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We conduct a code search restricted to the recently introduced class of generalized punctured convolutional codes (GPCCs) to
find good unequal error protection (UEP) convolutional codes for a prescribed minimal trellis complexity. The trellis complexity
is taken to be the number of symbols per information bit in the “minimal” trellis module for the code. The GPCC class has been
shown to possess codes with good distance properties under this decoding complexity measure. New good UEP convolutional
codes and their respective effective free distances are tabulated for a variety of code rates and “minimal” trellis complexities. These
codes can be used in several applications that require different levels of protection for their bits, such as the hierarchical digital
transmission of video or images.
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1. INTRODUCTION

In several applications of digital transmission (e.g., video
[1], images [2], voice [3], and data [4]), the importance
of different bits in the input sequence of the channel
encoder often varies and certain blocks of this sequence
need higher protection level than other blocks, when this
sequence is transmitted through a noisy channel. An error-
correcting code which provides a selective level of protection
to the information bits possesses a property called unequal
error protection (UEP). UEP can be obtained either by
using separate coding schemes with distinct error-correction
capability for each level of protection or by using a single
code with UEP capability. The latter case can be achieved
by block [5–7], convolutional [8–11], coded modulation
schemes [12, 13], turbo [14], or LDPC [15] codes.

The convolutional codes of rate R = k/n with UEP capa-
bilities considered in the literature [8–11] are represented
by their conventional trellis module, denoted by Mconv. This
module consists of one trellis section with 2ν initial states and
2ν final states; each initial state is connected by 2k directed
edges to final states, and each edge is labeled with n bits. In

general, a trellis module M for an (n, k) convolutional code
C consists of n′ trellis sections, 2νt states at depth t, 2bt edges
emanating from each state at depth t, and lt bits labeling each
edge from depth t to depth t + 1, for 0 ≤ t ≤ n′ − 1. The
semi-infinite trellis used by the Viterbi algorithm to decode
C consists of a concatenation of infinitely many copies of the
trellis modules M. The trellis complexity of the module M
for the code C, denoted by TC(M), is defined as [16]

TC(M) = 1
k

n
′−1∑

t=0

lt2νt+bt (1)

symbols per bit. In particular, TC(Mconv) = (n/k)2ν+k

symbols per bit.
The “minimal” trellis module, M̃, for convolutional

codes was developed in [16, 17]. This “minimal” structure
has n sections and lt = 1 bit per branch for all t. The state
complexity νt and the branch complexity bt at depth t will

be denoted by ν̃t and b̃t, respectively. The state and the
branch complexity profiles of the “minimal” trellis module

are denoted by ν̃ = (ν̃0, . . . , ν̃n−1) and b̃ = (b̃0, . . . , b̃n−1),
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respectively. It has been shown in those references that for
many convolutional codes the trellis complexity TC(M̃) of
the “minimal” trellis module is considerably smaller than
the trellis complexity TC(Mconv) of the conventional trellis
module.

Recently, there has been a noticeable interest in the
search of convolutional codes with fixed TC(M̃) [18–21],
as opposed to specifying a complexity measure usually
associated to the conventional trellis module (e.g., the
encoder memory). Such interest is motivated by the reduced
trellis complexity of the “minimal” trellis module. For this
purpose, a class of convolutional codes called generalized
punctured convolutional codes (GPCCs) has been proposed in
[19], and further code search results have been tabulated in
[21]. The way GPCCs are described by a “matrix module”
facilitates the code search procedure under the “minimal”
trellis complexity. It should be mentioned that none of the
codes in [19, 21] has been designed to have the UEP property.

In this work, we are interested in the behavior of the
UEP capability of convolutional codes under a “minimal”
trellis complexity measure. For that sake, we carry out a code
search to obtain good GPCCs with the UEP property for
a given “minimal” trellis complexity TC(M̃). The standard
methodology, as, for example, in [9], consists of listing good
codes with the UEP property for a given memory order.
The general idea is to have convolutional codes, of differ-
ent code rates, with different “minimal” (decoding) trellis
complexities and different dispositions of error protection
levels among the information bits to serve a wide range of
applications.

The remainder of this paper is organized as follows.
In Section 2, we present some notations and give some
definitions towards the UEP property of convolutional codes.
Also, the class of GPCCs is briefly described. In Section 3,
we describe the search procedure for good GPCCs with the
UEP property and having TC(M̃) as the decoding trellis
complexity. Tables containing good GPCCs with different
code rates, trellis complexities, and UEP profiles are given.
Finally, Section 4 concludes the paper.

2. PRELIMINARIES

Consider a binary (n, k) convolutional code represented
by a trellis module M (or by a trellis constructed from
M), with k ≥ 2. At time instant t, exactly k information
bits xt = x0

t · · · xk−1
t are absorbed by the encoder and

the output sequence yt = y0
t · · · yn−1

t with n bits is
generated. The transmitted codeword is y = y0y1y2, . . .
when the information sequence x = x0x1x2, . . . is fed into
the convolutional encoder. Given an initial state in the
trellis obtained from a trellis module M, each possible input
sequence gives rise to a unique path (sequence of states) in
the trellis which is associated to a codeword.

Let S be the set of all paths in the trellis that diverge from
the all-zero path (leave the state 0), at a fixed time instant t,
say t = 0, and remerge into the all-zero path exactly once at
some time later. Each path in S constitutes an error event.
Given a path σ in S, we denote by wH(σ) the Hamming

weight of the codeword corresponding to this path. Let xi =
xi0x

i
1x

i
2, . . . be a sequence of information symbols at the ith

position of xt, for t = 0, 1, 2, . . . . The UEP capability of
a convolutional encoder is measured by the effective free
distance vector [8, 9] of length k (the number of possible
UEP protection levels).

Definition 1. Let S(i) be a subset of S formed by paths
induced by information sequences such that xi is a nonzero
sequence. The effective free distance vector, denoted by deff,
of a convolutional encoder with trellis module M is

deff =
(
d0,d1, . . . ,dk−1

)
, (2)

where the ith effective free distance di is

di = min
σ∈S(i)

wH(σ). (3)

Clearly, the free Hamming distance of the convolutional
code, namely dfree, is equal to the least entry of the vector
deff. This vector depends on the mapping between the
information sequences and the codewords and, therefore,
is related to the encoder. An encoder is said to possess an
equal error protection (EEP) capability if all entries of deff

are equal.

An (n, k) GPCC [19] is a periodically time-varying
convolutional code of period n defined by the “matrix
module” (defined in [16, equation (2.4)]) (only the nonzero
rows are shown):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0
ν̂0

... g
p−1
ν̂p−1

g0
1

. . .
... g

p
ν̂p

g
p+1
ν̂p+1

g0
0 g

p−1
1

...
... gn−1

ν̂n−1

g
p−1
0 g

p
1 g

p+1
1

. . .
...

g
p
0 = 0 g

p+1
0 gn−1

1

gn−1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where gti are the binary generator scalars of the GPCC, for
the phase index t = 0, 1, . . . ,n − 1 and for i = 0, 1, . . . , ν̂t,
with ν̂t being the memory order at phase t. Shown in (4)
is a phase p which carries no information (g

p
0 = 0). There

are exactly n − k such phases in the “matrix module” of a
GPCC. This, and some other restrictions, which apply to
ν̂t, must be imposed in order for the convolutional code to
be a GPCC [19]. As shown in [19], we can easily fix the
value of certain generator scalars in (4) in such a way that
the positions of the leading and trailing 1’s in each row of
the so-called scalar generator matrix [16], denoted by Gscalar,
yield naturally to the minimal-span form [16]. This allows
the predetermination of the value of TC(M̃) for an ensemble
of GPCCs. For further details on the GPCC class refer to [19].
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Table 1: Good convolutional codes of rate 2/3 and their effective
free distances.

TC(M̃) dfree deff b̃ ν̃ G(D)

10
2 2, 4 (1, 0, 1) (2, 2, 2) [1 1 3; 2 0 1]

3 3, 3 (1, 1, 0) (2, 2, 2) [3 1 0; 0 3 1]

20
2 2, 5 (1, 1, 0) (3, 3, 3) [1 2 0; 4 3 3]

4 4, 4 (1, 1, 0) (3, 3, 3) [3 2 1; 4 3 2]

32
2 2, 6 (1, 1, 0) (3, 4, 4) [1 0 2; 6 7 1]

4 4, 5 (1, 1, 0) (3, 4, 4) [1 2 3; 4 5 3]

40
4 4, 6 (1, 1, 0) (4, 4, 4) [5 1 2; 2 7 3]

5 5, 5 (1, 1, 0) (4, 4, 4) [7 3 2; 4 7 1]

3. CODE SEARCH RESULTS

We conduct a refined code search within the class of GPCCs
to obtain good convolutional codes with the UEP property
for a prescribed “minimal” trellis complexity TC(M̃). The

state complexity ν̃t and branch complexity b̃t of the “mini-
mal” trellis module are calculated from the “matrix module”
(or actually the scalar generator matrix) of the code in the
minimal-span form, following the procedure described in
[16]. Then TC(M̃) is obtained from (1), with lt = 1 for
all t. For a given code rate and TC(M̃), we provide distinct
configurations of deff satisfying the UEP property. As an
example, to illustrate the code search conducted in this work,
consider the (4, 3) GPCC with matrix module defined by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 1 0

1 1 0 1

0 1 0 0

0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where only the nonzero rows are shown. The underlined
(leading) and the overlined (trailing) 1’s in (5) are, respec-
tively, the first nonzero entry and last nonzero entry in each
row of Gscalar, which for this code is given by

Gscalar =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 1 0 1 1 0

1 1 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 1 0 1 1 0

1 1 0 1

0 1 0 0
. . .

0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Notice that no column in (6) contains more than one leading
1’s or more than one underlined 1’s, thus this matrix has
the LR property, which is equivalent to being in the minimal
span-form [22, Theorem 6.11].
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Figure 1: Simulated BER of each input bit versus Eb/N0 over the
AWGN channel for the (4, 3) GPCC with deff = (2, 3, 4). The average
BER curve is also shown.
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Figure 2: Minimum trellis module for the (4, 3) GPCC with deff =
(2, 3, 4). The solid edges represent “0” codeword bits and the dashed
edges represent “1” codeword bits.

According to the positions of the leading and trailing
1’s, the “minimal” trellis module of this GPCC has state
and branch complexity profiles given by ν̃ = (2, 2, 3, 3) and

b̃ = (1, 1, 1, 0), respectively, and trellis complexity TC(M̃) =
13.33 symbols per bit. The trellis module for this GPCC,
constructed according to the rules introduced in [22], is
shown in Figure 2. The effective free distance vector of this
code is deff = (2, 3, 4), therefore presenting the UEP property.
In order to measure the bit-error rate (BER) corresponding
to a particular encoder input, we simulated this code over the
AWGN channel with one-sided noise power spectral density
N0, considering BPSK modulation with transmitted energy
per information bit Eb and soft decision decoding using
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Table 2: Good convolutional codes of rate 2/5 and their effective free distances.

TC(M̃) dfree deff b̃ ν̃ G(D)

14
4 4, 6 (1, 0, 1, 0, 0) (2, 2, 2, 2, 2) [3 1 0 1 0; 2 2 3 1 1]

5 5, 5 (1, 0, 1, 0, 0) (2, 2, 2, 2, 2) [3 1 1 1 0; 0 2 3 1 1]

28
6 6, 8 (1, 0, 1, 0, 0) (3, 3, 3, 3, 3) [3 3 2 1 0; 4 2 3 3 3]

7 7, 7 (1, 0, 1, 0, 0) (3, 3, 3, 3, 3) [3 3 3 1 0; 4 2 1 3 3]

48
6 6, 9 (1, 0, 1, 0, 0) (3, 4, 4, 4, 4) [1 1 2 2 3; 4 6 5 3 3]

7 7, 8 (1, 0, 1, 0, 0) (3, 4, 4, 4, 4) [1 1 3 3 3; 4 6 5 1 3]

72
8 8, 10 (1, 0, 1, 0, 0) (4, 5, 4, 5, 4) [7 6 6 7 0; 4 6 1 3 3]

9 9, 9 (1, 0, 1, 0, 0) (4, 5, 4, 5, 4) [5 7 5 7 0; 6 4 3 3 3]

Table 3: Good convolutional codes of rate 3/4 and their effective free distances.

TC(M̃) dfree deff b̃ ν̃ G(D)

9.33
2 2, 2, 4 (1, 1, 1, 0) (2, 2, 2, 2) [1 0 1 0; 2 1 0 0; 2 2 1 1]

2 2, 3, 3 (1, 1, 1, 0) (2, 2, 2, 2) [1 0 1 0; 2 1 1 0; 0 2 1 1]

13.33
2 2, 3, 4 (1, 1, 1, 0) (2, 2, 3, 3) [1 1 0 1; 2 1 0 0; 0 2 3 1]

3 3, 3, 3 (1, 1, 1, 0) (2, 2, 3, 3) [1 1 0 1; 2 1 1 0; 0 0 3 1]

37.33
2 2, 4, 5 (1, 1, 1, 0) (4, 4, 4, 4) [1 3 0 1; 0 1 2 0; 4 0 3 3]

3 3, 3, 5 (1, 1, 1, 0) (4, 4, 4, 4) [3 3 1 0; 0 1 3 0; 4 2 3 3]

4 4, 4, 4 (1, 1, 1, 0) (4, 4, 4, 4) [1 3 1 0; 0 3 2 1; 6 2 1 3]

42.67
2 2, 5, 5 (1, 1, 1, 0) (4, 4, 4, 5) [1 2 0 0; 0 3 2 3; 6 0 3 1]

4 4, 4, 5 (1, 1, 1, 0) (4, 4, 4, 5) [3 2 0 1; 0 3 3 2; 4 0 1 3]

the Viterbi algorithm. Figure 1 shows the BER versus Eb/N0

associated with each one of the three encoder inputs as well
as the average BER. From the figure, we can see that the
three inputs present quite different error protection levels.
The input with effective free distance d2 = 4 requires an
Eb/N0 of around 6 dB to achieve a BER of 10−5, which is
almost 1 dB better than the performance of the input with
effective free distance d1 = 3. By its turn, this input with
d1 = 3 performs around 1.5 dB better than the input with
effective free distance d0 = 2, at the same BER level.

By keeping fixed the underlined and overlined 1’s in (5)
or (6) we maintain the same TC(M̃), even if we vary the
other row elements between these underlined and overlined
1’s. By doing so, then we can search through this template
(which is defined by the fixed positions of the underlined
and overlined 1’s) for new GPCCs with the same TC(M̃).
Now consider the best (4, 3) GPCC in terms of dfree for the
template in (6) or (5) with TC(M̃) = 13.33 symbols per
bit. This code has deff = (3, 3, 3). For such an EEP code,
the error performances for the three inputs are very similar,
requiring an Eb/N0 of around 7 dB for achieving a BER of
10−5. Therefore, the proposed GPCC with the UEP property
can be directly applied to hierarchical sources not only with
the same complexity cost but also without requiring any
modifications in the topology of the “minimal” trellis used
for decoding, increasing the implementation flexibility.

Similar results can be obtained for different code rates
and trellis complexities. In Tables 1, 2, 3, 4, 5, a refined list of
good GPCCs, and their respective effective distances deff, is
shown for different code rates and different values of TC(M̃).
The codes are specified by the polynomial generator matrix

G(D), which is given in octal form, where the highest power
in D is in the most significant bit of the representation (e.g.,
6 ≡ D + D2). Note that some of the codes in the tables are
EEP codes, since in our search procedure we did not restrict
ourselves to UEP codes. So, when an EEP code is listed in a
table, it means that no GPCC with the UEP property could
be found for that dfree and that TC(M̃). From the analysis of
the results listed in the tables we can make some remarks.
First, consider the two codes with TC(M̃) = 10 symbols per
bit listed in Table 1. The second code in the table is an EEP
code with deff = (3, 3), while the first one has deff = (2, 4).
Therefore, in going from the second code to the first code, the
effective free distance d0 is decreased while d1 is improved.
In other words, the overall dfree had to be reduced in this
case to produce an UEP code with the same TC(M̃). We
can find many of these examples in the tables. However,
doubling the “minimal” trellis complexity to TC(M̃) = 20
symbols per bit in this case may either increase further the
protection of the second input bit or increase the overall dfree

with an EEP code. As far as the protection of the second bit
is concerned, in going from the code with deff = (2, 4) to
the code with deff = (2, 5), thus doubling TC(M̃), yields an
Eb/N0 improvement of 0.7 dB at a BER of 10−5 (simulation
not shown).

The comparison of a code with the UEP property with
another one having the EEP property with the same TC(M̃)
can be done for other rates as well. There are cases where the
adoption of the UEP code yields a significant reduction of
some of the effective free distances. For example, the case of
TC(M̃) = 56 symbols per bit in Table 5. The first code has
deff = (2, 2, 2, 5), while the second code has deff = (4, 4, 4, 4).
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Table 4: Good convolutional codes of rate 3/5 and their effective free distances.

TC(M̃) dfree deff b̃ ν̃ G(D)

10.67
2 2, 4, 4 (1, 0, 1, 0, 1) (2, 2, 2, 2, 2) [1 1 0 0 0; 2 0 1 1 1; 0 2 0 2 3]

3 3, 3, 4 (1, 0, 1, 0, 1) (2, 2, 2, 2, 2) [1 1 1 0 0; 2 0 1 1 0; 2 0 0 2 3]

24.00
3 3, 6, 3 (1, 1, 0, 1, 0) (3, 3, 4, 3, 3) [3 0 0 0 1; 2 3 3 1 0; 2 0 0 3 1]

4 4, 5, 5 (1, 1, 0, 1, 0) (3, 3, 4, 3, 3) [3 1 0 1 1; 0 3 3 0 1; 0 0 2 3 1]

37.33
4 4, 6, 6 (1, 1, 0, 1, 0) (4, 4, 4, 3, 4) [3 2 1 1 1; 0 3 1 2 3; 0 0 2 3 1]

5 5, 5, 5 (1, 1, 0, 1, 0) (4, 4, 4, 3, 4) [3 3 0 1 0; 0 1 3 3 2; 2 0 2 3 1]

48.00
4 4, 4, 7 (1, 1, 0, 1, 0) (4, 4, 5, 4, 4) [1 2 2 1 0; 0 1 1 2 1; 6 0 2 3 3]

6 6, 6, 6 (1, 1, 0, 1, 0) (4, 4, 5, 4, 4) [1 3 2 1 1; 2 1 3 3 0; 6 2 2 3 3]

Table 5: Good convolutional codes of rate 4/5 and their effective free distances.

TC(M̃) dfree deff b̃ ν̃ G(D)

14
2 2, 3, 3, 3 (1, 1, 1, 1, 0) (2, 2, 3, 3, 3) [1 0 0 1 0; 0 1 0 1 1; 2 0 1 0 1; 0 2 2 1 1]

2 2, 2, 2, 4 (1, 1, 1, 1, 0) (2, 2, 3, 3, 3) [1 0 0 1 0; 0 1 0 0 1; 2 0 1 0 0; 2 2 2 1 1]

18
2 2, 2, 4, 4 (1, 1, 1, 1, 0) (3, 3, 3, 3, 3) [1 0 0 1 0; 2 1 0 1 1; 0 2 1 0 0; 0 2 2 1 1]

3 3, 3, 3, 3 (1, 1, 1, 1, 0) (3,3,3,3,3) [1 0 1 1 0; 2 1 0 0 1; 2 2 1 0 0; 0 0 2 1 1]

24
2 2, 4, 4, 4 (1, 1, 1, 1, 0) (3, 3, 3, 4, 4) [1 1 1 0 1; 2 1 0 0 0; 0 2 1 1 1; 0 0 2 3 1]

3 3, 3, 3, 4 (1, 1, 1, 1, 0) (3, 3, 3, 4, 4) [1 1 1 0 1; 2 1 0 1 0; 2 2 1 1 0; 2 0 2 3 1]

56
2 2, 2, 2, 5 (1, 1, 1, 1, 0) (4, 4, 5, 5, 5) [3 0 1 1 0; 0 3 3 1 1; 2 0 3 2 1; 0 0 2 3 3]

4 4, 4, 4, 4 (1, 1, 1, 1, 0) (4, 4, 5, 5, 5) [3 1 0 1 0; 0 3 2 0 1; 0 0 3 2 1; 2 2 0 3 3]

Thus, in going from the second code to the first code three of
the input bits had their effective free distances decreased by
two in order to have the effective free distance of the fourth
input bit increase by only one. On the other hand, we can
also find examples where most of the effective free distances
are improved, as is the case in going from the code with deff =
(5, 5, 5) to the code with deff = (4, 6, 6), both with TC(M̃) =
37.33 symbols per bit, in Table 4.

It is also possible to improve the error protection of one
input bit without sacrificing the error protection of the other
input bit by increasing TC(M̃). This is the case in going from
the code with deff = (4, 5) to the code with deff = (4, 6)
in Table 1. Anyhow, the UEP requirements of the particular
application will tell which code is more appropriate. For
example, the two codes with TC(M̃) = 14 symbols per
bit and the same dfree in Table 5 have quite different error
protection profiles.

When considering the minimal trellis complexity TC(M̃)
in the search criterion several codes which are not listed
in the literature can be found. That is because when
considering the typical encoder memory order criterion the
leaps between available decoding complexity values are very
large (the complexity doubles for each additional memory
in the encoder). The TC(M̃)-based criterion allows for an
increased granularity in the list of decoding complexity
values, as can be seen in Tables 1–5 in the manuscript.
Therefore, the proposed criterion and the resultant UEP
codes give a much larger flexibility for the system designer.

Finally, it is important to mention that deff in this paper
has been obtained from the conventional, time-invariant
trellis of the convolutional codes. It is easy to see that if
the conventional trellis is obtained from the same “matrix

module” in (4) (in the minimal-span form) used to obtain
the “minimal” trellis, then the mapping from information
bits to coded bits inferred from the edge labeling in the
“minimal” trellis module (see [16]) is the same as the one in
the conventional trellis of the convolutional code. Therefore,
deff can be obtained from the conventional trellis, avoiding
the explicit construction of the “minimal” trellis module.

4. CONCLUSIONS

This paper has considered the problem of providing unequal
error protection to a binary data stream transmitted over
a noisy channel via a single error-correcting code with low
decoding complexity. It thus embraces a number of impor-
tant applications that require different levels of protection for
their bits. For this purpose, we have proposed the recently
introduced class of generalized punctured convolutional
codes and we have taken McEliece and Lin’s [16] decoding
complexity measure, namely, the number of symbols per
information bit in the “minimal” trellis module for the
code. A code search has been conducted and new good
convolutional codes endowed with unequal error protection
have been tabulated for a variety of code rates and “minimal”
trellis complexities. It is seen through computer simulations
that the Eb/N0 required to achive a bit-error rate of 10−5 with
a simple rate 3/4 convolutional code can differ in as much as
2 dB, depending on which of the three encoder inputs we are
referring to, and the most protected encoder input requires
about 1.5 dB lesser Eb/N0 than what is required to achieve
the same bit-error rate averaging over all encoder inputs.
This example gives an idea of the unequal error protection
capability of the new codes. The low decoding complexity,
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resulting from the adoption of the “minimal” trellis for the
code, makes these codes attractive for practical applications.
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