measures precision of the head orientation angle in terms of
degrees; the pan correct classification (PCC), which shows
the ability of the system to correctly classify the head posi-
tion within 8 classes spanning 45◦ each; and the pan correct
classification within a range PCC, which shows the perfor-
mance of the system when classifying the head pose within 8
classes allowing a classification error of ±1 adjacent class.

For all the experiments conducted in this article, a fixed
number of particles have been set for every PF, Ns = 100.
Experimental results proved that employing more particles
does not report in a better performance of the system.

The four systems presented in this paper (video, audio,
and multimodal fusion at decision and data level) have been
evaluated and these 3 measures computed in order to com-
pare their performance. Table 1 summarizes the obtained
results where multimodal approaches almost always out-
perform monomodal techniques as expected. Improvements
achieved by multimodal approaches are twofold. First, error
in the estimation of the angle (PMAE) decreases due to the
combination of estimators and, secondly, classification per-
formance scores (PCC and PCC) increase since failures in
one modality are compensated by the other. Compared to
the results provided by the CLEAR 2006 evaluation [31], our
system would be ranked on the 2nd position over 5 partic-
ipants. Visual results are provided in Figure 7 showing that
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multimodal approaches allow enhancing results when one
modality fails.

7. CONCLUSIONS AND FUTUREWORK

The use of particle filters has been proved to be useful as
a unified framework for the estimation of the head orien-
tation for both monomodal and multimodal cases in terms
of accuracy and robustness over the CLEAR 2006 evaluation
database. In monomodal head pose estimation, good results
have been obtained with a video estimation based on a 3D
reconstruction of the head and, especially, with a novel au-
dio estimator based on the directivity characteristics of the
head radiation pattern. In multimodal head pose estimation,
slightly better results have been obtained by a linear combi-
nation of those monomodal estimators and even better re-
sults have been reached by particle combination at a decision
level. However, in the current scenario, the use of a joint par-
ticle filter for fusion of video and audio streams at data level
has yielded the best results, achieving a relative 42% reduc-
tion of the classification error rate from the best monomodal
estimation.

Future research lines aim at designing adaptive modal-
ity weighting algorithms in the multimodal data level fusion
estimator to automatically set values for λA and λB. Analysis
of the produced data towards tracking attention of multiple
people in meetings and understanding behaviors of individ-
uals is under study.
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