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The mobile terminal positioning problem is categorized into three different types according to the availability of (1) initial accurate
location information and (2) motion measurement data. Location estimation refers to the mobile positioning problem when both
the initial location and motion measurement data are not available. If both are available, the positioning problem is referred to as
position tracking. When only motion measurements are available, the problem is known as global localization. These positioning
problems were solved within the Bayesian filtering framework. Filter derivation and implementation algorithms are provided with
emphasis on the mapping approach. The radio maps of the experimental area have been created by a 3D deterministic radio
propagation tool with a grid resolution of 5m. Real-world experimentation was conducted in a GSM network deployed in a
semiurban environment in order to investigate the performance of the different positioning algorithms.
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1. INTRODUCTION

Mobile terminal (MT) positioning is a key problem in wire-
less environments. It is the most fundamental problem to
provide customers with tailored and location-aware services.
MT positioning is defined as the determination of the MT ge-
olocation using location-dependent parameters in a specific
coordinate system. The key driver for developing MT loca-
tion technologies in the USA was E-911. In the EU, it was
commercial services in the first place, and later E-112 that
utilizes the same techniques. Emergency call location has be-
come a requirement in fixed and cellular networks in the USA
in 1996 [1] and in the EU in 2003 [2]. Positioning of an MT
is considered more critical because MT users and hence MT
originated emergency calls are continually increasing. It is es-
timated that about 50% of all emergency calls in the EU are
MT originated, and the expected tendency is rising [2].

The first application of MT location dates back to World
War II, when it was critical to locate military personnel
rapidly and precisely in emergency situations [3]. Further-
more, nonmilitary interest in this field dates back to about 40

years ago [4, 5]. While emergency call location could be con-
sidered the most important of location-based services (LBSs)
due to its urgency for life and property safety, commercial
LBSs are believed to make increasing revenues for network
operators who could provide customers with attractive and
tailored services [6]. Therefore, a lot of research is being car-
ried out in this area.

Positioning systems are usually categorized according to
the place where location calculations are performed into
network-based or mobile-based, or according to the appli-
cation environment into outdoor or indoor. The main ap-
proaches of positioning are global or satellite-based tech-
niques, and local or terrestrial-based methods. Terrestrial-
based methods have two variants: geometric techniques, and
mapping approaches. These methods differ in terms of ac-
curacy, coverage, cost, mobile terminal power consumption,
and wireless system impact.

Satellite-based technologies are mainly employed for out-
door applications and come in two flavours: stand-alone GPS
or assisted-GPS (A-GPS). The first is mobile-based, while A-
GPS needs extra signals from reference GPS receivers and
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thus increasing the system impact. The main drawbacks are
high-power consumption, need of clear view to at least four
satellites (for stand-alone GPS), and the costs of integrat-
ing GPS receivers into the MTs. Furthermore, A-GPS solu-
tions increase overhead costs due to the requirement to in-
stall reference GPS receivers. The satellite-based approach is
the most accurate MT positioning technique, and it was only
made accessible for commercial applications in the nineties.
Also the EU is most likely to follow the US and Japan in re-
quiring high-positioning accuracy of mobile emergency calls
from 2010 when the Galileo system will be fully operational
[7]. However, the benefits of satellite-based positioning could
be limited where location information is still needed due
to signal blocking. In such cases, other positioning methods
should be triggered in order to backup the failed or degraded
satellite signals.

Geometric methods estimate the MT location by tri-
angulation of, for example, time-of-arrival (TOA), time-
difference-of-arrival (TDOA), enhanced-observed time-
difference (EOTD), angle-of-arrival (AOA) measurements,
or relationship between received signal strength attenuation
and distance to base stations (RSSAD). The main drawback
of TOA measurements is the need of mutual synchroniza-
tion of the involved base stations (BSs) in order to avoid de-
graded location accuracy, which is difficult to achieve. Ex-
ploiting AOA measurements increases overhead costs due to
the need for installation of special antennas at the BSs. At
least three BSs are required for TDOA measurements, which
cannot always be fulfilled in many situations. RSSAD equa-
tions are not really accurate even when using at least three
BSs. Although geometric techniques are generally more accu-
rate than mapping methods, their position estimation accu-
racy degrades severely in multipath environments, which is
the dominant condition in built-up areas, and in nonline-of-
site (NLOS) situations without accurate environmental in-
formation.

Mapping-based mobile location is one way to achieve ac-
curacy improvement of cell-ID positioning. They also ap-
pear in the literature under the names database compari-
son or correlation, location fingerprinting, and pattern recog-
nition or matching. In these techniques, a database, or map
of location-dependent parameters, is constructed using ra-
dio wave propagation prediction tools [8-10], field mea-
surements [11, 12], or a combination of both [13]. Later
a moving MT collects measurements to be compared with
the entries of the database in order to yield location es-
timates. Propagation prediction tools are advantageous in
terms of cost and map construction time. These tools vary
in terms of accuracy according to the degree of geographi-
cal information precision integrated in the calculations, thus
are divided into deterministic (3D), semi-deterministic (2—
2.5D), or simple empirical formulas. Field measurements
provide more realistic databases but at higher costs and
longer construction time that render wide deployment im-
practical. Nevertheless field measurements in some parts of
the deployment environment do help to show the perfor-
mance upper limit of location estimation algorithms us-
ing the mapping approach. Location-dependent parameters
usually used for mapping include received signal strength

TaBLE 1: Phase IT of the FCC’s E911 program requirement on loca-
tion accuracy.

Network-based Mobile-based
67% 100 m 50 m
95% 300 m 150 m

levels (RxLevs) from surrounding BSs [8-11, 13] and the
channel impulse response (CIR) [12, 14, 15] which is the
multipath propagation delay profile of the environment.
In GSM systems, the bandwidth is too small, unlike the
UMTS system, for accurate positioning based on correla-
tion of CIR only [12]. Also the geometric time-based (TOA,
TDOA, EOTD) and angle-based (AOA) methods could be
used as location signatures either stand-alone (less accu-
rate) or combined with other location parameters. To the
best of the author’s knowledge they are not widely used.
However, in [16] a network-based fingerprint method com-
posed of TOA and AOA has been proposed for wireless lo-
cation finding in urban environments, and was found that
AOA is more significant than TOA for location discrimina-
tion.

Mapping methods often utilize prediction data of RxLev
and/or CIR produced during network planning. In the online
positioning phase they use only the network available mea-
surements and thus they do not require any expensive hard-
ware installations at BSs or in MTs. Also they have short de-
ployment time and cover current and legacy handsets. This is
advantageous in terms of cost, coverage, and system impact
compared to the other approaches. Therefore, they seem to
be the first alternative to take into consideration, especially
for European network operators, since EU mobile location
requirement still does not specify any accuracy levels unlike
the US mandate, see Table 1. However, mapping-based solu-
tions require continuous update in order to adapt to changes
in the environment structure and in the wireless network in-
frastructure, and to consider the time-varying nature of wire-
less channels.

The location accuracy of mapping approaches ranges be-
tween about 100 m and several kilometers depending on cell
size, accuracy of reference maps, mapping resolution, propa-
gation conditions, accuracy of observed measurements, and
significance degree of the mapped location-dependent pa-
rameter. While CIR maps generally achieve more accurate es-
timates than RxLev mapping in urban and dense urban en-
vironments, they tend to have comparable performance in
suburban and rural areas. Therefore, mapping techniques do
not fulfil the FCC accuracy requirements in all situations.
However, mapping methods are advantageous, because no
LOS conditions are needed, it can work even with one BS,
and its implementation costs are pretty low. Moreover, map-
ping techniques will still be needed also when more accurate
technologies are fully available. They will achieve positioning
for applications with low accuracy requirements; they will be
deployed in areas of the network where more accurate meth-
ods are not supported; and finally, they will work as backup
in case the accurate techniques fail for any reason. Therefore,
improving positioning accuracy of mapping approaches is an
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TABLE 2: Basic aspects of the different positioning techniques.

Coverage

Terminal power

Accuracy Cost . Wireless system impact
Outdoor Indoor consumption

Global or
satellite-based High (~15m) Yes None or very poor Medium High Low or medium
methods
Terrestrial Medi
geometric ( el Olgm) Yes Yes Medium Low Medium
techniques m
Terrestrial Low
mapping (100 m-several Yes Yes Low Low Low
approaches km’s)

active research topic. A comparison of the basic aspects of the
discussed positioning approaches is given in Table 2.

In this paper, a mapping-based method for outdoor wire-
less mobile positioning using the Bayesian filtering formu-
lation is proposed. Prediction of the average received signal
strength at reference locations in a working GSM network
is calculated using a 3D radio propagation tool. The motion
model of the Bayesian filter utilizes simulated inertial mea-
surements. Real-world experiments in a semiurban area have
been carried out to study the performance of the proposed
techniques.

The rest of the paper is organized as follows. Section 2
defines three different positioning problems within the con-
text of the mapping approach. Section 3 discusses the basics
of Bayesian filtering, introduces world model utilized, and
gives implementable algorithms for the different positioning
problems. Experiments and numerical results are presented
in Section 4. Finally, the paper is concluded in Section 5.

2. TYPES OF MOBILE TERMINAL POSITIONING
PROBLEMS USING THE MAPPING APPROACH

Estimation of the MT position in its environment involves
using a map of a location-dependent parameter of the en-
vironment, network measurement data, and motion infor-
mation. The estimation accuracy could even be enhanced by
utilizing any prior knowledge of the MT location when avail-
able.

Motion information is generally the most difficult piece
of information to extract. Without dedicated motion sen-
sors, for example, an inertial measurement unit (IMU), mo-
tion estimation is either impossible or very inaccurate due to
the noisy signal behavior used to derive the MT motion pat-
tern. Accordingly, the MT positioning problem could be di-
vided into location estimation and tracking based on the avail-
ability of motion measurements. Location estimation (LE)
algorithms calculate the MT location without incorporat-
ing any motion information. Moreover, tracking algorithms
could be further categorized according to the availability of
prior knowledge into position tracking and global localiza-
tion. In position tracking (PT), the initial position of the
MT is known, and the problem is to find adequate proce-
dures in order to compensate incremental errors in the mo-
tion sensor measurements. In the more challenging global lo-

TasLE 3: Comparison of the three positioning problems.

Motion
Prior knowledge available?  information
available?
Lo.catlo.n No No
estimation
Posm.on Yes Yes
tracking
lobal
Gob.a . No Yes
localization

calization (GL) problem, the initial location of the MT is un-
known, and consequently the MT position has to be deter-
mined from scratch. This positioning problem is more dif-
ficult because multiple and distinct hypotheses have to be
handled. The three defined positioning problems are sum-
marized in Table 3.

3. BAYESIAN FILTERING FOR MOBILE
TERMINAL POSITIONING

3.1. Foundations of the Bayesian filter
and basic algorithm

The recursive Bayesian filter (RBF) [17] is a probabilistic
framework for state estimation that utilizes the Markov as-
sumption (i.e., past and future measurements are condition-
ally independent if the current state is known). The RBF es-
timates the posterior belief of the MT position given its prior
belief, motion and network measurements, and the model of
the world (or environment).

The prior belief is a probability distribution over all
possible locations before taking the MT actions and net-
work measurements into account. The posterior belief is the
conditional distribution of these locations after incorporat-
ing the MT actions and network measurements. The world
model is a radio profile map containing predicted received
signal strength (RxLev) values at reference locations. The
posterior belief distribution is expressed as

Bel(st) = P(St | 00:t> A0:t> m): (1)

where Bel(s;) is the posterior belief over the state (or posi-
tion) of the MT at time t, s; is the state at time ¢, 0g.; and
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ao.; are the network measurement data (or network observa-
tions) and the actions performed by the MT from time 0 up
to time ¢, respectively, and m is the world model.

Applying Bayes rule to (1) we get

p (ot | st,00:4—1, 0.0, m) p(s¢ | 00:4—1, Ao:t, M)

Bel(st) = p(O[ | 00:t—15 A0:t> m)

2

Here, actions and network measurements are assumed to oc-
cur in an alternative sequence (every action is followed by
a network measurement) although in reality they take place
concurrently. They are separated only for convenience and
clarity of the mathematical treatment.

Employing Markov assumption to the first term in the
nominator, and noting that the denominator is a constant
probability (denoted #) relative to s;, (2) is rewritten as

Bel(s:) = np(or | se,m)p(se | 00:—1, o, m). (3)

With the help of #, which is also called normalization factor,
the resulting product will always sum up to 1. Thus Bel(s;)
represents a valid probability distribution.

Expanding the right most term in (3) using the theorem
of total probability will result in

Bel(St)
= ’7P(0t | St’m)

X jP(St | St—l;OO:t—I:QO:t’m)P(St—l | 00:¢—15 Ao:t, M) dsi—1.

(4)

Applying Markov assumption to the first term in the inte-
gration and noting that the second term is simply Bel(s;—1),
we obtain

Bel(s;) = np (o | st,m) JP(Sz | si1,a;,m)Bel(s;_1)ds;_1.
(5)

Equation (5) is called the recursive Bayesian filter (RBF) and
is usually computed in two steps called prediction and update.
Prediction step:

Bel (s;) = Jp(s, | si1,a;, m)Bel(s;_1)ds;_1, (6)

where Bel (s;) is the posterior belief just after executing the
action a; and before incorporating the network measurement
o, and p(s¢ | si-1, a1, m) is the MT motion model, that is,
the transition probability that tells us how the state evolves
over time as a function of the MT movements.

Update step:

Bel(s;) = np(os | s;,m)Bel (s;), (7)

where p(o; | s, m) is the network measurement model that
specifies the probabilistic law according to which these mea-
surements are generated from the state, that is, measure-
ments are simply noisy projections of the state [17].

(1) Algorithm Basic_RBF (Bel(s;_1), a;—1, 0;, m)

(2) foralls, do

(3) Bel (s))= [ p(si|se1,ars, m) Bel(sei)ds,—; // Prediction
(4) Bel(s;) = np(o; | s, m) Bel (s;) /I Update
(5) endfor

(6) return(Bel(s;))

ALGorITHM 1: The basic recursive Bayesian filter algorithm.

Both motion and network measurement models describe
the dynamical stochastic system of the MT and its environ-
ment. The state at time ¢ is stochastically dependent on the
state at time ¢t — 1 and the action a;. The network measure-
ment o; depends stochastically on the state at time t. Such
a temporal model is also known as hidden Markov model
(HMM) or dynamic Bayes network (DBN) [17]. Algorithm 1
shows a single iteration of the RBF algorithm.

Nonparametric filters (NPFs) [17] provide implementable
algorithms for the RBE They approximate posteriors by a fi-
nite number of parameters, each corresponding to a region in
the state space, that is, they do not rely on a fixed functional
form of the posterior. Moreover, the number of the param-
eters used to approximate the posterior can be varied. The
quality of approximation depends on the number of these
parameters. As the number of parameters approaches infin-
ity, NPF tends to converge uniformly to the correct poste-
rior. The NPF approach discussed here approximates poste-
riors over finite spaces by decomposing the state space into
finitely many regions and represents the cumulative poste-
rior for each region by a single probability value. Such an ap-
proach is known as discrete Bayesian filter (DBF). The DBF is
also referred to as the forward pass of a hidden Markov model.

The DBF approximates the belief Bel(s) at any time by a
set of n weighted location candidates as

Bel(s) ~ {sO,w®},_, ., (8)

where s = {x(, y(} is the ith MT location candidate (or
state) and w'? is a probability value (also called weight) that
determines the importance of s). The sum of all weights
equals 1 so that Bel(s) represents a valid probability distribu-
tion. However, normalization is not a crucial issue for prac-
tical algorithm implementation.

3.2. World model

The utilized world model has been constructed by using two
input sources. The first are maps of the predicted average
received signal strength in a test semiurban area of 9km?
in Hannover, Germany, created by a 3D deterministic ra-
dio propagation tool [18]. These maps are represented by 2D
raster arrays with a uniform grid spacing of 5 m. Each array
corresponds to a GSM cell antenna working at 1800 MHz.
The experimental area contains 6 BSs, each with 3 sectors,
and 4 indoor antennas, so that the total number of consid-
ered cells equals 22. Figure 1 illustrates the geometry of the
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FIGURE 1: Geometry of the base stations in the experimental area.
Base stations and indoor antennas are represented by solid circles
and squares, respectively.
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FI1GURE 2: Locations served by sector cell antennas up to distances
corresponding to TA = 0.

involved BSs and distances from the area centric BS to the
rest.

After several preprocessing steps as in [19, 20], the maps
are rearranged so that each raster array contains only the ref-
erence locations served by a certain cell antenna. Moreover,
each raster array is further divided into smaller arrays ac-
cording to timing advance (TA) values; see Figure 2. This is
very useful for the reduction of computational costs. Each ar-
ray element contains x-y coordinates and average predicted
RxLev of all involved BSs.

The second input was geographical information system
(GIS) data to assist in discriminating between the different
environmental features, for example, indoor, outdoor, wa-
ter, green, and so forth, with very high resolution of 30 cm.
Before the arrays that resulted from the preprocessing steps
were further divided according to the land feature, which is
also very helpful for the computational efficiency of the pro-

5
x10°0
5.8095 | o
[
5.809
g
S, 5.8085 -
5.808
5.8075 f
() n
5.807 L— : . : : : :
4.343 4.3435 4.344 4.3445 4.345 4.3455 4.346
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F1GURE 3: Outdoor pedestrian locations served by sector cell anten-
nas up to distances corresponding to TA = 0.

(1) Algorithm LocationEstimation(o,, m,)

(2) Bel(s;) = 0, 5 =0, m; = DBeip

(3) o = {cell-ID;, TA,, RxLev{" }

(4) fori=1:ndo

(5) Compute the weight wﬁi)

(6) Bel(s)) = Bel(s,) U {s”, w{"}

(7) endfor

(8) Bel(s;) = sort(Bel(s;)) // Descending sort
(9) Calculate s,

(10) return(s,)

AvrcoriTHM 2: The location estimation algorithm.

posed algorithms, the GIS data resolution was adapted to
the 5 m resolution of the radio propagation prediction maps.
Figure 3 shows outdoor pedestrian locations served by their
main sector cell antennas for TA = 0. Arrays as depicted in
Figure 3 were the ones used in the three positioning algo-
rithms.

Furthermore, the raster arrays have been re-sampled to
10m, 15m,...,50 m resolutions for use only with the loca-
tion estimation algorithm.

3.3. Location estimation

As mentioned in Section 2 the location estimation algorithm
calculates the MT position without any prior information
about the accurate initial location of the MT or any mo-
tion measurements from dedicated sensors. Thus line 3 in
Algorithm 1 could not be executed. Consequently, the algo-
rithm computes only the output probability of the network
measurements, which is merely a table-lookup procedure.
Algorithm 2 depicts a single iteration of the location es-
timation algorithm to estimate the MT state at time f. It is
initialized (in line 2) by allocating memory space for the lo-
cation belief Bel(s;) and the final MT location estimate §;.
The inputs (lines 2 and 3) are the network measurements o,
and the world model m;, where DB.ip 1s the database that
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contains location information and expected RxLev values (of
the main and neighboring cell antennas) of the areas covered
by the main (or serving) cell antenna (or BS) at time ¢, and

RxLeV(] is the measured received signal strength from the jth
observed BS. The weight of the location candidate i is calcu-
lated (in line 5) as

w® = wib + wiip + wid, 9)
where WI(\QM, wg)lj, and wé'g] are the weights according to
the measurement model, neighborhood degree, and strongest
neighbor, respectively. They are calculated as

WI(\;I)M = p(o¢ | sty m)
M .
_ 1—[ 1 7(RXLEV§})7RXLEVDB].)Z/ZJﬁxLev (10)
o1 ORxLevV 2m ’

where M is the number of observed BSs (main and neigh-
boring), that is, Mm.x = 7 in typical GSM network mea-
surements, OryLev 1S the standard deviation of the measured
RxLev, and RxLevpg; is the database RxLev prediction value

of the jth observed BS at s

wil =1, (11)

where [ is the number of observed neighbor BSs that coincide

with the list of the predicted six strongest neighbor BSs at 9
that is, Inax = 6:

Wik = asx, (12)

where agy is a constant bonus value and equals 1. It is as-
signed if the strongest observed neighbor BS coincides with

the predicted first or second strongest neighbor BS at 9,

Otherwise, ng =0.

Intuitively, the summation in (9) should be multiplica-
tion. However, summation has two advantages over multipli-
cation. First, summation will prevent the assignment of zero
to the total weight of any location candidate in case a weight-

ing criterion, for example, wé’ﬁ], equals zero. Second, multi-
plication cause many candidates to have very low weights,
which will be considered as zero weights if the computer
that runs the algorithm has limited numerical precision. Zero
weights can cause many problems especially when sorting lo-
cation candidates according to their weights. The correct or-
der of candidates cannot be determined.

After weight calculation, the location candidate is added
to the belief (line 6) together with the assigned weight. This is
done for all location candidates before sorting them (line 8)
in a descending order with respect to their weights. The aim
is not just to find the belief distribution of the MT state, but
an estimate of the state called point estimate. This point esti-
mate is simply the final MT location estimate that is output
by the algorithm (line 10). There are several ways to calculate
point estimates (line 9), for example, maximum a posteriori
(MAP), weighted average estimate (WAE), and trimmed aver-
age estimate (TAE).

(1) Algorithm PositionTracking(s; 1, a;1, s, m;)

(2) si-1 = (%=1, Yi-1) /I Input
(3) a1 = (transt,l,(?,,l) /...
(4) o; = {cell-ID;, TA;} /...

(5) m¢ = DBeenin, = (xj, yj> w;j) /...

(6) x; = x;—1 + trans;_; - cos 0;_; /] Prediction
(7) y;7 =y +trans-sinfy /]

(8) forj=1:ndo // Update

9)  wy = 1[G —x) + (g — )’

(10) endfor
(11) m; = sort(m,) // Descending sort
(12) s = (x5 1) = (x15 1)

(13) return(s;)

ArLcoriTHM 3: The position tracking algorithm.

Maximum a posteriori is simply the location candidate
with the highest assigned weight and is expressed as

s; = arg max Bel(s;). (13)

If many candidates have the same weight, the returned lo-
cation estimate will depend on the stability of the sorting
scheme. Stable sorting algorithms maintain the relative order
of the location candidates, that is, a location candidate with
the highest weight that appeared first in the unsorted belief
will also appear first in the sorted belief. This is very disad-
vantageous as an arbitrary candidate could be returned as
the location estimate though other candidates also assigned
with the same highest weight would be more accurate. How-
ever, this negative aspect could be reduced by computing the
weighted average of all candidates representing the posterior
belief distribution. Thus the location estimate would be

St zl w0 Zs[ x wi (14)
The WAE is the mean value of the updated belief distribution
and it will coincide with the MAP estimate only for unimodal
and symmetric distributions, which is not often the case. The
trimmed average estimate calculates the MT location as the
average of the k best weighted candidates as follows:

k
- 1 .
SI = Ezsil), (15)
where k < n and n is the total number of location candidates.

3.4. Position tracking

A single iteration of the position tracking algorithm is
given in Algorithm 3. The inputs are the initial position
(line 2) s¢—1 = (x4—1, ¥1-1), the IMU data (line 3) a;-; =
(trans;_1,0;_1), where trans;_; and 6;_; are the translation
(after twice integration of the IMU acceleration measure-
ment) and orientation (IMU compass) in a 2D Cartesian co-
ordinate system at time ¢ — 1, respectively, the network mea-
surement o, (line 4), and the corresponding world map m;
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(line 5), where w; is the weight of the jth location candidate
and initially set to zero. Note that the proposed algorithm
updates only one position hypothesis, that is, n in expression
(8) equals 1.

The position tracking algorithm propagates the known
initial MT location s;—; using IMU data in the prediction
step (lines 6 and 7). The propagated location is then updated
by matching it to the set of candidate locations (lines 8—10)
that are covered by the current serving cell antenna, after de-
scending sort of the candidates with respect to weight (line
11), the new MT position (line 12) is simply the candidate of
the minimum Euclidean distance to the location computed
in the prediction step.

3.5. Global localization

The global localization algorithm has no information about
the accurate MT position at the beginning. Thus, it has to
resolve the location ambiguity and converge to the true po-
sition of the MT by tracking all probable location candi-
dates and determine their weights every time the algorithm
is run. When this task is successfully fulfilled, the algorithm
is allowed to run in the position tracking mode (line 30 in
Algorithm 4).

As depicted in Algorithm 4, the global localization algo-
rithm is initialized by setting the travelled distance as mea-
sured by the IMU (trvld_dist) to 0, and Mode also to 0, that
is, global localization mode (line 3). The inputs (lines 4-7)
are the same as in Algorithm 3 except (line 5) that the global
localization algorithm tracks a number of hypothetical can-
didates, unlike the position tracking algorithm. The global
localization mode will run as long as the number of loca-
tion candidates » in the belief distribution Bel(s;— ) is greater
than a certain threshold a (line 9). During this mode, the
prediction and update steps will only run if the MT’s trav-
elled distance is greater than or equal to the database (or
map) resolution DBy (line 11), in order to allow position
state transition using the world model. The updated candi-
date will only be added to the new belief, if the location it
is matched to is not greater than DB, away (lines 19-21).
Therefore, the number of location candidates will decrease
after every run of the algorithm until their total number is
equal to or less than the threshold . In this very event, the
updated MT position is simply estimated as the average of
the remaining candidates, and the algorithm is switched to
the position tracking mode (lines 25-28). Note that the al-
gorithm returns no position estimates in the global local-
ization mode. First after switching to the position tracking
mode, location estimates are returned at the end of every up-
date run, see Algorithm 3. For both global localization and
position tracking algorithms only the cell-ID and TA but no
RxLev values of the network measurement report have been
utilized, see line 4 in Algorithm 3 and line 7 in Algorithm 4,
respectively.

The update step of the position tracking and global local-
ization algorithms has different roles. In the position tracking
algorithm, the position estimate is decided upon the result of
the update step, where in the global localization algorithm,
the update step works to reduce the size of the position belief

1: Algorithm GlobalLocalization(Bel(s;-1), a;-1, 0s, m;)
2:// Initialization, only at the first run of the algorithm
3: trvld_dist = 0, Mode = 0
4: // Inputs
5: Bel(s;-1) = DBeeip, = {xi» yi), i = 1,...,n
6: my = DBcellJDt = <xj7yjrwj>) ] = 1,. - <W]> =0
7: 0; = {cell-ID;, TA;}, a;_; = (trans;_1,0; ;)
8: if Mode = 0 // Global localization mode
9: ifn>a

trvld_dist = trvld_dist

+ \/(transH- cos 0;_1) + (trans;_; - sin 0,_,)*

11:  if trvld_dist = DB,
12: fori=1:ndo
13: x; = x; + trvld_dist- cos 6, // Prediction
14: yi = y;+tevld_dist- sin 0,y //...
15: forj=1:qdo

16: wj = 1/\/(x,-’ - xj)2 +(y; — yj)2 /I Update
17: endfor

18: (w;) = sort({w;)) // Descending sort

19: if (1/w; < DBhey)

20: add (xi, 1) to Bel(s;)

21: endif

22:  endfor

23:  trvld_dist = 0

24:  endif

25: elseif n <«

26: Mode =1

27: St = (Z,-xi/n,Z,-yi/n)

28:  endif

29: else if Mode = 1 // Position tracking mode

30:  PositionTracking (s;_1, a1, 0, m;) // Algorithm 3
31: endif

ArLcoriTHM 4: The global localization algorithm.

and makes it converge to a single estimate before allowing the
position tracking algorithm to run.

3.6. How global localization works

Solving the global localization problem for an MT in a GSM
network is described and illustrated in Figure 4. Location
state space, MT location belief, ground truth, and position
estimation (when available) are depicted in green, red, solid
blue diamond, and black, respectively. At start, the MT loca-
tion is not known and the algorithm has to handle all proba-
ble locations. Therefore, the location belief covers the whole
state space, see Figure 4(a). After approximately 27 m of mo-
tion, many location candidates have been found improbable
and thus have fallen out of consideration, as in Figure 4(b).
After another 38 m of movement, the location belief has con-
centrated on two parallel streets, see Figure 4(c). As the MT
moved further, the location belief has almost converged to
the true position as in Figure 4(d). Figure 4(e) shows how
the MT location ambiguity has been resolved after a total
movement of about 145 m with a position estimation error
of approximately 16 m.
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F1GURE 4: Global localization of a mobile terminal in a GSM environment.

4. EXPERIMENTS AND NUMERICAL RESULTS

4.1. Experimental setup

Measurements have been carried out in an E-Plus GSM
1800 MHz network by a pedestrian along a route of about
1940 m long in a 9km? semiurban environment in Han-
nover, Germany. There are six BSs, each with three sectors,
and four indoor antennas in the test area. RxLev measure-
ments of the serving BSs and up to six neighboring stations
along with GPS position fixes for ground truth have been

logged into a file for later offline evaluation. Furthermore,
the GPS positions have been used to generate IMU pseu-
domeasurements to simulate real ones in order to investigate
the feasibility of real IMU employment. Experimental results
are based on a single network measurement report (NMR) at
172 data points made during active calls. Each NMR contains
cell-IDs and signal strength levels of the serving BS antenna
and up to 6 neighbor BS antennas, and TA of the serving
BS. Signal strength levels from the serving BS recorded dur-
ing active calls are those of the traffic channel which under-
goes power management. However, the position tracking and
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FIGURE 5: Mean positioning error of the location estimation algo-
rithm.

global localization algorithms depend only on the TA mea-
surements that correspond to the serving BS wireless cover-
age, which can be sufficiently determined offline, taking ac-
count of power management effects. Thus, both algorithms
are not affected by power management operations. For the
location estimation algorithm, the network operator would
need to keep prediction information for all possible range of
the power management scheme in order to avoid the decrease
in accuracy performance.

4.2. Location estimation results

The positioning accuracy of the location estimation algo-
rithm has been investigated for the three presented point es-
timators and using different mapping resolutions. Figures 5—
7 show the mean, 67 percentile and 95 percentile position-
ing error, respectively, of the different point estimators with
varying world model resolution.

It can be seen that WAE and TAE always outperform the
MAP estimator. This is logical as both WAE and TAE con-
sider more location candidates of the posterior belief and
not only one candidate as the MAP estimator. Because in the
context of mobile terminal positioning using RxLev map-
ping, multimodal posterior belief distributions are gener-
ated; MAP estimation will choose only one peak of the pos-
teriors which is not a suitable estimation decision. On the
contrary, WAE and TAE consider more than the one peak
and thus can better represent the multimodal property of the
posterior distributions.

Figure 6 also shows that TAE outperforms WAE at the
67 percentile positioning error for all mapping resolution.
This might be due to the fact that WAE represents the
whole posterior belief distribution, while TAE considers only
the upper areas of the posteriors, that is, location candi-

67% positioning error
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—— MAP
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FIGURE 6: Sixty-seven percentile positioning error of the location
estimation algorithm.
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Positioning error (m)

Mapping resolution (m)

& MAP
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FiGUre 7: Ninety-five percentile positioning error of the location
estimation algorithm.

dates of higher weight. In Figure 5 we can see that the TAE
mean positioning error outperforms that of WAE only up
to the resolution of 25m. For the 30 m and 35m resolu-
tions both TAE and WAE perform almost the same. Start-
ing from the 40 m resolution, the TAE further slightly out-
performs the WAE. However, this does not indicate the su-
periority of TAE for all cases. In Figure 7, at the 95 per-
centile positioning error, the TAE is slightly better than the
WAE up to the 10m resolution. From the 15m resolu-
tion, the WAE starts to perform obviously better than the
TAE.
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FIGURE 9: Sixty-seven percentile positioning error of the location
estimation algorithm using WAE and TAE (k = 0.1%n—0.5%n).

The explanation is that for lower mapping resolution,
considering only upper areas of the posterior belief distribu-
tions to calculate a point estimate, as the TAE, will not cor-
rectly keep the information represented by the posterior dis-
tributions, and thus considering the whole distribution area,
as the WAE, is more representative.

In Figures 5, 6, and 7, TAE was calculated by averaging
the best 10% weighted location candidates, thatis, k = 0.1%n
in (15). The explanation in the previous paragraph can be
confirmed if we look at the results obtained when k is in-
creased up to 0.9%mn.

FiGure 10: Ninety-five percentile positioning error of the location
estimation algorithm using WAE and TAE (k = 0.1%n—0.5%n).
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FIGURE 11: Mean positioning error of the location estimation algo-
rithm using WAE and TAE (k = 0.65%#n-0.9%n).

Figures 8 and 9 show that increasing the number of loca-
tion candidates to average (k = 0.2%n—0.5%n) for TAE with
decreasing mapping resolution enhances the performance of
TAE at the mean and 67 percentile errors and always out-
performs the WAE. We can notice the same tendency in
Figure 10. However, k had to be over 0.2x# in order to out-
perform the WAE at the 95 percentile positioning error with
decreasing mapping resolution.

In Figure 11 we can see that for lower resolutions, in-
creasing k over 0.7xn does not enhance the TAE mean po-
sitioning error anymore. TAE will even perform worse than
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WAE for k over 0.8*n. Also at 67 percentile positioning error
in Figure 12 no TAE enhancement was achieved by increasing
k. However, at the 95 percentile in Figure 13 TAE performed
better till k reached 0.7 n.

From the previous discussion we can conclude that TAE
performs better with lower resolution mapping, that is, up to
15 m, when k is increased up to 0.5%n.

We can also generally notice that for all point estimation
methods, there is no significant decrease in the positioning
accuracy with decreasing mapping resolution. This shall be
further investigated by comparing these results with a lower
bound, for example, the Barankin bound [21] in a future
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FIGURE 14: The average execution time needed for a single iteration
of the location estimation algorithm using different mapping reso-
lutions on a standard PC with 2.2 GHz processor.

work. However, according to this notice it was of interest to
calculate how the run time of the location estimation algo-
rithm changes with varying mapping resolution. Figure 14
depicts the average computation time needed for a single
iteration on a standard PC with 2.2 GHz processor. At the
5m resolution the execution time was only 23 milliseconds.
Computation time then drops down exponentially to under
3 milliseconds as the mapping resolution decreases. However,
execution time is linearly proportional to the number of lo-
cation candidates.

These results can even suggest providing mobile-based
implementation for the location estimation algorithm, which
will supply customers with position information for low ac-
curacy applications at very low costs. World models can ini-
tially be installed in the mobile terminals and updated as
needed.

4.3. Position tracking results

Within position tracking experiments the initial location of
the MT is known. We have investigated the performance of
the tracking algorithm by varying oans from 1% to 10% of
the performed translation and o orient between 1° and 6°. The
quality of performance is determined according to reliability
and positioning errors in meters. We consider the MT position
is reliably tracked if the final position estimate error over the
whole experiment route of 1940 m is not greater than 50 m.
All experiments have been repeated 100 times in order to get
reasonable results. It can be seen in Figure 15, as expected,
that the higher 0tans and/or oorient are the lower the relia-
bility of the tracking algorithm along the test route. How-
ever, for Orans Up t0 4% and Oorient Up to 2°, reliability is over
90% of all repeats. With orient up to 2° and Orans up to 10%,
slightly less than 70% of the cases are successfully tracked.
When 0 orient is increased up to 5°, reliability is at least 60% of
all repeats even with the worst case of Gtrans. FOr 0orient equals
6°, the reliability drops below 60% as 0'yans is over 4%.
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20 T T T T T T T T

19

18

Mean positioning error (m)
—
~

SD of translation error (%)

—&— SD of orientation error = 1° ---- SD of orientation error = 4°
-O- SD of orientation error = 2° --¥%-- SD of orientation error = 5°
--%-- SD of orientation error = 3°  —%— SD of orientation error = 6°
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Figure 16 shows that the mean positioning error for the
different cases is between 15m and 20m. This is accurate
enough for most positioning applications and confirms the
suitability of IMU employment for reliable position track-
ing. The 67 percentile positioning error is always less than
20 m for all cases as illustrated in Figure 17. Figure 18 depicts
the 95 percentile position tracking error which is almost al-
ways between 52 m and 56 m and less than 62 m in the worst
cases.

4.4. Globallocalization results

In the global localization experiments, the reliability for the
different values of Otrans and Oorient has been investigated.
Global localization is considered reliable, that is, success-
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FiGuRre 17: Sixty-seven percentile position tracking error.
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F1GURrE 18: Ninety-five percentile position tracking errors.

ful if the MT position estimation error just before switch-
ing to position tracking mode (line 30 in Algorithm 4) is
not greater than 50 m in order to also allow reliable position
tracking. As shown in Figure 19, the global localization relia-
bility is over 80% and 65% for 0orient up to 3° and 6°, respec-
tively.

The effect of 0rans On the results is almost not significant,
because of the 5m map resolution that makes the update
step insensitive to the range of translation errors assumed.
Moreover, there is a slight tendency to increase the reliability
of global localization with increasing oans especially when
Oorient also increases, which seems counter intuitive. How-
ever, the fact is that large errors caused by high 0 orient values
are compensated by increasing Ons and the low map reso-
lution that prevents quick deviation from the true path.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, the mobile terminal positioning problem was
first classified into three types according to the availability
of (1) prior knowledge about the accurate initial position
of the MT and (2) motion measurement data. Solutions for
the three positioning problems have been suggested within
the Bayesian filtering framework. Also implementation algo-
rithms have been provided and the world model has been de-
scribed. Finally, experimental results in a live GSM network
have been presented and discussed. The paper showed that
reliable accurate position information can be obtained and
maintained for mobile terminal users by combining environ-
ment radio maps with IMU data.

As mentioned in Section 4.2, calculation of a theoretical
lower bound, for example, Barankin bound, on the location
estimation performance will be a topic for future work. Also
increasing the reliability of the position tracking and global
localization algorithms is a possible extension of the work.
This shall be achieved by further analysis of the behavior of
the algorithms when they incorrectly estimate the MT posi-
tion. Results should help develop mechanisms to recognize
and handle such situations. It is apparent that the proposed
algorithms could be applied in indoor environments as well
as for vehicle navigation applications.
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