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Head pose estimation has been an integral problem in the study of face recognition systems and human-computer interfaces, as
part of biometric applications. A fine estimate of the head pose angle is necessary and useful for several face analysis applications.
To determine the head pose, face images with varying pose angles can be considered to be lying on a smooth low-dimensional
manifold in high-dimensional image feature space. However, when there are face images of multiple individuals with varying pose
angles, manifold learning techniques often do not give accurate results. In this work, we propose a framework for a supervised
form of manifold learning called Biased Manifold Embedding to obtain improved performance in head pose angle estimation. This
framework goes beyond pose estimation, and can be applied to all regression applications. This framework, although formulated
for a regression scenario, unifies other supervised approaches to manifold learning that have been proposed so far. Detailed studies
of the proposed method are carried out on the FacePix database, which contains 181 face images each of 30 individuals with pose
angle variations at a granularity of 1◦. Since biometric applications in the real world may not contain this level of granularity in
training data, an analysis of the methodology is performed on sparsely sampled data to validate its effectiveness. We obtained up
to 2◦ average pose angle estimation error in the results from our experiments, which matched the best results obtained for head
pose estimation using related approaches.

Copyright © 2008 Vineeth Nallure Balasubramanian et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION ANDMOTIVATION

Head pose estimation has been studied as an integral part
of biometrics and surveillance systems for many years, with
its applications to 3D face modeling, gaze direction detec-
tion, and pose-invariant person identification from face im-
ages. With the growing need for robust applications, face-
based biometric systems require the ability to handle signifi-
cant head pose variations. In addition to being a component
of face recognition systems, it is important to determine the
head pose angle from a face image, independent of the iden-
tity of the individual, especially in applications of 3D face
recognition. While coarse pose angle estimation from face
images has been reasonably successful in recent years [1], ac-
curate person-independent head pose estimation from face
images is a more difficult problem, and continues to elicit ef-
fective solutions.

There have been many approaches adopted to solve the
pose estimation problem in recent years. A broad subjec-

tive classification of these techniques with pointers to sample
work [2–5] is summarized in Table 1. As Table 1 points out,
shape-based geometric and appearance-based methods have
been the most popular approaches for many years. However,
recent work has established that face images with varying
poses can be assumed to lie on a smooth low-dimensional
manifold, and this has opened up efforts to approach the
problem from the perspectives of non-linear dimensionality
reduction.

The computation of low-dimensional representations of
high-dimensional observations like images is a problem that
is common across various fields of science and engineer-
ing. Techniques like principal component analysis (PCA)
are categorized as linear dimensionality reduction tech-
niques, and are often applied to obtain the low-dimensional
representation. Other dimensionality reduction techniques
like multidimensional scaling (MDS) use the dissimilarities
(generally Euclidean distances) between data points in the
high-dimensional space to capture the relationships between
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Table 1: Classification of methods for pose estimation.

Shape-based geometric methods

[6]

[7]

[5]

[8]

[9]

Model-based methods

[10]

[11]

[12]

[1]

Appearance-based methods

[13]

[14]

[15]

[16]

[17]

[18]

Template matching methods
[19]

[20]

Dimensionality-reduction-based approaches

[4]

[21]

[22]

[23]

[24]

[3]

[2]

them. In recent years, a new group of non-linear approaches
to dimensionality reduction have emerged, which assume
that data points are embedded on a low-dimensional mani-
fold in the ambient high-dimensional space. These have been
grouped under the term “manifold learning,” and some of
the most often used manifold learning techniques in the last
few years include Isomap [25], Locally Linear Embedding
(LLE) [26], Laplacian eigenmaps [27], Local Tangent Space
Alignment [28]. The interested reader can refer to [29] for a
review of dimensionality reduction techniques.

In this work, different poses of the head, although cap-
tured in high-dimensional image feature spaces, are visual-
ized as data points on a low-dimensional manifold embed-
ded in the high-dimensional space [2, 4]. The dimensionality
of the manifold is said to be equal to the number of degrees of
freedom in the movement during data capture. For example,
images of the human face with different angles of pose rota-
tion (yaw, tilt and roll) can intrinsically be conceptualized as
a 3D manifold embedded in image feature space.

In this work, we consider face images with pose angle
views ranging from −90◦ to +90◦ from the FacePix database
(detailed in Section 4.1), with only yaw variations. Figure 1
shows the 2-dimensional embeddings of face images with
varying pose angles from FacePix database obtained with
three different manifold learning techniques—Isomap, Lo-
cally Linear Embedding (LLE), and Laplacian eigenmaps. On
close observation, one can notice that the face images are or-
dered by the pose angle. In all of the embeddings, the frontal
view appears in the center of the trajectory, while views from

the right and left profiles flank the frontal view, ordered by
increasing pose angles. This ability to arrange face images by
pose angle (which is the only changing parameter) during
the process of dimensionality reduction explains the reason
for the increased interest in applying manifold learning tech-
niques to the problem of head pose estimation.

While face images of a single individual with varying
poses lie on a manifold, the introduction of multiple individ-
uals in the dataset of face images has the potential to make the
manifold topologically unstable (see [2]). Figure 1 illustrates
this point to an extent. Although the face images form an
ordering by pose angle in the embeddings, face images from
different individuals tend to form a clutter. While coarse pose
angle estimation may work to a certain acceptable degree of
error with these embeddings, accurate pose angle estimation
requires more than what is available with these embeddings.

To obtain low-dimensional embeddings of face images
ordered by pose angle independent of the number of individ-
uals, we propose a supervised framework to manifold learn-
ing. The intuition behind this approach is that while im-
age feature vectors may sometimes not abide by the intrin-
sic geometry underlying the objects of interest (in this case,
faces), pose label information from the training data can help
align face images on the manifold better, since the manifold
is characterized by the degrees of freedom expressed by the
head pose angle.

A more detailed analysis of the motivations for this work
is captured in Figure 2. Fifty random face images were picked
from the FacePix database. For each of these images, the local
neighborhood based on the Euclidean distance was studied.
The identity and the pose angle of k (=10) nearest neighbors
was noted down. The average values of these readings are
presented in Figure 2. It is evident from this figure that for
most images, the nearest neighbors are dominated by other
face images of the same person, rather than other face images
with the same pose angle. Since manifold learning techniques
are dependent on the choice of the local neighborhood of a
data point for the final embedding, it is likely that this obser-
vation would distort the alignment of the manifold enough
to make fine pose angle estimation difficult.

Having stated the motivation behind this work, the broad
objectives of this work are to contribute to pattern recogni-
tion in biometrics by establishing a supervised form of man-
ifold learning as a solution to accurate person-independent
head pose angle estimation. These objectives are validated
with experiments to show that the proposed supervised
framework, called the Biased Manifold Embedding, provides
superior results for accurate pose angle estimation over tra-
ditional linear (principal component analysis, e.g.) or non-
linear (regular manifold learning techniques) dimensionality
reduction techniques, which are often used in face analysis
applications.

The contributions of this work lie in the proposition,
validation and analysis of the Biased Manifold Embedding
(BME) framework as a supervised approach to manifold-
based dimensionality reduction with application to head
pose estimation. This framework, although primarily for-
mulated for a regression scenario, unifies other supervised
approaches to manifold learning that have been proposed
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Figure 1: Embedding of face images with varying poses onto 2 di-
mensions.
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(a) Analysis of the identity of the nearest neighbors. A 0.9 value for
average closest person being the same indicates that 9 out of 10 images
had the person himself/herself as the corresponding kth neighbor by
Euclidean distance
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(b) Analysis of the pose angle of the nearest neighbors

Figure 2: Analysis of the k (= 10) nearest neighbors (by Euclidean
distance) of a face image in high-dimensional feature space. It is ev-
ident and intuitive that face images in the high-dimensional image
feature space tend to have the face images of the same person as the
closest neighbors. Since manifold learning methods are dependent
on local neighborhoods for the entire construction; this could af-
fect fine estimation of head pose angle. The more the number of
individuals is, the worse the clutter becomes.

so far. The application of the framework to the problem of
head pose estimation has been studied using images from the
FacePix database, which contains face images with a gran-
ularity of 1◦ variations in pose angle. Both global and lo-
cal approaches to manifold learning have been considered in
the experimentation. Since it is difficult to obtain this level
of granularity of pose angle in training data with biometric
applications in the real world, the proposed framework has
been evaluated with sparsely sampled data from the FacePix
database. Considering that manifold learning methods are
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Figure 3: The data capture setup for FacePix.

known to fail with sparsely sampled data [29, 30], these ex-
periments also serve to evaluate the effectiveness of the pro-
posed supervised framework for such data.

While this framework was proposed in our recent work
[2] with initial results, the framework has been enhanced
to provide a unified view of other supervised approaches to
manifold learning in this work. A detailed analysis of the
motivations, modification of the framework to unify other
supervised approaches to manifold learning, the evaluation
of the framework on sparse data samples, and comparison
to other related approaches are novel contributions of this
work.

A review of related work on manifold learning, head
pose estimation, and other supervised approaches to man-
ifold learning is presented in Section 2. Section 3 details the
mathematical formulation of the Biased Manifold Embed-
ding framework from a regression perspective, and extends
it to classification problems. This section also discusses how
the proposed framework unifies other supervised approaches
to manifold learning. An overview of the FacePix database,
details of the experimentation and the hypotheses tested for,
and the corresponding results are presented in Section 4. Dis-
cussions and conclusions with pointers to future work follow
in Sections 5 and 6.

2. RELATEDWORK

A classification of different approaches to head pose estima-
tion was presented in Section 1. In this section, we discuss
approaches to pose estimation using manifold learning, that
are related to the proposed framework, and review their per-
formance and limitations. In addition, we also survey exist-
ing supervised approaches to manifold learning. So far, to the
best of the authors’ knowledge, these supervised techniques
have not been applied to the head pose estimation problem,
and hence, we limit our discussions to the main ideas in these
formulations.

2.1. Manifold learning and pose estimation

Since the advent of manifold learning techniques less than
a decade ago, a reasonable amount of work has been done
using manifold-based dimensionality reduction techniques

for head pose estimation. Chen et al. [22] considered multi-
view face images as lying on a manifold in high-dimensional
feature space. They compared the effectiveness of kernel dis-
criminant analysis against support vector machines in learn-
ing the manifold gradient direction in the high-dimensional
feature space. The images in this work were synthesized from
a 3D scan. Also, the application was restricted to a binary
classifier with a small range of head pose angles between
−10◦ and +10◦.

Raytchev et al. [4] studied the effectiveness of Isomap for
head pose estimation against other view representation ap-
proaches like the Linear Subspace model and Locality Pre-
serving Projections (LPP). While their experiments showed
that Isomap performed better than the other two approaches,
the face images used in their experiments were sampled at
pose angle increments of 15◦. In the discussion, the authors
indicate that this dataset is insufficient to provide for exper-
iments with accurate pose estimation. The least pose angle
estimation error in all their experiments was 10.7◦, which is
rather high.

Hu et al. [24] developed a unified embedding approach
for person-independent pose estimation from image se-
quences, where the embedding obtained from Isomap for a
single individual was parametrically modeled as an ellipse.
The ellipses for different individuals were subsequently nor-
malized through scale, translation and rotation based trans-
formations to obtain a unified embedding. A Radial Basis
Function interpolation system was then used to obtain the
head pose angle. The authors obtained good results with the
datasets, but their approach relied on temporal continuity
and local linearity of the face images, and hence was intended
for image/video sequences.

In more recent work, Fu and Huang [3] presented an
appearance-based strategy for head pose estimation using a
supervised form of Graph Embedding, which internally used
the idea of Locally Linear Embedding (LLE). They obtained
a linearization of manifold learning techniques to treat out-
of-sample data points. They assumed a supervised approach
to local neighborhood-based embedding and obtained low
pose estimation errors; however, their perspective of super-
vised learning differs from how it is addressed in this work.

In the last few years of the application of manifold learn-
ing techniques, there have been limitations that have been
identified [29, 30]. While all these techniques capture the
geometry of the data points in the high-dimensional space,
the disadvantage of this family of techniques is the lack of a
projection matrix to embed out-of-sample data points after
the training phase. This makes the method more suited for
data visualization, rather than classification/regression prob-
lems. However, the advantage of these techniques to capture
the relative geometry of data points enthuses researchers to
adopt this methodology to solve problems like head pose es-
timation, where the data is known to possess geometric rela-
tionships in a high-dimensional space.

These techniques are known to depend on a dense sam-
pling of the data in the high-dimensional space. Also, Ge
et al. [31] noted that these techniques do not remove correla-
tion in high-dimensional spaces from their low-dimensional
representations. The few applications of these techniques
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Figure 4: Sample face images with varying pose and illumination from the FacePix database.

to pose estimation have not exposed the limitations yet—
however, from a statistical perspective, these generic limita-
tions intrinsically emphasise the requirement for the train-
ing data to be distributed densely across the surface of the
manifold. In real-world applications like pose estimation, it
is highly possible that the training data images may not meet
this requirement. This brings forth the need to develop tech-
niques that can work well with training data on sparsely sam-
pled manifolds too.

2.2. Supervisedmanifold learning

In the last few years, there have been efforts to formulate su-
pervised approaches to manifold learning. However, none of
these approaches have explicitly been used for head pose esti-
mation. In this section, we review the main ideas behind their
formulations, and discuss the major novelties in our work,
when compared to the existing approaches.

Ridder et al. [32] came up with one of the earliest super-
vised frameworks for manifold learning. Their framework
was centered around the idea of defining a new distance met-
ric for Locally Linear Embedding, which increased inter-class
distances and decreased intra-class distances. This modified
distance metric was used to compute the dissimilarity ma-
trix, before computing the adjacency graph which is used in
the dimensionality reduction process. Vlassis et al. [33] for-
mulated a supervised approach that was intended towards
identifying the intrinsic dimensionality of given data using
statistical methods, and using the computed dimensionality
for further analysis.

Li and Guo [34] proposed a supervised Isomap algo-
rithm, where a separate geodesic distance matrix is con-
structed for the training data from each class. Subsequently,
these class-specific geodesic distance matrices are merged
into a discriminative global distance matrix, which is used
for the multidimensionality scaling step. Vlachos et al. [35]
proposed the WeightedIso method, where the Euclidean dis-
tance between data samples is scaled with a constant factor
λ(<1) if the class labels of the samples are the same. Geng
et al. [36] extended the work from Vlachos et al. towards vi-
sualization applications, and proposed the S-isomap (super-
vised isomap), where the dissimilarity between two points is
defined differently from the regular geodesic distance. The

dissimilarity is defined in terms of an exponential factor of
the Euclidean distance, such that the intraclass distance never
exceeds 1, and the interclass distance never falls below 1− α,
where α is a parameter that can be tuned based on the appli-
cation.

Zhao et al. [37] proposed a supervised LLE (SLLE) algo-
rithm in the space of face images preprocessed using Inde-
pendent Component Analysis. Their SLLE algorithm con-
structs these neighborhood graphs with a strict constraint
imposed: only those points in the same cluster as the point
under consideration can be its neighbors. In other words, the
primary focus of the proposed SLLE is restricted to reveal and
preserve the neighborhood in a cluster scope.

The approaches to supervised manifold learning dis-
cussed above primarily consider the problem from a classifi-
cation/clustering perspective. In our work, we view the class
labels (pose labels) as possessing a distance metric by them-
selves, that is, we approach the problem from a regression
perspective. However, we also illustrate how it can be applied
to classification problems. In addition, we show how the pro-
posed framework unifies the existing approaches. The math-
ematical formulation of the proposed framework is discussed
in the next section.

3. BIASEDMANIFOLD EMBEDDING:
THEMATHEMATICAL FORMULATION

In this section, we discuss the mathematical formulation of
the Biased Manifold Embedding approach as applied in the
head pose estimation problem. In addition, we then illus-
trate how this framework unifies other existing supervised
approaches to manifold learning.

Manifold learning methods, as illustrated in Section 1,
align face images with varying poses by an ordering of the
pose angle in the low-dimensional embeddings. However,
the choice of image feature vectors, presence of image noise
and the introduction of the face images of different indi-
viduals in the training data can distort the geometry of the
manifold. To ensure the alignment, we propose the Biased
Manifold Embedding framework, so that face images whose
pose angles are closer to each other are maintained nearer to
each other in the low-dimensional embedding, and images
with farther pose angles are placed farther, irrespective of the
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(a) Face images with 5◦ pose angle intervals
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(b) Face images with 2◦ pose angle intervals

0 5 10 15 20

Isomap dimensionality

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
es

id
u

al
va

ri
an

ce

(c) Face images with 1◦ pose angle intervals

Figure 5: Plots of the residual variances computed after embedding
face images of 5 individuals using Isomap.

(a) Gray scale image (b) Laplacian of Gaussian (LoG)
tranformed image

Figure 6: Image feature spaces used for the experiments.

identity of the individual. In the proposed framework, the
distances between data points in the high-dimensional fea-
ture space are biased with distances between the pose angles
of corresponding images (and hence, the name). Since a dis-
tance metric can easily be defined on the pose angle values,
the problem of finding closeness of pose angles is straight-
forward.

We would like to modify the dissimilarity/distance matrix
between the set of all training data points with a factor of the
pose angle dissimilarities between the points. We define the
modified biased distance between a pair of data points to be
of the fundamental form:

˜D(i, j) = λ1 ×D(i, j) + λ2 × f
(

P(i, j)
)× g

(

D(i, j)
)

, (1)

where D(i, j) is the Euclidean distance between two data
points xi and xj , ˜D(i, j) is the modified biased distance,
P(i, j) is the pose distance between xi and xj , f is any func-
tion of the pose distance, g is any function of the original dis-
tance between the data samples, and λ1 and λ2 are constants.
While we defined this formulation after empirical evalua-
tions of several formulations for the dissimilarity matrix, we
found that this formulation, in fact, unifies other existing
supervised approaches to manifold learning that modify the
dissimilarity matrix.

In general, the function f could be picked from the fam-
ily of reciprocal functions ( f ∈ FR) based on an application.
In this work, we set λ1 = 0 and λ2 = 1 in (1), function g as
the constant function (= 1), and the function f as

f
(

P(i, j)
) = 1

max m,nP(m,n)− P(i, j)
. (2)

This function could be replaced by an inverse exponential
or quadratic function of the pose distance, for example. To
ensure that the biased distance values are well-separated for
different pose distances, we multiply this quantity by a func-
tion of the pose distance:

˜D(i, j) = α
(

P(i, j)
)

max m,nP(m,n)− P(i, j)
∗D(i, j), (3)

where the function α is directly proportional to the pose dis-
tance, P(i, j), and is defined in our work as

α
(

P(i, j)
) = β∗∣∣P(i, j)

∣

∣, (4)
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(b) LLE
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(c) Laplacian eigenmap

Figure 7: Pose estimation results of the BME framework against the traditional manifold learning technique with the gray scale pixel feature
space. The red line indicates the results with the BME framework.

where β is a constant of proportionality and allows paramet-
ric variation for performance tuning. In our current work,
we used the pose distance as the one-dimensional distance,
that is, P(i, j) = |Pi − Pj|, where Pk is the pose angle of xk.

In summary, the biased distance between a pair of points
can be given by

˜D(i, j) =

⎧

⎪

⎨

⎪

⎩

α
(

P(i, j)
)

max m,nP(m,n)− P(i, j)
∗D(i, j), P(i, j) �= 0,

0, P(i, j) = 0.
(5)

This biased distance matrix is used for Isomap, LLE
and Laplacian eigenmaps to obtain a pose-ordered low-

dimensional embedding. In case of Isomap, the geodesic dis-
tances are computed using this biased distance matrix. The
LLE and Laplacian eigenmaps algorithms are modified to use
these distance values to determine the neighborhood of each
data point. Since the proposed approach does not alter the al-
gorithms in any other way other than the computation of the
biased dissimilarity matrix, it can easily be extended to other
manifold-based dimensionality reduction techniques which
rely on the dissimilarity matrix.

In the proposed framework, the function P(i, j) is de-
fined in a straightforward manner for regression problems.
Further, the same framework can also be extended to clas-
sification problems, where there is an inherent ordering in
the class labels. An example of an application with such
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(b) LLE
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(c) Laplacian eigenmap

Figure 8: Pose estimation results of the BME framework against the traditional manifold learning technique with the Laplacian of Gaussian
(LoG) feature space. The red line indicates the results with the BME framework.

a problem is head pose classification. Sample class labels
could be “looking to the right,” “looking straight ahead,”
“looking to the left,” “looking to the far left,” and so on. The
ordering in these class labels can be used to define a distance
metric. For example, if the class labels are indexed by an or-
dering k = 1, 2, . . . ,n (where n is the number of class labels),
a simple expression for P(i, j) is

P(i, j) = γ × dist
(|i− j|), (6)

where i and j are the indices of the corresponding class labels
of the training data samples. The dist function could just be
the identity function, or could be modified depending on the
application.

3.1. A unified view of other supervised approaches

In the next few paragraphs, we discuss briefly how the ex-
isting supervised approaches to manifold learning are spe-
cial cases of the Biased Manifold Embedding framework. Al-
though this discussion is not directly relevant to the pose es-
timation problem, this shows the broader appeal of this idea.

Ridder et al. [32] proposed a supervised LLE approach,
where the distances between the samples are artificially in-
creased if the samples belonged to different classes. If the
samples are from the same class, the distances are left un-
changed. The modified distances are given by

Δ′ = Δ + α× max (Δ)Λ, α ∈ [0, 1]. (7)
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Going back to (1), we arrive at the formulation of Ridder
et al. by choosing λ1 = 1, λ2 = α × max (Δ), function
g(D(i, j)) = 1 for all i, j, and function f (P(i, j)) = Λ.

Li and Guo [34] proposed the SE-Isomap (Supervised
Isomap with Explicit Mapping), where the geodesic distance
matrix is constructed differently for intra-class samples, and
is retained as is for inter-class data samples. The final distance
matrix, called the discriminative global distance matrix G, is
of the form

G =
⎡

⎣

ρ1G11 G12

G21 ρ2G22

⎤

⎦ . (8)

Clearly, this representation very closely resembles the choice
of parameters we have chosen in our pose estimation work.
In (1), the formulation of Li and Guo would simply mean
choosing λ1 = 0, λ2 = 1, function f (P(i, j)) = 1, and func-
tion g(D(i, j)) can be defined as

g
(

D(i, j)
) =

{

D(i, j), P(i) �= P( j),

ρi ×D(i, j), P(i) = P( j).
(9)

The work of Vlachos et al. [35]—the WeightedIso method—
is exactly the same in principle as Li and Guo. For data sam-
ples belonging to the same class, the distance is scaled by
a factor 1/α, where α > 1; else, the distance is left undis-
turbed. This can be exactly formulated as discussed above
for Li and Guo. The work of Geng et al. [36] is based on the
WeightedIso method, and the authors extended the Weighte-
dIso method with a different dissimilarity matrix (which
would just mean a different definition for D(i, j) in the pro-
posed BME framework), and parameters to control the dis-
tance values.

Zhao et al. [37] formulated the S-LLE (supervised LLE)
method, where the distance between points that belonged to
different classes was set to infinity, that is, the neighbors of
a particular data point had to belong to the same class as
the point. Again, this would be rather straight-forward in the
BME framework, where the function g(D(i, j)) can be de-
fined as

g
(

D(i, j)
) =

{

∞, P(i) �= P( j),

D(i, j), P(i) = P( j).
(10)

Having formulated the Biased Manifold Embedding frame-
work, we discuss the experiments performed and the results
obtained in the next section.

4. BIASEDMANIFOLD EMBEDDING FOR HEAD POSE
ESTIMATION: EXPERIMENTATION AND RESULTS

4.1. The FacePix database

In this work, we have used the FacePix database [38] built
at the Center for Cognitive Ubiquitous Computing (CUbiC)
for our experiments and evaluation. Earlier work on face
analysis have used databases such as FERET, XM2VTS, the
CMU PIE Database, AT & T, Oulu Physics Database, Yale
Face Database, Yale B Database, and MIT Database for evalu-
ating the performance of algorithms. Some of these databases

provide face images with a wide variety of pose angles and
illumination angles. However, none of them use a precisely
calibrated mechanism for acquiring pose and illumination
angles. To achieve a precise measure of recognition robust-
ness, FacePix was compiled to contain face images with pose
and illumination angles annotated in 1 degree increments.
Figure 3 shows the apparatus that is used for capturing the
face images. A video camera and a spot light are mounted on
separate annular rings which rotate independently around a
subject seated in the center. Angle markings on the rings are
captured simultaneously with the face image in a video se-
quence, from which the required frames are extracted.

The FacePix database consists of three sets of face images:
one set with pose angle variations, and two sets with illumi-
nation angle variations. Each of these sets are composed of
a set of 181 face images (representing angles from −90◦ to
+90◦ at 1 degree increments) of 30 different subjects, with a
total of 5430 images. All the face images (elements) are 128
pixels wide and 128 pixels high. These images are normal-
ized, such that the eyes are centered on the 57th row of pixels
from the top, and the mouth is centered on the 87th row of
pixels. The pose angle images appear to rotate such that the
eyes, nose, and mouth features remain centered in each im-
age. Also, although the images are down sampled, they are
scaled as much horizontally as vertically, thus maintaining
their original aspect ratios. Figure 4 provides two examples
extracted from the database, showing pose angles and illu-
mination angles ranging from −90◦ to +90◦ in steps of 10◦.
For earlier work using images from this database, please refer
[38]. There is ongoing work on making this database publicly
available.

4.2. Finding the intrinsic dimensionality of
the face images

An important component of manifold learning applications
is the computation of the intrinsic dimensionality of the
dataset provided. Similar to how linear dimensionality re-
duction techniques like PCA use the measure of captured
variance to arrive at the number of dimensions, manifold
learning techniques are dependent on knowing the intrin-
sic dimensionality of the manifold embedded in the high-
dimensional feature space.

We performed a preliminary analysis of the dataset to
extract its intrinsic dimensionality, similar to what was per-
formed in [25]. Isomap was used to perform nonlinear di-
mensionality reduction on a set of face images from 5 indi-
viduals. Different pose intervals of the face images were se-
lected to vary the density of the data used for embedding.
The residual variances after computation of the embedding
are plotted in Figure 5. The subfigures illustrate that most
of the residual variance is captured in one dimension of the
embedding. This goes to prove that there is only one dom-
inant dimension in the dataset. As the pose intervals used
for the embedding becomes lesser, that is, the density of the
data becomes higher, this observation is even more clearly
noted. The data captured in the FacePix database have pose
variations only along one degree of freedom (the yaw), and
this result corroborates the fact that these face images could
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Table 2: Results of head pose estimation using principal component analysis and manifold learning techniques for dimensionality reduction,
in the gray scale pixel feature space.

Dimension of embedding
Error in pose estimation

PCA Isomap LLE Laplacian eigenmap

10 11.37◦ 12.61◦ 6.60◦ 7.72◦

20 9.90◦ 11.35◦ 6.04◦ 6.32◦

40 9.39◦ 10.98◦ 4.91◦ 5.08◦

50 8.76◦ 10.86◦ 4.37◦ 4.57◦

75 7.83◦ 10.67◦ 3.86◦ 4.17◦

100 7.27◦ 10.41◦ 3.27◦ 3.93◦

Table 3: Results of head pose estimation using principal component analysis and manifold learning techniques for dimensionality reduction,
in the LoG feature space.

Dimension of embedding
Error in pose estimation

PCA Isomap LLE Laplacian eigenmap

10 9.80◦ 9.79◦ 7.41◦ 7.10◦

20 8.86◦ 9.21◦ 6.71◦ 6.94◦

40 8.54◦ 8.94◦ 5.80◦ 5.91◦

50 8.03◦ 8.76◦ 5.23◦ 5.23◦

75 7.92◦ 8.47◦ 4.83◦ 4.89◦

100 7.78◦ 8.23◦ 4.31◦ 4.52◦

be visualized as lying on a low-dimensional (ideally, one-
dimensional) manifold in the feature space.

4.3. Experimentation setup

The setup of the experiments conducted in the subsequent
sections is described here. All of these experiments were per-
formed with a set of 2184 face images, consisting of 24 in-
dividuals with pose angles varying from −90◦ to +90◦ in
increments of 2◦. The images were subsampled to 32 × 32
resolution, and two different feature spaces of the images
were considered for the experiments. The results presented
here include the grayscale pixel intensity feature space and
the Laplacian of Gaussian (LoG) transformed image feature
space (see Figure 6). The LoG transform, which captures the
edge map of the face images, was used since pose variations in
face images can be considered a result of geometric transfor-
mation, and texture information can be considered redun-
dant. The images were subsequently rasterized and normal-
ized.

Unlike linear dimensionality reduction methods like
Principal Component Analysis, manifold learning tech-
niques lack a well-defined approach to handle out-of-sample
extension data points. Different methods have been pro-
posed [39, 40] to capture the mapping from the high-
dimensional feature space to the low-dimensional embed-
ding. We adopted the generalized regression neural network
(GRNN) with radial basis functions to learn the nonlinear
mapping. GRNNs are known to be a one-pass “learning” sys-
tem and are known to work well with sparsely sampled data.
This approach has been adopted by earlier researchers [37].
The parameters involved in training the network are mini-
mal (only the spread of the radial basis function), thereby fa-

cilitating better evaluation of the proposed framework. Once
the low-dimensional embedding was obtained, linear multi-
variate regression was used to obtain the pose angle of the
test image. To ensure generalization of the framework, 8-fold
cross-validation was used in these experiments. In this vali-
dation model, 1911 face images (91 images each of 21 indi-
viduals) were used for the training phase in each fold, while
all the remaining images were used in the testing phase. The
parameters, that is, the number of neighbors used and the
dimensionality of embedding, were chosen empirically.

4.4. Usingmanifold learning over linear
dimensionality reduction for pose estimation

Traditional approaches to pose estimation that rely on di-
mensionality reduction use linear techniques (PCA, to be
specific). However, with the assumption that face images
with varying poses lie on a manifold, nonlinear dimension-
ality reduction would be expected to perform better. We per-
formed experiments to compare the performance of man-
ifold learning techniques with principal component anal-
ysis. The results of head pose estimation comparing PCA
against manifold learning techniques with the experimenta-
tion setup described in the previous subsection are tabulated
in Tables 2 and 3. While these results have been noted as ob-
tained, our empirical observations indicated that the number
of significant digits could be considered up to one decimal
place.

As the results illustrate, while Isomap and PCA perform
very similarly, both the local approaches, that is, Locally Lin-
ear Embedding and Laplacian eigenmaps, show 3-4◦ im-
provement in pose angle estimation over PCA, consistently.
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Table 4: Summary of head pose estimation results from related approaches in recent years.

Reference Method
Best result in pose
angle estimation:
error/accuracy

Notes

[22] Fisher manifold learning About 3◦
Face images only in
[−10◦, 10◦] interval

[18] Kernel PCA + support vector machines 97%

Face images only in
10◦ intervals (this was
framed as a classifica-
tion problem of iden-
tifying the pose angle
as one of these
intervals)

[4] Isomap About 11◦
Face images sampled
at 15◦ increments

[4] LPP About 15◦
Face images sampled
at 15◦ increments

[3] LEA About 2◦ Best results so far

Current work BME using Laplacian eigenmap About 2◦ Results similar to [3]

Current work BME using Isomap, LLE About 3◦ —

Table 5: Results from experiments performed with sparsely sampled training dataset for each of the manifold learning techniques with and
without the BME framework on the gray scale pixel feature space. The error in the head pose angle estimation is noted.

Number of training images
Error using isomap Error using LLE Error using Laplacian eigenmap

without BME with BME without BME with BME without BME with BME

570 12.13◦ 3.26◦ 5.95◦ 5.88◦ 10.27◦ 3.84◦

475 11.70◦ 6.01◦ 6.58◦ 6.95◦ 9.47◦ 3.71◦

380 8.19◦ 7.61◦ 6.47◦ 6.72◦ 9.59◦ 4.72◦

285 8.39◦ 8.75◦ 6.36◦ 6.71◦ 9.12◦ 5.61◦

190 8.75◦ 8.58◦ 6.77◦ 7.03◦ 10.05◦ 7.76◦

95 11.27◦ 9.22◦ 9.43◦ 8.45◦ 15.44◦ 14.54◦

4.5. Supervisedmanifold learning for
person-independent pose estimation:
Experiments with BiasedManifold Embedding

While manifold learning techniques demonstrate reasonably
good results for pose estimation over linear dimensionality
reduction techniques, we hypothesize that the supervised ap-
proach to manifold learning performs better for accurate re-
sults with person-independent pose estimation. In our next
set of experiments, we evaluate this hypothesis. The error in
the pose angle estimation process is used as the criterion for
the evaluation.

The proposed BME framework was applied to face
images from the FacePix database, and the performance
was compared against the performance of regular mani-
fold learning techniques. These experiments were performed
against global (Isomap) and local (Locally Linear Embedding
and Laplacian eigenmaps) approaches to manifold learning.
The error in the estimated pose angle (against the ground
truth from the FacePix database) was used to evaluate the
performance.

The results of these experiments are presented in Figures
7 and 8. The blue line indicates the performance of the mani-
fold learning techniques, while the red line stands for the per-
formance from the Biased Manifold Embedding approach.
As evident, the error significantly drops with the proposed
approach. All of the approaches perform better with the LoG
feature space, as compared to using plain gray scale pixel in-
tensities. This corroborates the intuitive assumption that the
head pose estimation problem is one of geometry of face im-
ages, and the texture of the images can be considered redun-
dant. However, we believe that it would be worthwhile to per-
form a more exhaustive analysis with other feature spaces as
part of our future work. Also, it is clear from the error values
obtained that the BME framework substantially improves the
head pose estimation performance, when compared to other
manifold learning techniques or principal component analy-
sis.

It can also be observed that the results obtained from
the local approaches, that is, Locally Linear Embedding and
Laplacian eigenmaps, far outperform the global approach,
viz. Isomap. Considering that isomap is known to falter when
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Table 6: Results from experiments performed with sparsely sampled training dataset with and without the BME framework on the LoG
feature space.

Number of training images
Error using Isomap Error using LLE Error using Laplacian eigenmap

without BME with BME without BME with BME without BME with BME

570 10.63◦ 3.19◦ 8.76◦ 7.99◦ 9.01◦ 3.57◦

475 12.08◦ 3.73◦ 8.08◦ 7.63◦ 8.56◦ 3.99◦

380 11.34◦ 6.40◦ 8.16◦ 8.48◦ 8.47◦ 5.00◦

285 13.96◦ 6.66◦ 8.14◦ 8.49◦ 9.30◦ 6.69◦

190 15.46◦ 6.96◦ 8.72◦ 8.68◦ 12.27◦ 8.84◦

95 11.93◦ 8.59◦ 8.77◦ 8.77◦ 30.17◦ 15.79◦

Figure 9: Example of topological instabilities that affect Isomap’s
performance. An outlier could short-circuit the geometry of the
manifold and destroy its geometrical structure. In such a case,
global approaches like Isomap fail to find an appropriate low-
dimensional embedding.

there is topological instability [41]; the relatively low perfor-
mance with both the feature spaces suggests that the man-
ifold of face images constructed from the FacePix database
may be topologically unstable. In reality, this would mean
that there are face images which short-circuit the manifold in
a way that the computation of geodesic distances is affected
(see Figure 9). There have been recent approaches to over-
come the topological instability by removing critical outliers
in a preprocessing step [40].

4.6. Comparisonwith related pose estimationwork

In comparing related approaches to pose estimation which
have different experimental design criteria, the results are
summarized below in Table 4. The results obtained from the
BME framework match the best results so far obtained by
[3], considering face images with pose angle intervals of 1◦.
The best results are obtained when BME is used with Lapla-
cian eigenmap. When LLE or Isomap is used, the error goes
marginally higher and hovers about 3◦.

4.7. Experimentationwith sparsely sampled data

Manifold learning techniques have been known to perform
poorly on sparsely sampled datasets [29]. Hence, in our next

set of experiments, we propose that the BME framework,
through supervised manifold learning, performs reasonably
well even on sparse samples, and evaluate this hypothesis.

In these experiments, we sampled the available set of face
images sparsely (by pose angle) and used this sparse sam-
ple of the face images dataset for training, before testing with
the entire dataset. In these experiments, face images of all the
30 individuals in the FacePix database were used. The set of
training images included face images in pose angle intervals
of 10◦, that is, only 19 out of the total 181 images for each
individual were used in the training phase. Subsequently,
the number of training images (total number of images is
5430) was progressively reduced in steps to observe the per-
formance. These experiments were carried out for Isomap,
LLE and Laplacian eigenmaps for both the feature spaces.
To maintain uniformity of results and to aid comparison, all
these trials embedded the face images onto a 8-dimensional
space, and 50 neighbors were used for constructing the em-
bedding (as in the earlier section). The results are presented
in Tables 5 and 6. Note the results obtained with BME and
without BME for Isomap and Laplacian eigenmap in both
these tables. The results show significant reduction in error.
However, the results for LLE do not reflect this observation.

The results validate our hypothesis that the BME frame-
work performs better even with sparsely sampled datasets.
With Isomap and Laplacian eigenmap, the application of the
BME framework improves the performance of pose estima-
tion substantially. However, we note that Locally Linear Em-
bedding performed as well even without the Biased Manifold
Embedding framework. This suggests that in tasks of unsu-
pervised learning (like clustering), where there are no class
labels to supervise the learning process, Locally Linear Em-
bedding may be a good technique to apply for sparsely sam-
pled datasets.

5. DISCUSSION

The results from the previous section show the merit of the
proposed supervised framework for manifold learning as ef-
fective for head pose estimation. As mentioned before, us-
ing the pose information to supervise the manifold learning
process may be looked at as obtaining a better estimate of
the geometry of the manifold, based on the exact parame-
ters/degrees of freedom (in our case, the pose angles) that
define the intrinsic dimensionality of the manifold. This in
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Figure 10: Analysis of the average error in pose estimation for each of the views between [−90◦, +90◦].

turn improves the performance of the head pose estimation
methodology.

As an integral focus for biometric systems that require
person-independent head pose estimation, our observations
from the experiments indicate that local approaches to man-
ifold learning (Locally Linear Embedding and Laplacian
eigenmaps) provide the best results for head pose estimation
with a dataset like FacePix. As mentioned before, the rela-
tively low performance of Isomap could be attributed to a
possible instability in the topology of the manifold, which
could be caused by some outlier face images. A deeper study
of the detection of the presence of such an instability, and the
kind of face images that may cause this instability, is certainly
warranted, and will be considered in our future work.

For a better understanding of the results, we analyzed
how the errors in the pose estimation process were spread
out on the interval [−90◦, +90◦]. Figure 10 shows the head
pose estimation error in each of the views in this pose angle
interval. While we expected to see a better performance at
the frontal view, this was not very evident in any of the three
approaches. We also hoped to identify particular regions of
pose angle views of face images where the framework consis-
tently performs relatively poor. However, these plots do not
provide any coherent information on identifying such views
of face images.

The analysis of the performance of the techniques on
sparsely sampled set of face images reveals that while Isomap
and Laplacian eigenmaps provide increased performance
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when there is an increase in the number of training im-
ages, Locally Linear Embedding provides consistent results
and may be the choice when the dataset is sparsely sampled,
and the number of available samples is less. Another observa-
tion from these results showed that even if the training data
is sparsely sampled in terms of the pose angles, populating
the dataset with more samples of face images of other indi-
viduals helps compensate for the lack of face images in the
intermediate pose angle regions to a reasonable extent.

It is also important to note that while the Biased Manifold
Embedding framework holds promise, the technique works
better as the number of face images available for training is
increased, and as the spectrum of training images becomes
more representative of the test face images. Further, since we
have used generalized regression neural networks (GRNNs)
in this work, GRNNs [42] are also known to perform better
with more training samples. However, as the training sam-
ple set gets larger, the memory requirements for a GRNN
for computation become heavier, and this may be a cause for
concern.

6. CONCLUSIONS AND FUTUREWORK

In this paper, we have proposed an approach to person-
independent head pose estimation based on a novel frame-
work called the Biased Manifold Embedding for super-
vised manifold learning. Under the credible assumption
that face images with varying pose angles lie on a low-
dimensional manifold, nonlinear dimensionality reduction
based on manifold learning techniques possesses strong po-
tential for face analysis in biometric applications. We com-
pared the proposed framework with regularly used ap-
proaches like principal component analysis and other mani-
fold learning techniques, and we found the results to be rea-
sonably good for head pose estimation. While the framework
was primarily intended for regression problems, we have also
shown how this framework unifies earlier approaches to su-
pervised manifold learning. The results that we obtained
from pose estimation using the FacePix database match the
best results obtained so far and demonstrate the suitability of
this approach for similar applications.

As future work, we wish to extend this work to experi-
ment on other datasets like the USF database [3], which have
similar granularity of pose angle in the face image database.
We hope that this would provide more inputs on the gen-
eralization of this framework. We plan to implement this as
part of a wearable platform to perform real-time pose classi-
fication from a live video stream, to study its applicability
in real-world scenarios. We also hope to study the poten-
tial detection of the existence of topological instabilities that
may affect the performance of global manifold learning ap-
proaches like Isomap, and come up with solutions to circum-
vent such issues in pose estimation and other face analysis ap-
plications. Further, as manifold learning techniques continue
to be applied in pose estimation and similar applications, it
becomes imperative to carry out an exhaustive study to iden-
tify the kind of image feature spaces that are most amenable
to manifold-based assumptions and analysis.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion NSF-ITR Grant no. IIS-0326544.

REFERENCES

[1] L. M. Brown and Y.-L. Tian, “Comparative study of coarse
head pose estimation,” in Proceedings of the IEEE Workshop
on Motion and Video Computing, pp. 125–130, Orlando, Fla,
USA, December 2002.

[2] V. N. Balasubramanian, J. Ye, and S. Panchanathan, “Biased
manifold embedding: a framework for person-independent
head pose estimation,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR ’07), Minneapolis, Minn, USA, June 2007.

[3] Y. Fu and T. S. Huang, “Graph embedded analysis for head
pose estimation,” in Proceedings of the 7th International Con-
ference on Automatic Face and Gesture Recognition (AFGR ’06),
vol. 2006, pp. 3–8, Southampton, UK, April 2006.

[4] B. Raytchev, I. Yoda, and K. Sakaue, “Head pose estimation by
nonlinear manifold learning,” in Proceedings of the 17th Inter-
national Conference on Pattern Recognition (ICPR ’04), vol. 4,
pp. 462–466, Cambridge, UK, August 2004.

[5] M. T. Wenzel and W. H. Schiffmann, “Head pose estimation
of partially occluded faces,” in Proceedings of the 2nd Canadian
Conference on Computer and Robot Vision (CRV ’05), pp. 353–
360, Victoria, Canada, May 2005.

[6] J. Heinzmann and A. Zelinsky, “3D facial pose and gaze point
estimation using a robust real-time tracking paradigm,” in
Proceedings of the 3rd International Conference on Automatic
Face and Gesture Recognition (AFGR ’98), pp. 142–147, Nara,
Japan, April 1998.

[7] M. Xu and T. Akatsuka, “Detecting head pose from stereo im-
age sequence for active face recognition,” in Proceedings of the
3rd International Conference on Automatic Face and Gesture
Recognition (AFGR ’98), pp. 82–87, Nara, Japan, April 1998.

[8] K. N. Choi, P. L. Worthington, and E. R. Hancock, “Estimat-
ing facial pose using shape-from-shading,” Pattern Recognition
Letters, vol. 23, no. 5, pp. 533–548, 2002.

[9] Y. Hu, L. Chen, Y. Zhou, and H. Zhang, “Estimating face pose
by facial asymmetry and geometry,” in Proceedings of the 6th
IEEE International Conference on Automatic Face and Gesture
Recognition (AFGR ’04), pp. 651–656, Seoul, Korea, May 2004.

[10] I. Matthews and S. Baker, “Active appearance models revis-
ited,” International Journal of Computer Vision, vol. 60, no. 2,
pp. 135–164, 2004.

[11] H. Rowley, S. Baluja, and T. Kanade, “Neural network based
face detection,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 20, no. 1, pp. 23–38, 1998.

[12] S. Gundimada and V. Asari, “An improved SNoW based clas-
sification technique for head-pose estimation and face detec-
tion,” in Proceedings of the 34th Applied Imagery Pattern Recog-
nitionWorkshop (AIPR ’05), pp. 94–99, Washington, DC, USA,
October 2005.

[13] Y. Wei, L. Fradet, and T. Tan, “Head pose estimation using ga-
bor eigenspace modeling,” in Proceedings of International Con-
ference on Image Processing (ICIP ’02), vol. 1, pp. 281–284,
Rochester, NY, USA, September 2002.

[14] P. Fitzpatrick, “Head pose estimation without manual initial-
ization,” Tech. Rep., AI Lab, MIT, Cambridge, UK, 2000.



Vineeth Nallure Balasubramanian et al. 15

[15] B. Tordoff, W. W. Mayol, T. D. Campos, and D. Murray, “Head
pose estimation for wearable robot control,” in Proceedings of
the 13th British Machine Vision Conference (BMVC ’02), pp.
807–816, Cardiff, UK, September 2002.

[16] S. O. Ba and J.-M. Odobez, “A probabilistic framework for
joint head tracking and pose estimation,” in Proceedings
of the 17th International Conference on Pattern Recognition
(ICPR ’04), vol. 4, pp. 264–267, Cambridge, UK, August 2004.

[17] S. O. Ba and J.-M. Odobez, “Evaluation of multiple cue head
pose estimation algorithms in natural environments,” in Pro-
ceedings of IEEE International Conference on Multimedia and
Expo (ICME ’05), pp. 1330–1333, Amsterdam, The Nether-
lands, July 2005.

[18] S. Z. Li, Q. D. Fu, L. Gu, B. Scholkopf, Y. Cheng, and H. Zhang,
“Kernel machine based learning for multi-view face detection
and pose estimation,” in Proceedings of the 8th IEEE Interna-
tional Conference on Computer Vision (ICCV ’01), vol. 2, pp.
674–679, Vancouver, BC, Canada, July 2001.

[19] M. Bichsel and A. Pentland, “Automatic interpretation of hu-
man head movements,” Tech. Rep. 186, Vision and Modeling
Group, MIT Media Laboratory, 1993.

[20] S. J. McKenna and S. Gong, “Real-time face pose estimation,”
Real-Time Imaging, vol. 4, pp. 333–347, 1998.

[21] S. Srinivasan and K. L. Boyer, “Head pose estimation using
view based eigenspaces,” in roceedings of the 16th International
Conference on Pattern Recognition (ICPR ’02), vol. 4, pp. 302–
304, Quebec City, Canada, August 2002.

[22] L. Chen, L. Zhang, Y. Hu, M. Li, and H. Zhang, “Head pose es-
timation using fisher manifold learning,” in Proceedings of the
IEEE International Workshop on Analysis and Modeling of Face
and Gestures (AMFG ’03), pp. 203–207, Nice, France, October
2003.

[23] Y. Zhu and K. Fujimura, “Head pose estimation for driver
monitoring,” in Proceedings of IEEE Intelligent Vehicles Sym-
posium (IVS ’04), pp. 501–506, Parma, Italy, June 2004.

[24] N. Hu, W. Huang, and S. Ranganath, “Head pose estimation
by non-linear embedding and mapping,” in Proceedings of the
International Conference on Image Processing (ICIP ’05), vol. 2,
pp. 342–345, Genova, Italy, September 2005.

[25] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global ge-
ometric framework for nonlinear dimensionality reduction,”
Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[26] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduc-
tion by locally linear embedding,” Science, vol. 290, no. 5500,
pp. 2323–2326, 2000.

[27] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimension-
ality reduction and data representation,” Neural Computation,
vol. 15, no. 6, pp. 1373–1396, 2003.

[28] Z. Zhang and H. Zha, “Principal manifolds and nonlinear di-
mension reduction via local tangent space alignment,” SIAM
Journal of Scientific Computing, vol. 26, no. 1, pp. 313–338,
2004.

[29] L. V. D. Maaten, E. O. Postma, and H. V. D. Herik, “Dimen-
sionality reduction: a comparative review,” Tech. Rep., Univer-
sity Maastricht, Amsterdam, The Netherlands, 2007.

[30] M.-C. Yeh, I.-H. Lee, G. Wu, Y. Wu, and E. Y. Chang, “Man-
ifold learning, a promised land or work in progress?” in Pro-
ceedings of IEEE International Conference on Multimedia and
Expo (ICME ’05), pp. 1154–1157, Amsterdam, The Nether-
lands, July 2005.

[31] X. Ge, J. Yang, T. Zhang, H. Wang, and C. Du, “Three-
dimensional face pose estimation based on novel non-linear
discriminant representation,” Optical Engineering, vol. 45,
no. 9, Article ID 090503, 3 pages, 2006.

[32] D. de Ridder, O. Kouropteva, O. Okun, M. Pietikäinen, and R.
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