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INTRODUCTION

The global optimization of sensor locations and a sensitivity analysis based on the minimization of interferences due to wireless
communications between sensors are studied in the presence of additive white Gaussian noise (AWGN). We used a Gram matrix
approach for robust determination of sensor locations by minimizing the interferences (maximizing the signal strength) among
sensors for engine health monitoring systems. In order to solve the problem of optimum placement, an iterative algorithm for
maximizing the determinant of the Gram matrix is proposed and implemented. The sensitivity criterion proposed in this paper
is the spectral number of the Frobenius norm of the Gram matrix associated with sensor readings. We derived the necessary con-
ditions under which the number of sensors and the optimal sensor locations will remain unchanged when the data measured for
sensitivity analysis is affected by AWGN. Our theoretical results are verified by simulations providing details concerning numerical
implementations.
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In this paper, we address the problem of selecting the op-

The problem of sensor location is crucial for system identi-
fication, control, and damage detection which requires ac-
curate measurement of the responses of the system [1-8].
The measured data are always inaccurate because of the ex-
istence of parameter variation or noise. Taking the cost of
sensors into account, it is not economical to install sensors
in every part of system. In such cases, a practical question
that naturally arises is how to select a set with a minimum
number of sensor locations from all possibilities, such that
the data collected may provide the greatest opportunities
for the detection of failures [9—12]. This problem has been
widely investigated in the last decade and many methods
such as the minimal energy principle, mode shape indepen-
dent principle, Fisher information matrix, effective interfer-
ence method, and so forth have been developed for the deter-
mination of sensor locations in many publications [5, 8, 11].
However, these placement optimization criteria focused on
maximizing either the controllability or the observability of
the system, assuming that the sensor readings are not affected
by wireless interferences [13].

timal location of sensors, such that the resulting sensor read-
ings provide maximum information about the condition of
the structure as specified by values of the model parame-
ters. We assume that each sensor has wireless communica-
tion capabilities, in that each sensor reading is characterized
in terms of signal-to-noise ratio. Optimal and effective de-
ployment of sensors in health engine monitoring is difficult
and critical because the number of sensors is usually lim-
ited and their locations are fixed, once installed. We present a
methodology for the optimal placement of sensors to be used
in the diagnosis of engine failure considering all the interfer-
ences from different locations affecting all the sensors in the
system [14-16].

Optimal sensor location is a combinatorial problem
where one seeks to place Ng sensors out of M potential lo-
cations. The test of all possibilities is rarely realistic; thus one
can consider sets of N sensors simultaneously (simulated an-
nealing, genetic searches [13, 17]), or sequential approaches
where one removes or adds one sensor at a time. In this pa-
per, we start with a large number of candidate locations M by
eliminating the least effective sensor in each step of iteration
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until a given number of sensors are left. The optimality cri-
terion used is the optimization of the determinant of Gram
matrix G = DTD [14], where the matrix D is of the dimen-
sion L X N. It is assumed that each sensor reading is a one-
dimensional vector of dimension L < N < M. The objective
of this paper is to find the optimum number of sensors N
out of M possible locations and should not be confused with
the dimensionality reduction, where the goal is to reduce the
value of length of vector observability P [9, 18, 19].

The objective function, the optimization of Gram ma-
trix determinant, may have multiple local optima and saddle
points, and hence any local search might stagnate at a sub-
optimal solution. Following the work in [14], the proposed
method is convergent, having a unique global optimum. Pre-
vious work, addressing the issue of optimality location of a
given number of sensors, has been carried out by several in-
vestigators. The criteria used are trace norm [5], determinant
norm [20], and extremal eigenvalue of the Fisher informa-
tion matrix [7]. The approach based on the Gram matrix was
also considered in another context in [16] where a metric re-
lated to all interferences in the wireless network was intro-
duced, namely, the total weighted squared correlation. This
paper is organized as follows. In Section 2, we introduce the
system model, and the problem formulation for optimum
placement is presented in Section 3. The sensitivity analysis
is derived in Section 4. The computational procedure for the
optimal sensor placement method is given in Section 5. The
numerical results are presented in Section 6 and conclusions
are drawn in Section 7.

2. SYSTEM MODEL

Consider a wireless sensor network composed of N sensors
distributed at known spatial locations, each data sensor read-
ing vector, 1 < i < N, is in transpose form, having a dimen-
sionP X 1,and P < N:

. N 3T
d9 = {a?,d?,.. .0}, i=12..,N. (1)

The vector from measurements denoted by y is composed by
data from each of N sensors y = {yl,yz,...,yN}T. The in-
dividual contribution of each sensor is denoted by ¢; (i =
1,2,...,N) and it is included in the vector q = {q1,42...,
gn}T. The mathematical model used for sensor measure-
ments vector y! is given by the following matrix equation:

y=qdV +qd?+- - +gnd™ +w=Dq+w, (2)

where D is a P X N the matrix having the designated pat-
tern vectors d) as columns, w is a vector representing the
measurement noise and all other effects due to the interfer-
ences; it is assumed to have a Gaussian distribution with zero
mean and the covariance matrix £ = o3Iy, where Iy is the
unity matrix of order N. We assume that sensor readings are

I We will assume y = [y1,..., yp,0,...,0] if no noise.
2

N-P

affected by independent noise with equal variances and the
variance of noise in the system can be estimated from mea-
surements. Using the Gram matrix G = DTD in the least-
squares method? [21], an estimate of q in the mathematical
model (2) is obtained as®

q=G'Dy. (3)

The accuracy of estimation for q may be evaluated to be the
error of estimation which is the expected value of the quan-
tity (q — §)(q — §)" being related to the inverse of the Fisher
information matrix F [5] as follows:

E[(q-d)(q-q ] -F". (4)

Several scalar performance measures related to the informa-
tion matrix F were studied in the past. The most general one
is the following criterion based on the trace of the matrix:

ms = (%trace(Fﬂ)lk, (5)

where the parameters s < 0 and N represent the number of
sensors. By particularizing s, then the following widely used
criteria are obtained:

(a) determinant norm: lim,_.om; = |F|'N,
(b) trace norm m_; = N/trace(F~1),
(c) extremal eigenvalue m_o = Apin(F).

Different from previous criteria used so far for optimal
sensor location problems, in this paper we will use the Gram
matrix approach originally introduced in the context of in-
terference avoidance in [14]. The interference metric total
weighted squared correlation (TWSC) [16] is expressed in
terms of the Frobenius norm associated to the Gram ma-
trix, and it is given by the sum of its squared eigenvalues,
while the determinant of the Gram matrix is the product
of its eigenvalues. By using the arithmetic-geometric mean
inequality [22], the superiority of choosing the Gram ma-
trix approach becomes evident, since the determinant norm,
trace norm, extremal eigenvalues criteria, and (5) are partic-
ular cases, and furthermore the Gram matrix approach pro-
vides a tighter lower bound. When the arithmetic-geometric

2 The least-squares (LS) estimator is asymptotically unbiased. The Cramer
Rao bound (CRB) provides a lower bound on the error variance in es-
timating the model parameters for any unbiased estimator of these pa-
rameters. Assuming that the observed field is a Gaussian random field,
the asymptotic error covariance matrix of the best LS attains the CRB
even for the modest dimensions of the observed field and low signal-to-
noise ratios. We conjecture that our results hold when the data dimension
becomes larger; the number of deployed sensors is larger as in the real
applications for wireless sensors networks.

Two different forms of Gram matrices are associated to the wireless sen-
sor networks. For an overloaded network where P < N, and considered
here, we will use G = DTD of dimension N x N. This is in contrast with
underloaded networks (P > N) where the dimensionality of Gram matrix
G=DD"isPxP. Equation (3) is valid only if the inverse of the Gram
matrix G = DTD exists. The condition of the inverse of G is equivalent
to the full rank of the Gram matrix, N, which in turn is equivalent to the
linear independence of vector d? that constitutes D.

w
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mean inequality is applied to the TWSC, the lower bound is
again given in terms of the product of its eigenvalues, which
in fact is the determinant of Gram matrix.

The Fisher information matrix from (4), by using (3), be-
comes

F= iZDTD = izG. (6)
OW UW

In order to minimize the error of estimation given by (4) we
need to maximize the determinant of the Gram matrix given
by (6). Suppose now that sensor reading i is decoded using a
linear receiver denoted by ¢;.* Writing Y = (y1, y2,..., yn) as
a vector in RN, then the received signal can be written as

Y =

Mz

1l
—

qi d(i) +W, (7)

where W is an independent and identically distributed (i.i.d.)
Gaussian vector with covariance ¢?Iy independent of sen-
sor readings. Based on (7)° the signal-to-interference ratio of
user i (SIR;) is

(ci,dD)’g;

SIR, = ——
o2(ci,¢i) + 3 j4i(ci,dV) g;

(8)

We say that a set of M sensors is optimum for placement and
reliable communication if there is a positive set {g;} and lin-
ear receiver structures ¢;, such that the signal-to-interference
ratio for each user is that SIR; = 3, Vi=1--- M. Here f >0
is some fixed SIR requirement of each user that has to be met
for satisfactory performance. The optimum receiver ¢; is one
that maximizes SIR; assuming that the channel state infor-
mation is known perfectly both at transmitter and receiver.
The system model proposed in this paper characterized by
(2) and (8) is used for engine health monitoring; no other
work is known to the authors focusing on the optimum sen-
sor location based on their ability to communicate with each
other in the presence of wireless interference.

3. PROBLEM FORMULATION

Fixing the set {q;} and the sensor readings d'”, for each
sensor 1 < i < M, let us consider the matrices D =
[dV,d?,...,d™] and Q = diag(qi,q2...>qm), respec-
tively, by including all sensors in the system. Now, con-
sider the same matrices when the sensor reading i is deleted
from the system: D_; = [dV,...,dD,d®D, ..., d™] and
Q_; = diag(qu,.--gi-1,gis1--->qum),° respectively. Based on

4 We assume that each sensor has wireless communication capabilities.

> The difference between (7) and (2) consists not only in terms of summa-
tion. In (2) we have an estimation problem while in (7) we have a mul-
tiuser detection problem where the set g; is not necessarily independent.
If the linear receiver structures are independent, the D matrix becomes a
full matrix, and thus (3) simply yields § = D~'y. In addition, in (2) we
need to solve N equations for N unknowns g;(i = 1,2,...,N).

6 We will denote the diagonal matrix whose main diagonal entries are the
same as those of the matrix A as diag(A) and the diagonal matrix whose
diagonal entries are formed from vector b as diag(b).

the above matrices let us consider another two matrices de-
finedas Z_; = D_;Q_;DY.+¢?I and Z = DQD” + ¢*I. These
two matrices are positive definite having the following eigen-
value decomposition [22] for some positive diagonal matri-
ces A;and A: Z_; = U;A;UY, Z = UAUT, where U, U; are
unitary matrices. Then using (8) for each sensor i, we obtain
the following expression:

,d) g

max SIR; = maxw

¢i#0 a0 ¢ Zig
. maXXiTAi_1/2U§d(i)d<i>TUiAi_l/zxi 9)
- 1 >

xi#0 XiTXi
= AU

In the above expression the optimal receiver structure is ¢; =
Z-'d". By using the following formula:

AflxyTA—l

I e |
(A-xy") A +1_YTA—1X’

(10)

whenever the terms exist, from (8) to (9), we have succes-
sively

SIR; = d(i)Tzfld(i) C;

- d(i)T(Z—l _ cid(i)d(i)TZfl)d(i)ci

_ d(i)T Z*l B Cid(i)d(i)TZ—lci d(i)CA (11)
1-dOTZ-1d0¢; )"
d07z-1d0
T 1-d0TZ-1d0¢;’

Here dVTZ~1d® is strictly less than 1 and thus all the terms
above are well defined.

Mathematically the optimization problem of sensor
placement in the presence of the interferences can be for-
mulated as follows: given the sensor reading matrix D =
[dD,d?,...,d™)], and SIR requirement B, for Vi, M > i >
N, find the Gram matrix G whose determinant is maximum:

G € argmax det G

= (1 -d!I'GZ}d;)det G_; such that SIR; > .

(12)

Since the Gram matrix is a summation of the contribution
of each degree of freedom or sensor location to the mode
shape of structural engine health monitoring, maximizing
its determinant will lead to the best placement in the pres-
ence of interferences. A formal description of our optimiza-
tion problem can be formulated as follows: let G_; = DTZ-D,I-,
the Gram matrix is obtained by deleting the reading sensor
i which is most affected by interferences, and its signal-to-
noise ratio which is below the admitted level specified by the
system. In another words, the sensor reading having the low-
est influence on the linear independence of column of the
matrix D is deleted.

We propose an iterative procedure starting with a num-
ber of M potential locations and ending with an optimum
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number of sensors N. By deleting the potential sensor loca-
tion with the smallest contribution (maximum interference)
the relative change in the determinant of the Gram matrix is
the smallest, and so this method does provide a local maxi-
mization of the determinant of the Gram matrix.” The first
step in our iteration loop (see also Section 5) is to calculate
(12) for all sensor locations, and thus the sensor correspond-
ing to the lowest value of the determinant 1 — d} G=}d; is re-
moved. The resulting Gram matrix is updated with the re-
duced number of the remaining sensors in the system, and
the above procedure is repeated until the number of sensors
is reduced to the given number of sensors N.

The motivation for which the sensor locations are deleted
in an iterative fashion, and not all at once, is twofold. First
reason is due to the nature of interference location in signal
space [14]. One might think that deleting more sensors for
which the interference is higher is more appropriate. How-
ever, if the users are located in signal spaces, which are or-
thogonal to each other, then that number of users, which are
experiencing higher interference, cannot have a higher con-
tribution to the total interference in the system. This state-
ment was proved in the context of CDMA systems in [16].
Secondly, in future wireless sensors networks, each sensor
will try to adapt to the total interference in the system and
will place itself in that region of signal space where there is
minimum interference.

4. SENSTIVITY ANALYSIS

A survey of the literature shows that the sensitivity analysis
for sensor location for systems identification has been inves-
tigated intensively [4, 11, 23, 24]. In [24] the optimal sensor
location for parameter identification of linear structural sys-
tems discusses the influence of noise on these. In [11] the
effect of noise on sensor placement for on-orbital identifi-
cation of large structures is studied, and it is suggested that
erroneous estimates of the parameters can be ameliorated by
placing the sensors at points of maximum sensitivity. How-
ever, very few papers have addressed the problems of sensi-
tivity analysis for engine health monitoring.

Having identified sensor location, the problem is which
criterion, among the combinations of all possible sensor lo-
cations, is to be adopted in order to select an optimal set
effectively, such that the measured data will give desirable
results for achieving a better estimation of structural states.
We propose as a criterion the spectral condition number of
Gram matrix G_; = DLD,,» defined below:

MG-) = [IG[ [IGZ ], (13)

where the superscript “+” denotes the pseudoinverse. The
criterion is to locate sensors at those positions where the
spectral condition number A(G_;) reaches its minimum, to
achieve the best control effect. In this way, we determine

7 The determinant of Gram matrix can be also expressed in terms of its
eigenvalues. The issue and the convergence of the global maximization of
the eigenvalues of the Gram matrix were explored in [14].

the conditions under which the number of sensors will re-
main optimal when the data measured and used for sensi-
tivity analysis are contaminated by additive noise (the same
problem in the presence of colored noise is open and left for
future research).

Assume that the measured responses given by (2) are cor-
rupted in the presence of perturbation noise in an additive
fashion:

Yy=v+tu (14)

where p is the noise perturbation vector from the same Gaus-
sian field. Correspondingly, the perturbed Gram matrix G_;
can be expressed as

~

G,=G i+n_, (15)

where #_; this time is a noise matrix whose properties re-
lated to the number of users communicating in the system
are studied in [14]. Similar to [16] we assume in this pa-
per that the signals and noises are statistically independent
of each other. We can define the spectral condition number
for the perturbed Gram matrix as /l(CNLi) = IICNLi | IICNif,- || fol-
lowing (13). Using (15) and, based on (13), we obtain for the
spectral number of perturbed Gram matrix the following ex-
pression:

MG-) = IGll 1G5 = |G-+ [lIGH].  (16)

Using matrix perturbation theory [25] an upper perturba-
tion bound for [|G*,|| is given as

&)< (1+ %)HGLH, (17)

when o = [|Gllllf_;l < 1and B = (1 ++/5)/2. In or-
der to obtain the dependence between the condition number
AG_;) of the initial Gram matrix in the absence of noise and
the condition number A(G_;) of the perturbed Gram matrix,
we have to use the results from [25]. It was proved in [25] that
when the rank of Gram matrix before and after perturbation
is the same, then we obtain

[1G-i +n_,|| = yYMG-y), (18)

where 0 < y < 1. Substituting (18) and (17) in (16) we obtain
the desired results:

_af

1-«a

MG = y(l ; )A(G,i). (19)

The fundamental result provided by (19) will allow us to
check if the sensor locations determined in noise-free condi-
tions are insensitive to AWGN under the proposed criterion
above. In (19) we need (1 + af/(1 — a))—1, or a sufficient
condition that «—0. In other words, we need the norm of
noise [|5_;|[=0 or small perturbation affecting the configu-
ration of the initial number of sensors. This result is verified
in our simulations.
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80
Generate a random matrix “S” with
dimensions N x M 70 - .
L L 60 -
Find initial data matrix “D” with first N 5
rows from S matrix as elements of D "L":; 50 1
=] .
J PIE R B e
E ® e . .
Fori= MtoN + 1 calculate G = DTD 2 30 1 o
i . . ° .
) 20 - o. .
Forj=1toN 104 . o ° .
calculate the determinant of D for each .
sensor after removing the respective row 0 : : LA : b
and column 0 5 10 15 20 25 30
|} Number of sensor

Store the value in an array

o

Remove the row from D corresponding
to the sensor with minimum determinant

Calculate
for next
sensor

Consider the next column from the matrix S

F1GURE 1: Overview of the methodology for maximizing the deter-
minant of the Gram matrix.

5. COMPUTATIONAL PROCEDURE FOR OPTIMAL
SENSOR PLACEMENT METHOD

Maximization of the determinant of the Gram matrix re-
sults in minimizing the error covariance matrix given by (4),
which produces the best estimate of g in (3). Hence the sen-
sors should be placed in a way that the determinant of the
Fisher information matrix obtained as in (6) is maximized.
When the procedure starts with M sensor locations, it must
be noted that the candidate sensor locations are deleted in
an iterative fashion, and not all at once, because as the sen-
sor locations which are the most affected by interferences are
deleted, then a loss of linear independence is obtained. It is
also important to note that when a sensor is deleted from the
candidate sensor set, the total interference in the system de-
creases. The procedure is implemented using the algorithm
described in Figure 1.

The implementation procedure for determining the op-
timal placement of sensors consists of the following steps.

(i) Generate first a random matrix S = [d?,d@,...,
d™)] with dimensions N x M. Algorithms to gener-
ate such matrices are given in MATLAB.

(ii) Generate a data matrix D of the designated pattern
vectors d) with dimension N x N, where the ele-

FiGure 2: Randomly distribution of M = 30 sensors before opti-
mization.

ments of this data matrix D corresponds to the first
N columns in the matrix S.

(iii) Find the Fisher information matrix associated with
this matrix as in (6).

(iv) Calculate the determinant for the Gram matrix for
each sensor using (12) for all sensors. This is done by
deleting the rows and columns of matrix correspond-
ing to the sensor reading with lowest interference (9),
thus providing effective independence for the chosen
sensor location.

(v) Remove the sensor which has least determinant from
the data matrix by obtaining the matrix D_;.

(vi) Consider the next column i, M —1 > i > N, in D
from the matrix S in order to update the Gram matrix
G with a new sensor.

This procedure is repeated until an optimum matrix is
obtained with all optimum sensor location set.

The performance of the above methodology depends on
the measurements and, thus, the sensors used for engine
health monitoring. Determination of the minimum number
of sensors is associated with the cost of processing online,
the initial placement of sensors, and other equipment crite-
ria which are not considered here. The proposed methodol-
ogy could be applied to any number of sensors N < i < M.

6. NUMERICAL RESULTS

The general computational procedure for optimal placement
described in the previous section will be exemplified for a
number of M = 30 sensors which are contaminated by
AWGN with a signal-to-noise ratio of § = 10dBm, and
which are randomly distributed® on a rectangular area as in
Figure 2. We consider the “normalized locations” in order to
show the scalability of our method. Each sensor is affected

8 It is well known that a sensor network can be deployed in two ways: ran-
dom placement and grid placement. For an unknown environment with
multipath interference, the random placement is the best choice.
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by interferences from the rest of sensors in the system and is
identified by a number between 1 and 30.

6.1. Experiment 1: optimum sensor location

We chose P = 6 and a sample of the random matrix D for
N = 6 sensors, given below. The sensor readings are given in
dBm and are column vectors of this matrix’:

D
[—0.3756 —1.4048 0.7413  1.2376  0.2296 —2.3779]
0.2077 —1.0306 0.8120 1.2960  0.3553 —1.0923
—0.7656 —0.6434 —0.1428 -0.2782 0.5213 —0.3257
- —-0.1064 0.1708 —0.0999 0.2171 —0.6160 —2.0122 |
0.3388  1.3448 —0.8001 0.6307  1.3458  1.5677
| 1.0335 1.9363 0.4932 -0.5485 0.9749 0.2333 |
(20)

We implemented a program in MATLAB, following the
steps described in Section 5, eliminating the least effective
sensor in each step of the iteration until 6 sensors were left. In
each iterative step we found the corresponding Fisher infor-
mation matrix. We eliminated one sensor at a time by delet-
ing the corresponding row and column, and then optimizing
the Gram determinant. We removed the sensor which pro-
duced the minimum Gram determinant value. The next iter-
ation began and we ran the algorithm for N < i < M.

The procedure continued until the optimal placement of
the final 6 sensors was obtained. After running the compu-
tational procedure described in Section 5, the optimal place-
ment was obtained as in Figure 3 where only N = 6 sensors
are remained, namely, the sensors at locations 1, 2, 3, 16, 22,
and 30.

We noticed that the sensors, which are much close to each
other, are eliminated from the initial assignment. The expla-
nation for this is that the power received is inversely propor-
tional to the distance from the transmitter. The remaining
sensors experienced this lesser interference.

6.2. Experiment 2: sensitivity analysis

This time we considered a different number of sensors and
the same data matrix as in Section 6.1. The optimal sensor
placement was different and the results of the sensitivity anal-
ysis for M = 25, N = 6, P = 6, 0 = 1, and sensors placed at
locations 4, 6, 9, 16, 19, and 23 are represented in Figure 4.

One can observe that at these locations the condition
number based on the Frobenius norm derived in Section 4
is minimum.

° In the context of engine health monitoring, we used real data from direct
measurements. Even the matrix D is generated by simulation; in this ex-
periment, the final sensor position is not dependent of realization of this
matrix. In other words, the optimized location will remain the same if
initial sensor readings are changed.

70

60

50 A

40

30 A

Optimized sensor locations

0 5 10 15 20 25 30

Number of sensor

Figure 3: The optimum locations obtained with the proposed
method.
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200
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185
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FIGURE 4: Sensitivity analysis for 25 sensors.

6.3. Experiment 3: the influence of the noise on
optimal placement

It is sufficient to consider two optimal arbitrary locations x
and y, and the values of the two random estimates g, and g,,
respectively, along with the random noise vector w, which
are obtained with (2). In order to verify the robustness of the
methodology proposed in Section 4, we needed to consider
various levels of noise. For our purposes we considered the
variance of the noise in (6) given by 02, = (aéx + aéy) X
where the parameter a € [1, 3].

We started this experiment with the same data matrix
D as in Section 6.1 by using the algorithm presented in
Figure 5 to calculate the mean variance and the covariance
of random variables g, and g,. As an illustrative example,
we chose x = 1 and y = 3, and 100 values were gen-

erated for each random variable. The corresponding esti-

(100)

mated data were Q; = [qgl), qu),. ..»q1 1, and, respectively,
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Fori=1toN

generate a noise random matrix with mean 0 and variance

ow = (02, +0§y)¢x where 0 < a <3

Generate M sets of values
for the two random
matrices Qx and Qy

2

Fori=1toM

calculate y; = Qx(1,1)dx + Qy(1,1)dy + W;

where dy and d, correspond to x and y rows
of D matrix; W is the noise vector in (7)

Calculate g; = G"'DTy as in (3) and store in an arrayl

M
Find q = Zq,'
i=1
N2
Find mean:

EX =q(x,1)/M
4, =q(y, 1)/M

)

9

Calculate variance:

M
% = VM =12, Q) - 3
=

M
o2, = /(M - ”,Zf‘f’(y’f’ -4,
=

T

Calculate the contribution of sensor location
M
o2 = 1/(M-1)2 (Qxi) - 4,)?

™M= T

a2, = 1/(M-1)3 Q) -§,)?

1

J

Calculate covariance:

No

FIGURE 5: Overview of the diagram to generate the characteristics
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of the two random variables.
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F1GURE 6: The influence of AWGN to the sensors located at optimal
positions 1 and 3.
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Qs = [, 4@ (100) A A ) . . .
43 593 5> 45 ]. The mean of Q; and Q3 was cal Variance of the coefficient for each optimal sensor
culated by using the formulae 3 ' ' ' ' '
NN Ay SN d =
E(Ql) - 100 =4qp E(Q3) - 100 =453 (21)

the variances of Q; and Q; were calculated as follows:

100
AY 2 /\(]) 7
Var(Ql) - O‘ql - 100 JZ )
o (22)
Var(0:) = o2 = q
ar(Qs) = o2, = - z

We used the following formula for their covariance: 77,; =

\/Z 100 A( qu)/\/z 100(q1 ) ZIOO(A(]) ]

The contrlbutlon of each linear receiver, ¢;, 1 < i < 6
to the total signal-to-noise ratio in the system of M sensors
can be calculated individually as a proportion of the mea-
surement data variation. With the values of the variances, the
coefficients q; and g3 1in (3) or in (8) are calculated using the
formulae q; = oA /(aA + aA ) and g3 = 0 /(0 + 0 L), Te-
spectively. Their Varlances are obtained for varymg Values of
a in the interval 0 < a < 3, and are plotted in Figures 6(a)
and 6(b).

It is verified in this simulation that for these coefficients
the sum of variances at these locations is always constant. As
the noise level increases, their values increase or decrease to-
ward their asymptotic values, 0.34632 and 0.65368, respec-
tively. It is useful to analyze the correlation coefficient for
these two optimal locations for 0 < & < 3. For a small num-
ber of generated samples, the correlation coefficient is not
zero (0.0188), as can be observed from Figure 6(c). However,
we should expect, in general, the measurements to be statis-
tically independent.

The influence of the noise AWGN for all N = 6 sen-
sors in the optimal placement of Section 6.1 is represented
in Figure 7. If the level of noise increases, then the values of
sensor readings are affected in the same way. However, for the
sensor placed at location 30, the value of the sensor reading
is not affected, as this sensor is far away from the others. Ac-
cording to [14] this sensor is oversized and is the most robust
to noise interference.

In Figure 8, we varied the number of sensors and con-
sidered the same characteristics of the noise. We noticed that
more sensors provided more information, and the proposed
method seems to gain robustness with the number of sen-
sors. By increasing the number of sensors, which are opti-
mally distributed, the readings in the presence of the noise
are more robust (stronger signal) and the effect of random
noise may be suppressed more effectively.

7. CONCLUSIONS

In this paper, we analyzed the problem of optimal placement
of sensors in the presence of AWGN considering the sensor as
a system having full communication capabilities and using
minimum interference algorithms. We used a Gram matrix

FIGURE 7: Variation of the sensor readings in the presence of AWGN.
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FiGure 8: Influence of the noise on different number of sensors op-
timally distributed.

approach for the sensitivity analysis and our simulations val-
idated the mathematical formulation. The proposed method
is robust, and the influence of noise is minimized as the num-
ber of sensors increases.

The optimization problem presented in this paper was
solved considering the same requirement in terms of signal-
to-interference ratio for each sensor. We provided detailed
numerical examples to support our mathematical formula-
tion. Our future research will focus on the extension of our
results to different classes of sensors having the same signal-
to-interference ratio and in the presence of colored noise.
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