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1. INTRODUCTION

Ultra-wideband (UWB) technology is characterized by rel-
ative bandwidths larger than 20% and absolute bandwidths
of more than 500 MHz. These wide bandwidths improve the
reliability of communications systems through frequency di-
versity and the accuracy of positioning techniques through
the high temporal resolution of the propagation channel.
The most promising UWB localization approaches exploit-
ing the wide bandwidth are based on time of arrival es-
timation [1, 2], where the unknown position of a trans-
mitter is calculated by trilateration using the estimated dis-
tances to, at least, three reference receivers with known po-
sitions. These methods work very accurately under line-of-
sight (LOS) conditions. However, a general problem of local-
ization and tracking systems using time of arrival estimates
is the performance degradation under non-LOS conditions,
since, the strongest and/or first arriving path may not cor-
respond to the direct path [3, 4], yielding positively biased
distance estimates.

A different localization paradigm is based on compar-
ing a fingerprint or signature extracted from the received
signal to entries in a database. A priori information is re-

quired to generate this database. Possible types of finger-
print information are, for example, received signal strength
(RSS), angular power profile, or power delay profile. Im-
plemented indoor positioning systems based on RSS fin-
gerprints and WLAN technology like RADAR [5] or EKA-
HAU achieve position estimation errors of less than 5m for
75% of all classification cases using RSS measurements at
three distributed receivers as a location fingerprint. The ac-
curacy of such systems can be increased by adding more
receivers, which in turn increases the complexity and the
amount of data exchange. In contrast to this distributed ap-
proach, it is possible to increase the accuracy by using more
signal parameters as fingerprint information. For example,
Nerguizian et al. [6] use the mean excess delay, rms delay
spread, maximum excess delay, total received power, num-
ber of multipath components, power of the first path, and
the arrival time of the first path as fingerprint information.
These parameters are extracted out of wideband channel
measurements with 200 MHz bandwidth. The fingerprints
and the corresponding positions of the transmitter are used
to train a neural network. The authors report position esti-
mation errors of less than 2 m for 80% of the classification
cases.
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FiGure 1: Normalized cumulative energy of CIRs from two close
transmitters and one transmitter located far away from these two
transmitters.

We show in this paper that communication systems with
sufficiently high bandwidth can directly use the channel im-
pulse response (CIR) as fingerprint information. We refer to
this location fingerprinting method as UWB geo-regioning.
Only one receiver is required and the whole computational
complexity is shifted to this receiver such that the transmit-
ters can be low-cost devices and need no additional signal
processing or hardware. Moreover, no time synchronization
between transmitter and receiver is necessary. Therefore, this
is a very appealing technique for sensor networks, where the
sensors are energy limited and the receiver (access point) is
connected to a power supply allowing for more complex-
ity. Energy-efficient coding techniques like distributed source
coding or location aware routing protocols are enabled by
UWB geo-regioning. An intelligent combination of geomet-
ric localization techniques and UWB geo-regioning can help
to increase the accuracy and the robustness of positioning in
harsh environments.

This paper aims to show the principle feasibility of UWB
geo-regioning. A theoretical framework based on probability
theory and statistic is established for algorithm design and
to get insight into the problem structure. Furthermore, this
framework enables the investigation of the impact of system
parameters on the performance. In order to show the feasibil-
ity and evaluate the performance, the developed algorithms
are applied to measured CIRs. Figure 1 depicts the normal-
ized cumulative energy of three measured CIRs from two
close transmitters and one transmitter far away from these
two. This plot illustrates the difficulty of the problem, since
no clear differences and similarities of the curves are notice-
able.

This paper is organized as follows. Section 2 discusses
the probabilistic modeling of CIRs originating from the
same region. Section 3 introduces the theoretical frame-

work based on maximum likelihood parameter estimation
and maximum likelihood decision algorithms. In Section 4,
analytic expressions for the probabilities of misclassifica-
tion are derived, and insight into the problem structure is
given. Section 5 describes the channel measurement cam-
paign, whose results are later on used to evaluate UWB geo-
regioning. Measurement postprocessing steps are described
in Section 6. Section 7 gives a detailed performance evalua-
tion. The paper is concluded with Section 8, where the con-
tributions are summarized and an outlook into further re-
search is given.

Notation

All vectors are column vectors, I is the identity matrix,
()T denotes transposition, and ()" denotes complex con-
jugate transposition. The operator E(-) denotes expectation,
trace(-) is the sum of the diagonal elements of a matrix, |- |
is the determinant, and eig(-) calculates the eigenvalues of a

matrix. An estimate for parameter 6 is denoted as 0.CN ()
denotes the multivariate proper complex Gaussian probabil-
ity density function (PDF).

2. STATISTICAL REGION MODELING

Observations or measurements can be regarded as realiza-
tions of a random variable. This probabilistic concept is very
useful in describing physical phenomenons, which govern
the behavior of a system. Furthermore, it makes the system
mathematically tractable.

For UWB geo-regioning, the wireless propagation chan-
nel is interpreted as linear time-invariant system, which is
fully described by its impulse response. Moreover, regions
are characterized by a probability model for the discrete time
CIRs of transmitters located within this region to a fixed re-
ceiver. The selection of the probability model is based on
channel-modeling literature and the constraint of mathe-
matical tractability.

A common assumption on the small-scale fading behav-
ior of channel taps is that they are complex Gaussian dis-
tributed. The justification of this assumption is given by
the central limit theorem. Many reflected and scattered par-
tial waves from different directions superimpose at the re-
ceive antenna and contribute to one channel tap with vary-
ing amplitude and phase. If the number of partial waves is
large enough, the central limit theorem can be applied and
the resulting distribution of the channel tap can be approxi-
mated as Gaussian [7]. However, as the tap duration becomes
smaller (approaching UWB), less partial waves contribute to
one channel tap. This fact questions the applicability of the
central limit theorem. In literature, there exist various stud-
ies on the tap statistics for UWB channels. For the UWB
channel tap amplitudes, the Nakagami [8], Lognormal [9],
and Weibull [10] distributions are proposed. However, also
Rayleigh and Rice amplitude distributions arising from the
complex Gaussian channel tap distribution are supported by
some channel measurement campaigns [11]. The phase dis-
tribution is commonly assumed uniform between —m and 7
and not further considered.
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The big advantage of the Gaussian assumption is the
mathematical simplicity. For example, maximum likelihood
estimators and deciders are easily derived if the Gaussian
modeling is pursued. Therefore, and since also results in lit-
erature favor Gaussian channel taps, we stick to this assump-
tion and model the channel taps with a complex Gaussian
distribution.

3. UWB GEO-REGIONING ALGORITHMS

In this section, a theoretical framework is developed to prove
the feasibility and evaluate the performance of UWB geo-
regioning. The goal is to classify a transmitter with unknown
position to its region based on its CIR. It is not at all clear
whether this classification can be done based on the proba-
bilistic modeling of CIRs described in Section 2. Therefore,
we consider only two possible regions for the first analyis to
get as much insight as possible. The presented algorithms can
be easily extended to a general case of M regions.

3.1. Modeling assumptions and parameter estimation

The discrete time samples of a CIR in complex baseband rep-
resentation are modeled as proper complex Gaussian ran-
dom vector with sample mean vector 4 and covariance ma-
trix 2. For a given region A, the mean and the covariance ma-
trix are denoted as yi, and 2, respectively. Thus the PDF of
a CIR (X = [x[1],x[2],...,x[K]]") with K taps originating
in region A is given by p(x | A) = CN (4,,2Z4). The model
parameters i, and 24 are estimated from N, a priori known
channel impulse responses from transmitters located within
region A. The number of model parameters depends on K
and determines the amount of required a priori knowledge
in order to get accurate parameter estimates. The maximum
likelihood estimators using a set of N > K independent CIR
observations {X4 1,Xa2,...,%aN} are given according to [12]
by

- 1 N

Uy = N;xm,
N (1)
~ 1 -~ 2. =z.\H
Zp = N_1 lgi(xA,i — i) (Xai — iy)

The estimated mean /i, is again complex Gaussian dis-

tributed, whereas the estimated covariance matrix > is dis-
tributed according to a Wishart distribution [12]. How-
ever, for the maximum likelihood decision algorithms in
Section 3.2, these parameters are assumed to be determin-
istic, which is only true, if the sample size goes to infinity
(N—o0).

Simplifying modeling assumptions

(i) Zero mean assumption. The sample mean, averaged
over many realizations of a CIR, where the transmitter,
receiver, and environment are completely static, is just
a noise-averaged version of the CIR itself. However, if
the CIRs are averaged over different locations of the

transmitter, the constructive and destructive interfer-
ences of the multipath reflections cancel themselves on
average. If it is assumed that the sample mean vector is

zero (4, = 6), the maximum likelihood estimator for
the covariance matrix changes to

N
S04 = iz (fA,i)(fA,i)H- (2)
NS

(ii) Independent Tap Assumption. A significant reduction
of model parameters is possible if statistically indepen-
dent channel taps are assumed, which implies diago-
nal covariance matrices. This assumption follows from
the widely used uncorrelated scattering assumption in

channel modeling literature.

The complexity impacts of these simplifying assumptions
on the maximum likelihood algorithms are discussed in
Section 3.2, and the performance impacts are discussed in
Section 7.

3.2. Maximum likelihood algorithms

This section derives the maximum likelihood decision algo-

rithms for the binary hypotheses testing problem accounting

for the different modeling assumptions. The maximum like-

lihood decision between hypotheses A and B with equal a
A

priori probabilities is given by p(x | A) = p(x | B), where x

B
is a CIR of a transmitter with unknown region. For the gen-

eral probability model, this decision rule reduces to

- H

a-l,. =

(X —pig) Zp (X —pg) — (X —fy) 24 (X —fy)

a 3
N (3)
2 | - |
B [Z5]

where the decision threshold 6 45 is introduced as
124 )
04 = In ( ~ . (4)
TS|

The complexity of this decision algorithm grows quadratic
with the number of samples (@ (K?)). This algorithm is re-
ferred to as a covariance (COV) approach because correla-
tions among channel taps are assumed and the full covari-
ance matrix must be estimated.

Simplifying modeling assumptions

(i) Zero mean assumption. If it is assumed that the sample
mean vector is zero (4 = 0), the maximum likelihood
decision simplifies to

ol ol A
F(Sg 5 — So4) % 2 San, (5)

where the matrix Ayp = i; 1B - i(; ; is Hermitian since
io, 4 and io) g are Hermitian and so are their inverses.
The complexity is reduced slightly since no mean vec-
tor must be estimated. However, the complexity of the
estimation and decision process is still @ (K?).
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(ii) Independent Tap Assumption. If independent channel
taps and a zero mean vector are assumed, the maxi-
mum likelihood decision simplifies to

K K a
| (k] ;2< ! ! ) 2SI (;““"k]).
B >

P Soslk, k] Soalk k]
6)

Here, the receiver must know only the main diagonals of the
covariance matrices, which are also known as power delay
profiles. This assumption reduces the complexity of estima-
tion and decision significantly to @ (K). This algorithm is re-
ferred to as the power delay profile (PDP) approach.

In general, there can exist M > 2 possible regions. In this
case, all M((M —1)/2) pairwise maximum likelihood metrics
must be computed such that a transmitter can be classified
to one region. Thus the complexity of the algorithm decid-
ing between M regions and using CIRs with K taps grows
according to @(K?M?). The performance is upper bounded
in this case by the summation of all binary error probabilities
as a direct consequence of the union bound.

4. THEORETICAL PERFORMANCE ANALYSIS

In order to analyze the performance, analytic expressions for
the two probabilities of misclassification P4 = P(x" Aspx <
Oap | A) and Pe\B =1- P(fHAABf < Oap | B) must be
derived. Consequently, the PDF of the quadratic Hermitian
form z = x AppX is searched. The zero mean assumption is
used here since the derivation becomes mathematically in-
tractable in case of nonzero and not equal mean vectors. Hy-
pothesis A is assumed, whereas the PDF given hypothesis B
can be calculated equivalently.

4.1. Reduction to diagonal Hermitian form

The following derivations can be found in more detail in [13,
Appendix B]. The first step is to whiten the complex Gaussian
random vector x. This is done by eigenvalue decomposition
of the covariance matrix io, A according to io, A= UsAs Uf )
where the real valued and nonnegative eigenvalues are stored
in A4, and the corresponding eigenvectors in the columns of
the unitary matrix U,. Thus writing w = A;*°UY X renders
the random vector w with zero mean and identity covariance
matrix shown by

E(ww) = A ®UFE(Xx™ ) UsA %

7
= AU UM UR ULAL = 1. @)

With this linear transformation, the general Hermitian
form becomes z = wH®uw, where the matrix ®4 =
A%S U,I;I Aup UAA%5 is again Hermitian and can be diagonal-
ized according to @4 = VAd)AVf . The eigenvalues of @4,
collected in the diagonal matrix @4, are real but not neces-
sarily positive. With one more unitary transformation v =
Vf w, a diagonal quadratic form, that is, a weighted sum of
i.i.d. exponential random variables, is obtained;

K
z=Hduw =Y ¢, k]| vk]|*. (8)
k=1

The weights ¢, = [¢,[1],6, [21,...,@,[K]]" given hypoth-
esis A depend on Asp and Xy 4, and can be calculated by
q; 4= eig(A%5 Uf Aap UAA%5 ), whereas the weights given hy-
pothesis B depend on Ap and io, 8> and can be calculated by
{b'B = e1g(A%5 U?AAB UBA%S).

4.2. Analytic probabilities of misclassification

For the derivation of the error probabilities, it is assumed that

all weights in <E , are mutually distinct but can have different
signs. Therefore, the sum in (8) is split into a part collecting
all positive and a part collecting all negative weights accord-
ing to

S 1gulk] | vk 12 for ¢,0k] >0,

zZ1 =
k=1
K 9)
2= > |kl [v[k]|® for ¢,[k] <0,
ko=K;+1

with z = z; — 2, and independent random variables z; and
z;. The probability density function of z; under hypothesis A
is given by (cf. [14])

K
: M <_ Z1 ) f -
fia(a) =670 balki] = ¢ k1] orz 20,
0 forz; <0,
i $alki]

where Cyja[ki] = i=ﬂ#klm.
(10)

The PDF of z, is equivalent to (10) using the corresponding
weights. Thus the probability of misclassification P.j4 under
hypothesis A is given by

if 6AB >0,
0 Sapt+z2
Peia =J :OJ » fa14(z1) f2,14(22)dz1dz,
K K
=> > CiulkilCyalk]
ki=1k,=K;+1
B —04B ¢4 lk1] )
X(l eXp<¢A[k11>¢A[k11+¢A[kzl ’
else,
Peja = Jw:_é . iofz1|A(Zl)fz:\A(Zz)dzldzz
K K
=> > Cualki]Cyalk]
ki=1k,=K;+1 5 ¢ [k ]
AB ALA2
X(eXP<¢A[kz1)¢A[k1]+¢A[k21)'

(11)
The decision threshold §4p can be expressed in terms of the
weights ¢, and ¢, according to

|iOA|> ()AA|> (®A|>
Oap =1 — =1 =1 R 12
e n<|20,3| ! | Ag | "o (12)
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where the first equality is obvious due to eigenvalue decom-
position and the last equality is proven by

|@a| = |ASUSAsgUAAY | = |Aal |Ass],
| 5| = |AY’UR AspUpAR’ | = [Ag||Asz],

and taking the fraction of |®4| and |Dp|.

4.3. Asymmetric decision problem

The equations for the probabilities of misclassification P4
in (11) and P,z have, in general, different parameters un-
der each hypothesis determined by the corresponding weight
vectors qg 4 and ‘2"3- Therefore, the considered decision prob-
lem is asymmetric, meaning that, in general, P4 #P,|p. This
can be visualized if the dimensionality of the CIR is reduced
to one sample, thatis, K = 1. If ¢, > 0 and ¢ > 0, the PDFs
reduce to

iexp ( - i) forz = 0,
b4

fzIA(Z) = A
0 forz <0,
14
iexp(—i) forz > 0 "
fz\B(Z) = B ¢p 7
0 for z >0,

where (tbA = iO,A/io,B -1, (/53 =1- iO,B/io,A, and 043 =
In (30,4/20,8). Thus P,ja = 1 — exp (—~8ap/¢,) and Py =
exp (—04p/¢p). Setting iO,A = 3 and io,B = 1 gives a de-
cision threshold at 45 = In(3) and error probabilities of
PeIA ~ 0.42 and Pe\B ~ 0.19.

5. UWB CHANNEL MEASUREMENT CAMPAIGN

A CIR measurement campaign tailored to the verification
and performance analysis of UWB geo-regioning has been
performed and is summarized in the following. A thorough
description can be found in [15].

5.1. Measurement setup

The measurements have been performed at ETH Zurich in
a big cellar room (cf. Figure 2) with a size of about 7.4 m X
15m and a height of 6 m. There are many metallic objects
in the room as, for example, metallic shelves, heating pipes,
cabinets, and metal cores, implying a rich multipath environ-
ment.

A time-domain correlation method is used to measure
the CIRs. The principle is to perform a cross correlation be-
tween the received signal and the transmit signal known at
the receiver. In practice, the transmit signal is often gen-
erated using pseudorandom bit sequences or m-sequences.
The transmit signal is fed to a power amplifier and finally
to the transmit antenna. The signal propagates through the
channel, is received by the receive antenna, and is sampled
by a real-time sampling scope with a sampling frequency of
20 GHz. The measurement frequency range is roughly lim-
ited from 3 GHz to 6 GHz by the transfer function of the

I
| 7.4m |

Closets

15m

Cage

Barrels

27 cm

FIGURE 2: Marked regions in the cellar room.

UWB antenna and the cut-off frequency of the amplifier.
The reference signal for the cross correlation is stored in the
scope such that no wired connection between the transmit-
ter and the receiver is required. This means that the absolute
temporal delays of the CIRs are unknown. Furthermore, the
impulse responses of the transmit and receive antennae are
comprised in the measured CIRs.

5.2. Measurement scenario

The goal of this campaign has been to collect a sufficient
number of CIR measurements for one static receiver and a
moving transmitter located in 22 predefined regions with
a size of 27 cm X 56 cm (cf. Figure 2). The maximum dis-
tance between two regions is approximately 16 m, whereas
the minimum separation of two transmitter positions in two
different regions is approximately 10 cm.

The transmitter is moved with an almost constant speed
of 1 cm/s within each region. The trigger at the scope is not
synchronized with the movement of the transmitter, which
means that the exact positions of the transmitter within each
region are unknown. However, since triggering is done pe-
riodically every 1.7 seconds due to hardware limitations,
the spacing of subsequent measured CIRs is approximately
1.7 cm. In total, 600 CIRs per region have been measured.

6. MEASUREMENT DATA POSTPROCESSING

Before the measurements can be used for the evaluation of
UWB geo-regioning, there are several postprocessing steps
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FiGure 3: 600 measured and postprocessed CIRs (absolute values) for LOS region 4 (left) and non-LOS region 17 (right) in equivalent

baseband representation and sampled at Nyquist rate.

necessary, which are explained as follows. The first step is
to represent the measured passband data in equivalent base-
band, implying complex channel taps. This can be done since
the measurement frequency range is limited from 3 to 6 GHz
by hardware constraints. Figure 3 depicts absolute values of
600 postprocessed CIRs within regions 4 and 17.

6.1. Alignment of the CIRs

As stated, no absolute timing information is provided by the
measurement procedure. Nevertheless, the measured CIRs
must be aligned in time such that a meaningful statistical de-
scription can be extracted.

The strategy is to align the CIRs to a reference sample
specified as their sample with the maximum absolute value.
In order to achieve a higher resolution for the alignment, the
CIRs are interpolated, and afterwards, the reference sample
(maximum absolute value) is searched. The phase informa-
tion is neglected for this alignment procedure. The aligned
CIRs are down sampled such that tap correlations due to over
sampling are removed.

In LOS situations, the CIRs are aligned to the direct path,
implying that samples, before the reference sample, are just
negligible noise samples. In case of a non-LOS situation, the
CIRs are aligned to the strongest path, which is not neces-
sarily the direct path. This means that also the samples be-
fore the reference sample can carry significant CIR energy
and valuable information for UWB geo-regioning. There is a
clear tradeoff between accounting for possible non-LOS situ-
ations and wasting samples. A heuristic approach used in the
following cuts the section of a CIR to | K/10] taps before the
reference sample and K — [K/10] samples after the reference
sample, where K is the total number of channel taps within
the observation window.

6.2. Measurement signal-to-noise ratio

The measurement noise due to the electronics of the scope is
assumed as an additive zero mean white Gaussian noise pro-
cess. The noise samples are therefore Gaussian distributed
with zero mean and variance o2, which is given by the
room temperature, the noise figure of the scope, and the
measurement bandwidth. The measurement signal-to-noise
ratio (SNR) is defined as the energy of the CIR over ¢2,., and
ranges from 45 to 55dB depending on the transmitter po-
sition. Parameter estimation in Section 3 and alignment are
done at SNRpea.

6.3. Energy normalization

In general, it cannot be guaranteed that UWB transmitters
use constantly the same transmit power. This happens, for
example, when the data rate is adapted to the current work
load or channel conditions. Moreover, the path-loss-model-
based distance estimates are rather unreliable in indoor and
multipath environments. Therefore, the path loss informa-
tion is neglected in the following investigations and the CIRs
are normalized to energy one. However, a performance im-
provement can be expected, if the RSS information is used in
addition.

7. PERFORMANCE EVALUATION

This section presents performance results in terms of P4
and P, p for UWB geo-regioning based on the algorithms
derived in Section 3 and the measurements described in
Section 5. Additionally, theoretical error probabilities are
computed for CIRs, which are realizations of the model-
ing PDE. This means that the theoretical CIRs originating



Christoph Steiner et al.

we—

1072 L . . L .
0 5 10 15 20 25 30
SNR (dB)
—<— PDPuero 0= PDPmean
-¢- COVyzero ~8- COVmean

10°

102 L L L L L
0 5 10 15 20 25 30
SNR (dB)
—<— PDPyero -0~ PDPnean
-9- COVZem - COVmean

FIGURE 4: Region pair (4, 5) with measured CIRs.

from region A are realizations of CN (ﬁA, 3.4) in the general

case and of CN (6, io) 4) in the zero mean case. If indepen-
dent channel taps are assumed, the corresponding covari-
ance matrices are diagonal. The theoretic results show funda-
mental performance limits and which modeling assumption
matches the measured CIRs best.

Two representative region pairs are chosen out of the 22
measured regions. Regions 4 and 5 are two neighboring LOS
regions and represent a worst-case scenario. It is expected
that CIRs originating in these regions are quite similar and
cannot be distinguished very well. On the other hand, re-
gions 4 and 17 are about 16 m apart, and furthermore, re-
gion 17 is non-LOS representing a best-case scenario. Per-
formance results in between these two extreme cases are
achieved for the remaining region pairs. Additional perfor-
mance results for algorithms based on the zero mean as-
sumption are available in [16].

The following sections provide performance results for
different design parameters. The outcomes show fundamen-
tal dependencies on the SNR, the number of a priori CIRs
for parameter estimation, observation window, and system

bandwidth.

7.1. Signal-to-noise ratio

In order to emulate different SNR operating points, the CIR
under test X, = X + 1 is corrupted by additive, proper, com-
plex Gaussian, and i.i.d. noise samples () with variance o?.
The model for the PDF of the noisy CIR vector x,, originating
from region A is adapted to

p(xa | A) =GN(ﬁA,iA+021). (15)

Accordingly, the SNR in dB is defined as

E(SH |l |2>)

SNR = 10log 10( 52

K qr: (16)
= 10log (Z ’;13[1] )

The random variables |x[i] |2 are noncentral chi-square dis-
tributed with two degrees of freedom and means A[i] =
i[i, il +1ali] 1% in general, or Ag[i] = f‘,o[i, i] in the zero mean
case.

The 600 measured CIRs are partitioned into a set of size
N = 400 used for parameter estimation and the rest for
error probability calculation. In order to calculate the ex-
pected probabilities of misclassification, a cross validation
method [17] is used, where the error probabilities are aver-
aged over 50 random partitions of estimation and test data.
This method calculates values for P,j4 and P, p that can be
expected if 400 CIRs are used for parameter estimation. Since
the estimated parameters are different for each random par-
tition, also the theoretical results are averaged over the same
random partitions in order to present a fair comparison.

The system bandwidth is 3 GHz, the observation window
is 15ns, and the sampling frequency is 6 GHz. This means
that a CIR vector consists of K = 90 samples. For each
CIR under test 10°, realizations of the noise vector # are
generated and the error probabilities are averaged over the
noise realizations. Figures 4 and 5 show probabilities of mis-
classification depending on the SNR for all presented algo-
rithms in Section 3. The abbreviation COV indicates the co-
variance approach (Algorithm (3)) with nonzero mean (sub-
script mean) or algorithm (5) assuming zero mean (sub-
script zero). The abbreviation PDP indicates the power delay
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FIGURE 5: Region pair (4, 17) with measured CIRs.

profile approach (Algorithm (6)) with the same meaning of
the subscripts.

As expected, it can be observed that CIRs from regions 4
and 5 are not as good distinguishable as CIRs from regions
4 and 17. Surprisingly, it is possible to achieve probabilities
of misclassification of almost 102 even for regions 4 and 5
if the channel tap correlations are exploited (COV) and the
SNR is larger than 30 dB. In case of the independent taps as-
sumption (PDP), the classification algorithms fail to achieve
probabilities of misclassification of less than 107",

The classification algorithm assuming nonzero means
and independent taps (PDPyean) shows high-error probabil-
ities and a very asymmetric behavior, especially in Figure 4,
where two LOS regions are considered. The reason for this is
a probability model mismatch for the taps around the ref-
erence sample, since their empirical tap distribution can-
not be modeled by a complex Gaussian distribution. The
COVmean algorithm can compensate for this modeling mis-
match by accounting also for the phases of these taps. It can
be seen that the curves P, 5 in Figure 4 and P,|4 in Figure 5
for PDPyyean show better performance for low SNR and worse
for high SNR than PDP,,. This happens because the CIRs,
which have phases similar to the estimated mean, boost the
performance in the low SNR regime. However, in the high
SNR regime, the CIRs with phases different from the esti-
mated mean dominate and limit the performance. In order
to exploit the mean component in LOS situations, it would
be necessary to modify the probability model for the taps
around the reference sample.

Figures 6 and 7 depict performance results if theoretic
CIRs are tested. By increasing the modeling complexity, SNR
gains can be obtained. As expected, the COV algorithms out-
perform the PDP algorithms, but it is noticeable that the dif-
ferences are much smaller compared to the performance re-
sults achieved with measured CIRs. It is also visible that the

knowledge of the mean promises very good performance for
the PDP algorithms. However, due to the mentioned model-
ing mismatch this cannot be exploited.

When comparing Figure 4 with Figure 6 and Figure 5
with Figure 7, it can be seen that accounting for correlated
channel taps matches the expected theoretical results bet-
ter. Additionally, the COV algorithms show, besides error
floor reduction, also significant SNR gains in Figures 4 and
5. These gains are vital for UWB communication systems,
which work generally in the low SNR regime due to trans-
mit power restrictions. In order to achieve error probabilities
of less than 1072, an SNR in the range of 25dB is required,
which is rather high for UWB communications. However,
a higher SNR can be expected for channel estimation com-
pared to data detection because training sequences are used
to average out the noise influence.

7.2. Aprioriknowledge

The number of a priori known CIRs per region (N) plays
an important role for UWB geo-regioning. Therefore, its im-
pact on the performance is investigated here. For all sub-
sequent results, PDP and COV algorithms assuming zero-
mean channel taps are used. Figures 8 and 9 depict averaged
error probabilities over 50 cross validation iterations for in-
creasing N, 3 GHz bandwidth, K = 90 channel taps, and a
15ns observation window. In the legend, Q90 denotes the
90% quantile, that is, 45 of the 50 random partitions (90%)
show smaller error probabilities than the Q90 curves.

It can be seen that the error probabilities decrease for in-
creasing a priori knowledge due to more accurate parame-
ter estimates. Moreover, the impact of increasing N on the
PDP algorithm is less significant because the number of pa-
rameters to estimate is here significantly smaller than that
for the COV algorithm. The curve for P,;7 in Figure 9 shows
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FIGURE 6: Region pair (4, 5) with theoretic CIRs.

a higher variation of the error probabilities and a reduced
performance improvement for increasing N compared to the
curves for P,4 in Figure 9. This is explained by the nature of
region 17, which is non-LOS and not as coherent as region
4. This means that the temporal multipath patterns of CIRs
within region 17 vary more when the position of the trans-
mitter is changed.

Concluding, it is possible to achieve reasonable low-error
probabilities for CIRs with K = 90 channel taps, a ran-
domly selected subset of N = 200 a priori CIRs per region,
and exploiting the channel tap correlations. These results are
very promising for bootstrap methods, which classify CIRs
in a normal operating mode and use them after classifica-
tion for parameter estimation to increase estimation accu-
racy. Whether the classified CIR is used for parameter esti-
mation depends on a soft indicator like the likelihood value.

7.3. Observation window

In this section, the impact of the observation window on the
performance is investigated. The observation window in the
previous sections was set to 15 ns, which is rather small for an
indoor or industry scenario, where rms delay spreads of up to
50 ns are reported in literature [8, 18, 19]. Not all multipath
components are captured within 15 ns, suggesting that there
is room for performance improvement by enlarging the ob-
servation window. However, the received energy of the mul-
tipath components falls below the noise floor after a time
much shorter than 50 ns for practical UWB communication.
Therefore, it is expected that the performance gain obtained
by enlarging the observation window is limited by the SNR.

In Figure 10, the observation window is varied from 1 to
50 ns, the bandwidth is 3 GHz, N = 400 a priori CIRs are
used, region pair 4 and 5 is considered, and the SNR is set to
25dB.

It is important to notice that the error probabilities de-
pending on the observation window are region specific, in
the sense that they depend on the temporal delay of signif-
icant multipath components. Nevertheless, it can be con-
cluded that the PDP algorithm is almost insensitive to the
increase of the observation window because the SNR per tap
decreases as the number of taps increases. This means that
the channel taps are governed by the additive noise samples.
On the contrary, the COV algorithm shows performance im-
provements since the correlation between the taps is not af-
fected by adding independent noise samples. However, the
increase of the observation window implies a performance
degradation due to the increased number of model parame-
ters.

7.4. System bandwidth

The bandwidth determines the temporal resolution of mul-
tipath reflections with different propagation delays. By de-
creasing the bandwidth, the time-domain signal broadens
and more and more reflections overlap in time. This means
that signal contributions from different reflectors and scat-
terers cannot be distinguished from each other anymore.
Since UWB geo-regioning relies on the ability to resolve the
multipath components, it can be expected that the perfor-
mance drops by decreasing the system bandwidth. However,
a larger observation window can be covered with the same
number of samples since Nyquist rate drops for a smaller
bandwidth. Equivalently, a constant observation window can
be covered with less CIR samples. In the following simula-
tions, the observation window is set to 20 ns and the band-
width is varied from 300 MHz up to the full 3 GHz measure-
ment bandwidth, implying CIR lengths from K = 12 up to
K =120 samples.
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FI1GURE 8: Region pair (4,5) with measured CIRs at SNR = 35 dB for increasing N.

Figure 11 shows the error probabilities for region pair 4
and 5 at an SNR of 25 dB for measured (subscript mea) and
theoretical (subscript theo) CIRs. There is a slight perfor-
mance gain for the PDP algorithm for increasing bandwidths
until 1.5 GHz. Beyond that, the higher temporal resolution
does not help to distinguish CIRs from regions 4 and 5, if
independent taps are assumed. In contrast, the COV algo-
rithm shows a continuous improvement. The increasing gap
between the results for theoretic and measured CIRs for COV
is explained by the increasing parameter estimation error due
to the increased number of channel taps.

From these results, it can be concluded that the expected
performance dependency of UWB geo-regioning on the used
bandwidth is present. Furthermore, it is evident that the
amount of required a priori knowledge can be reduced by
decreasing the bandwidth and consequently the number of
model parameters.

8. CONCLUSIONS AND OUTLOOK

A novel clustering and localization technique based on
CIR fingerprinting, named UWB geo-regioning, has been
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FIGURE 10: Region pair (4, 5) with measured CIRs at SNR = 25 dB for increasing observation window.

introduced. A theoretical framework consisting of proba-
bility models and maximum likelihood algorithms with dif-
ferent performances and complexities has been developed.
Based on this framework, an analytic study of the error
probabilities of the binary hypothesis-testing problem has
been performed. The feasibility and fundamental perfor-
mance dependencies on design space parameters of UWB
geo-regioning have been evaluated by applying the derived
algorithms to measured CIRs.

The presented performance results reveal the superiority
of the algorithms assuming correlated CIR taps over those

assuming independent taps. This implies that, for UWB geo-
regioning, the reflectors and scatterers are correlated, and the
channel tap correlations are region dependent. The drawback
of the correlation is the increased number of model param-
eters, which must be estimated from a priori data. However,
this number can be significantly reduced by adjusting system
parameters like bandwidth and observation window. For ex-
ample, UWB geo-regioning can achieve probabilities of mis-
classification of less than 1072 for a CIR length of 20 taps
observing 10 ns at a bandwidth of 2 GHz, provided that the
SNR is around 25 dB and not two neighboring regions are
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FIGURE 11: Region pair (4, 5) at SNR = 25 dB for increasing bandwidth.

considered. In this case, around 40 a priori CIRs are required
to achieve reliable parameter estimates. For the classification
(normal receiver operation), only the 20 tap CIRs from dif-
ferent UWB transmitters must be estimated, which can be
done with reasonable receiver complexity. Moreover, these
classified CIRs can be used to increase the accuracy of the
parameter estimates depending on a soft indicator, such as
the likelihood value.

Future work will address the ad-hoc problem of gener-
ating clusters and regions out of a set of CIRs, where boot-
strap methods are promising candidates. Another interest-
ing aspect is the exploitation of different CIRs as natural
spreading sequences given by the physical propagation en-
vironment and transmitter and receiver locations. Here, it
would be most beneficial to have a distance measure for in-
stantaneous CIRs. This idea in conjunction with UWB geo-
regioning could help to relax the multiaccess problem in
dense wireless networks.
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