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We present an adaptively accelerated Lucy-Richardson (AALR) method for the restoration of an image from its blurred and noisy
version. The conventional Lucy-Richardson (LR) method is nonlinear and therefore its convergence is very slow. We present a
novel method to accelerate the existing LR method by using an exponent on the correction ratio of LR. This exponent is computed
adaptively in each iteration, using first-order derivatives of the deblurred image from previous two iterations. Upon using this
exponent, the AALR improves speed at the first stages and ensures stability at later stages of iteration. An expression for the
estimation of the acceleration step size in AALR method is derived. The superresolution and noise amplification characteristics of
the proposed method are investigated analytically. Our proposed AALR method shows better results in terms of low root mean
square error (RMSE) and higher signal-to-noise ratio (SNR), in approximately 43% fewer iterations than those required for LR
method. Moreover, AALR method followed by wavelet-domain denoising yields a better result than the recently published state-
of-the-art methods.
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1. INTRODUCTION

Image deblurring is a longstanding linear inverse problem
and is encountered in many applications such as remote sens-
ing, medical imaging, seismology, and astronomy. Generally,
many linear inverse problems are ill-conditioned since ei-
ther inverse of the linear operators does not exist or is nearly
singular, giving highly noise sensitive solutions. In order to
deal with ill-conditioned nature of these problems, a large
number of linear and nonlinear methods have been devel-
oped. Most linear methods are based on the regularization
(see [1,2]) while nonlinear methods are developed under
Bayesian’s framework and are solved iteratively (LR, max-
imum entropy, Landweber) [1-8]. The nonlinear methods
under Bayesian-wavelet framework have been reported re-
cently (e.g., see [9, 10]). The main drawbacks of these nonlin-
ear methods are slow convergence and high-computational
cost.

The simplicity and ease in implementation and computa-
tion of LR method make it preferable among all the nonlinear

methods for many applications. Many techniques for acceler-
ating the LR method have been given by different researchers
[3, 11-16]. All of these methods use additive correction term
which is computed in every iteration and added to the re-
sult obtained in previous iteration. In most of these methods,
the correction term is obtained by multiplying an estimate of
gradient of objective function with an acceleration param-
eter. One method that uses line search approach [12] ad-
justs acceleration parameter to maximize the log-likelihood
function at each iteration and uses the Newton-Raphson it-
eration to find its new value. It speeds up the conventional
LR method by a factor of 2 ~ 5, but requires a prior limit
on acceleration parameter to prevent the divergence. In the
steepest ascent method [13], the acceleration is achieved by
maximizing a function in the direction of the gradient vec-
tor. The main problem with gradient-based methods, such as
steepest ascent and steepest descent, is the selection of opti-
mal acceleration step. Large acceleration step speeds up the
algorithms, but it may introduce error. If the error is ampli-
fied during iteration, it can lead to instability.
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A gradient search method proposed in [14-16] known
as conjugate gradient (CG) method is better than the steep-
est ascent method. The CG method requires gradient of
the objective function and an efficient line search tech-
nique. However, for the exact maximization of objective
function, this method requires additional function evalu-
ations taking significant computation time. Another class
of acceleration methods, based on statistical considera-
tion rather than numerical overrelaxation, is discussed in
[17].

One of our objectives in this paper is to give a sim-
ple and efficient method which overcomes difficulties in
previously proposed methods. In order to cope with the
problems of earlier accelerated methods, we propose AALR
method, which requires minimum information about the
iterative process. Our proposed method uses the multi-
plicative correction term instead of using additive correc-
tion term. The multiplicative correction term is obtained
by using an exponent on the correction ratio in the LR
method. This exponent is calculated adaptively in each it-
eration, using first-order derivatives of deblurred image
from the previous two iterations. The positivity of pixel
intensity in the proposed acceleration method is auto-
matic since multiplicative correction term is always posi-
tive, while in the other acceleration methods based on ad-
ditive correction term, the positivity is enforced manually
at the end of each iteration. Thus, one bottleneck is re-
moved.

Another objective of this paper is to discuss super-
resolution and nature of noise amplification of the pro-
posed accelerated LR method. Superresolution means restor-
ing the frequency beyond the diffraction limit. It is of-
ten said in the support of nonlinear methods that they
have superresolution capability, but very limited analyti-
cal analysis for superresolution is available. In [18], an
analytical analysis of superresolution is performed assum-
ing that the point spread function (PSF) of the sys-
tem and intensity distribution of an object have Gaus-
sian distribution. In this paper, we present general analyt-
ical interpretation of superresolving capability of the pro-
posed accelerated method and confirmed it experimen-
tally.

It is a well-known fact about nonlinear methods based
on maximum likelihood that the restored images begin to
deteriorate after a certain number of iterations. This de-
terioration is due to the noise amplification from one it-
eration to another. Due to the nonlinearity, an analyti-
cal analysis of the noise amplification for nonlinear meth-
ods is difficult. In this paper, we investigate the pro-
cess of noise amplification qualitatively for the proposed
AALR.

The rest of the paper is organized as follows. Section 2
describes the observation model and the proposed AALR
method. Also an expression for estimating acceleration step
size in AALR method is derived. Section 3 presents analyti-
cal analysis for the superresolution and noise amplification
in the proposed method. Experimental results and discus-
sions are given in Section 4. The conclusion is presented in
Section 5 which is followed by references.

2. ADAPTIVELY ACCELERATED
LUCY-RICHARDSON METHOD

2.1. Observation model

Consider an original image, size M X N, blurred by shift-
invariant PSE h, and corrupted by Poisson noise. Observa-
tion model for the blurring in case of Poisson noise is given
as [19]

y ~ P((h®x)(2)). (1)

Alternatively, observation model (1) can be expressed as

y(2) = (h @ x)(2) +n(2), (2)

where P denotes the Poisson distribution, ® is convolution
operator, z is defined on a regular M XN lattice Z = {m;, m; :
my =1,2,....,M,my = 1,2,...,N}, and n is zero-mean with
variance var{n(z)} = (h ® x)(z).

Blurred and noisy image, y, has mean E{y(z)} = (h ®
x)(z) and variance af(z) =var{y(z)} = (h®x)(z). Thus, the
observation variance, of(z), is signal-dependent and conse-
quently spatially variant. For mathematical simplicity, obser-
vation model in (2) can be expressed in a matrix-vector form
as follows:

y=Hx+1n, (3)

where H is the blurring operator of size MN X MN cor-
responding PSF h; X, ¥, and 7 are vectors of size MN X 1
containing the original image, observed image, and sample
of noise, respectively, and are arranged in a column lexico-
graphic ordering. The aim of image deblurring is to recover
an original image, X, from its degraded version .

2.2. Accelerated Lucy-Richardson method

We derive the accelerated LR method, in framework of max-
imum likelihood [1, 2], considering that the observed image
¥ is corrupted by the Poisson noise. If we consider only blur-
ring, 7 is zero in (3), then the expected value at the ith pixel
in the blurred image is >’ jh,-jxj, where h;; is (i, j)th element
of matrix H and x; is the jth element of vector X. Because of
Poison noise, the actual ith pixel value y; in ¥ is the one real-
ization of Poisson distribution with mean >’ jhijxj. Thus, we
have the following relation:

(3 jhijx;) " et

o )

pyil%) =

Each pixel in blurred and noisy image, ¥, is realized by

an independent Poisson process. It is important to note that

the assumptions about statistical independence are acknowl-

edged to be generally incorrect. They are made solely for the

purpose of mathematical tractability. Thus, the likelihood of
getting noisy and blurred image, ¥, is given by

(Zjhijxj)yie(zjhijxj))
yil '

p(I/%) = H( (5)

i
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An approximate solution of (3), for given observed image ,
is obtained by maximizing the likelihood p(3/ %), or equiva-
lently log-likelihood log p(¥/ X). From (5), we have

L=logp(y|%)

=2 ()/i log (Zhiij> = 2.hijx; — log (J’i!)>~ ©
i j j

Differentiating L with respect to x;, and setting dL/dx; = 0,
we get the following relation:

i ) =
2.hi (Zjh,-jxj 1) . 7

i

By rearranging (7),

g (2 )=
w(L) - @

where superscript T denotes transpose of matrix. In (8),
v | Hx denotes the vector obtained by componentwise di-
vision of ¥ by Hx. As formulated in [4, 5], we can derive
(8), without any prior information about the noise type or
amount of noise. Introducing exponent q on both sides of
(8), we get the relation

@

Equation (9) is nonlinear in X, and it is solved iteratively. Its
iterative solution in kth iteration is as follows:

_ q
xk+1 =xk[HT<nyk>] . (10)

We observed that iteration given in (10) converges only
for some values of g lying between 1 and 3. Large values of
q (=3) may give faster convergence but with the increased
risk of instability. Small values of g (= 1) lead to slow con-
vergence and reduce the risk of instability. Between these
two extremes, the adaptive selection of exponent g provides
means for achieving faster convergence while ensuring sta-
bility. Thus, (10) with adaptive selection of exponent q leads
to the AALR method. Putting g = 1 in (10), we get the fol-

lowing equation:
k1 _ =k | w5 (Y
T [ (kaﬂ "

Equation (11) is the same as conventional LR method [2, 4,
5].

2.3. Adaptive selection of exponent g

The choice of g in (10) mainly depends on the noise, 7,
and its amplification during iterations. If the noise is high,
a smaller value of ¢ is selected and vice versa. Thus, conver-
gence speed of proposed method depends on the choice of

the parameter q. The drawback of this accelerated form of
LR method is that the selection of exponent g has to be done
manually by hit and trial [6]. We overcome this serious limi-
tation by proposing a method in which q is computed adap-
tively as the iterations proceed. Proposed expression for g is
as follows:

N Ivxs ) (Ival
q(k+l)—exp(||vxk_1”) <||VX1|)) (12)

where V& stands for first-order derivative of ¥ and ||-|| de-
notes the L, norm. The main idea in using first-order deriva-
tive is to utilize the sharpness of image. Because of the blur-
ring, the image becomes smooth, sharpness decreases, and
edges are lost or become weak. Deblurring makes image non-
smooth, and increases the sharpness. Hence, the sharpness of
deblurred image, X*, increases as iterations proceed. For dif-
ferent levels of blurs and different classes of images, it has
been found by experiments that L, norm of gradient ratio
| VXX [1/ VZE1]| converges to one as a number of iterations
increase. Accelerated LR method emphasizes speed at the be-
ginning stages of iterations by forcing g around three. When
the exponential term in (12) is greater than three, the sec-
ond term, ||[VX*|/|Vx!|l, limits the value of q within three
to prevent divergence. As iterations increase, the second term
forces g towards the value of one which leads to stability
of iteration. By using the exponent, g, the method empha-
sizes speed at the first stages and stability at later stages of
iteration. Thus, selecting g given by (12) for iterative solu-
tion (10) gives accelerated LR method for image deblurring.
The positivity of pixel intensity is ensured in adaptive accel-
erated LR method, since correction ratio in (10) is always
positive. In order to initialize the accelerated LR method, the
first two iterations are computed using some fixed value of
q (1 = g < 3).In order to avoid instability at the start of
iteration, g = 1 is a preferable choice.

2.4. Anexpression for estimating acceleration
step size

In iterative methods for solving nonlinear equations, suc-
cessive steps trace a path towards the solution through the
multidimensional space. The aim of acceleration is to move
faster along this path or close to it, which can be achieved
by taking larger step size. If this is possible, then the acceler-
ated method would result in the same solution. Correction
term in the proposed AALR method is multiplicative, which
makes it difficult to predict the step size and its direction in
each iteration of this method.

In order to estimate step in AALR, we rewrite the term

HT(?/ Hx") in (10) as follows:

HT(%) - 1+H @, (13)
Hx
where #* is a relative fitting error and given as
= _ Tk
—k (}/ — Hx )
T (14)
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It is observed that |7¥| < 1 for sufficiently large k. Moreover,
by the Riemann-Lebesgue lemma, it is possible to show that
the sum H”%* in (13) has value very close to zero [2]. Raising
exponent g in both sides of (13), we get

—r( ¥ \]? — T4
W) e o
7' ()] - nem'e (15)
Expanding the left-hand side of (15) using Taylor series ex-
pansion and retaining only the first-order term, we arrive at
the following relation:

[ﬁ%%)]q ~1+q*H . (16)

Substituting (16) into (10), we get the following relation:

1~ %k 4 g H . (17)

From (7) and (8), it is clear that H' % is the gradient of
log-likelihood function L. Thus, the approximate step length

in AALR is q*%kﬁTﬁk in the direction of gradient of log-
likelihood function.

2.5. Computational considerations

For implementation of LR and AALR methods, we ex-
ploit the shift-invariant property of the PSE. In linear shift-
invariant system, convolution in spatial domain becomes
pointwise multiplication in Fourier domain [20]. The 2D fast
Fourier transform (FFT) algorithm is used for fast computa-
tion of convolution [20].

In the LR and the AALR methods, the evaluation of the
array H (y/Hx*) is the major task in each iteration. This
has been accomplished, using FFT 12(5,71), x*(&n) of the
PSE, h, and the image corresponding X*, in four steps as fol-
lows. (1) Form Hx* by taking inverse FFT of the product
ﬁ(f,n)?ck(f, 7). (2) Replace all element less than 1 by 1 in
Hx*, and form the ratio 3/ Hx® in the spatial domain. (3)
Find the FFT of the result obtained in step 2, ¥/ Hx*, and
multiply this by complex conjugate of h(E, 7). (4) Take the
inverse FFT of the result of step 3 and replace all negative
entries by zero.

The FFT is the heaviest computation in each iteration of
the LR and AALR methods. Thus, the overall algorithm com-
plexity of these methods is O(MN log MN).

3. SUPERRESOLUTION AND NOISE AMPLIFICATION
IN AALR METHOD

3.1. Superresolution

It is often mentioned that the nonlinear methods have su-
perresolution capacity, restoring the frequency beyond the
diffraction limit, without any rigorous mathematical sup-
port. In spite of the highly nonlinear nature of AALR
method, we explain its superresolution characteristic quali-
tatively by using (17).

An equivalent expression of (17) in the Fourier domain
is obtained by using convolution, correlation theorem as [20]

MU vk e 9 vkiF * (AT Th(F
X = X5 + LA XHP o B (HUREL - (18)

where superscript * denotes the conjugate transpose of a ma-
trix; X**1, Xk and U* are discrete Fourier transforms of size
M XN corresponding to the variable in lower case letters; and
f is 2D frequency index. H is the Fourier transform of PSF
and it is known as optical transfer function (OTF). The OTF
is band limited, say, its upper cutoff frequency is f¢, that is,
H(f) = 0for | f| > fc. In order to make the explanation of
superresolution easy, we rewrite (18) as follows:

XRUF) = XE(f) + s XA (F = POV = ).
>

(19)

At any iteration, the product H* U* in (19) is also band
limited and has the frequency support, at most as that of H.
Due to the multiplication of H*U* by X* and the summa-
tion over all available frequency indexes, the second term in
(19) is never zero. Indeed, the inband frequency components
of X* are spread out of the band. Thus, the restored image
X**1(f) has frequencies beyond cutoff frequency fc. The in-
crease in the magnitude of spectrum, at particular iteration,
is g times more than conventional LR method. Reliability of
the restored frequency beyond the diffraction limit can be as-
sured by incorporating the prior information about true ob-
ject in restoration process. This leads to another class of de-
blurring methods based on penalized maximum likelihood.

3.2. Noise amplification

It is worth noting that complete recovery of frequencies
present in true image from the observed image requires large
number of iterations. But due to noisy observation, noise also
amplifies as iterations increase. Hence, restored image may
become unacceptably noisy and unreliable for a large num-
ber of iterations.

Noise in (k+1)th iteration is estimated by finding the cor-
relation of the deviation of X**1(f) from its expected value
E[Xk“(?)]. This correlation is the measure of noise and is
given as follows:

‘uéc;rl(?’?’) _ E[{Xk+1(7) _ E[Xk+l(7)]}
<X (F) — EX ()1,
In order to simplify (20), we assume that the correla-

tion at two different spatial frequencies is independent, that
is, vanishing correlation at two different spatial frequencies.
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(d)

FIGURE 1: “Cameraman” image: (a) original image; (b) noisy-blurred image: PFS 5 x 5 uniform box-car, BSNR = 40 dB; (c) restored image
by LR corresponding maximum SNR in 355 iteartions; (d) restored image by AALR corresponding maximum SNR in 200 iterations.

Substituting X**! from (19) in (20) and using the above as-
sumption, we get the following relation:

NE(F) = NE ()
7 S
= o 2N HO) [T W) NE(F = v)

ke SR U E( X DI) 20

2q * =2
—nge(H WU*@) [EE ()]

where N¥(f) = pk(f, f) represents the noise in X* at fre-
quency f. Derivation of (21) is given in the appendix. From
second and third terms of (21), it is clear that in AALR
method noise amplification is signal-dependent. Moreover,
noise from one iteration to the next is cumulative. Thus, us-
ing many iterations, it is not guaranteed that the restored
quality of the image will be acceptable. We can find total am-
plified noise by summing (21) over all MN frequencies.

TasLE 1: Blurring PSF, BSNR, and SNR.

Experiment Blurring PSF BSNR [dB] SNR [dB]
Expl 5 % 5 Box-car 40 17.35
Exp2 5 % 5 Box-car 32.76 19.34

TABLE 2: SNR, iterations, and computation time in the LR and
AALR [10, 21, 22] methods for Expl.

Method SNR (dB) Iterations Time (s)
LR 24.54 355 158.72
AALR 24.54 200 89.45
WaveGSM_TI [10] 21.63 504 2349.40
ForWaRD [21] 25.17 — —
RI [22] 25.50 — —

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present a set of two experiments demon-
strating the performance of the proposed AALR method in
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FIGURE 2: “Cameraman” image: (a) SNR of the LR (dotted line) and SNR of the AALR (solid line); (b) RMSE of the LR (dotted line) and

RMSE of the AALR (solid line).

comparison with LR method. Original images are Camera-
man (experiment 1) and Lena (experiment 2) both of size
256 x 256. The corrupting noise is of Poisson type for both
experiments. Table 1 displays the blurring PSE, BSNR, and
SNR for both experiments. The level of noise in the observed
image is characterized in decibels by blurred SNR (BSNR)
and defined as [19]

— —\2
BSNR = 10log,, [ > (Hx - (1/MN) Y Hz) /UZMN]
_ _\2 _

=10log,,| X (Hx-(/MN) S 7ix) /3 (-7 |

(22)

o is the noise standard deviation. The following standard

imaging performance criteria are used for the comparison of
AALR method and LR method:

RMSE = \/(I/MN) S (k- %)%

(23)
2 2
SNR = 10log,, (> 171/ Y |- 7] ).

Most of these criteria actually define the accuracy of approx-
imation of the image intensity function.

Figures 1(c), 1(d) and Figures 3(c), 3(d) show the re-
stored images, corresponding to the maximum SNR, of ex-
periments one and two. It is clear from these figures that the
AALR gives almost the same visual results in less number of
iterations than LR method for both experiments. Figures 2
and 4 show the variations of SNR and RMSE versus iterations
of both experiments. It is observed that the AALR has faster

increase in SNR and faster decrease in RMSE in comparison
to that of LR method, for both experiments. It is clear that
the performance of the proposed AALR method is consis-
tently better than the LR method. In Figures 5(a), and 5(b),
it can be seen that the exponent g has value near three at
the start of iterations and is approaching to one as iterations
increase. Thus, AALR method prefers speed at initial stage
of iterations and stability at later stages. It can be observed
in Figures 2 and 4 that SNR increases and RMSE decreases
up to certain number of iterations and then SNR starts de-
creasing and RMSE starts increasing. This is due to fact that
the noise amplification from one iteration to next iteration is
signal-dependent as discussed in Section 3.2. Thus, by using
many iterations, there is no guarantee that the quality of the
restored image will be better. Thus, to terminate the itera-
tions corresponding to the best result, some stopping criteria
must be used [23].

In order to illustrate the superresolution capability of the
LR and AALR, we present spectra of the original, blurred,
and restored images in Figure 6 for the first experiment. It is
evident that the restored spectra, as given in Figures 6(c) and
6(d), have frequency components that are not present in ob-
served spectra as in Figure 6(b). But the restored spectra are
not identical to those of the original image spectra as shown
in Figure 6(a). In principle, an infinite number of iterations
are required to recover the true spectra from the observed
spectra using any nonlinear method. But due to noisy obser-
vation, noise also gets amplified as the number of iterations
increases and the quality of restored image degrades.

Table 2 shows the SNR, number of iterations and compu-
tation time of the LR, proposed AALR, WaveGSM_T1 [10],
ForWaRD [21], and RI [22] algorithms, for experiment 1.
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FIGURE 3: “Lenna” image: (a) original image; (b) noisy-blurred image; PSF 5 X 5 uniform box-car, BSNR = 32.76 dB; (c) restored image by
LR corresponding maximum SNR in 89 iterations; (d) restored image by AALR corresponding maximum SNR in 52 iterations.

The Matlab implementation of the ForWaRD and the
RI is available at http://www.dsp.rice.edu/software/ and
http://www.cs.tut.fi/ ~lasip/#ref_software, respectively.

It is evident from Table2 that the proposed AALR
method performs better in terms of SNR improvement, con-
sumed iterations, and computation time than the other it-
erative methods. The SNR achieved in AALR method is less
than ForWaRD and RI (~ 1 dB). This is due to the fact that
in the ForWaRD and the RI, deblurring is performed fol-
lowed by denoising. The use of wavelet-domain Wiener fil-
ter (WWEF) [21, 24] as the postprocessing denoising after de-
blurring by AALR achieves SNR of 26.10. Thus, our proposed
AALR method with WWEF yields higher SNR in comparison
to other methods.

5. CONCLUSIONS

In this paper, we have proposed an AALR method for image
deblurring. In the proposed method, a multiplicative cor-
rection term, calculated using an exponent on the correc-
tion ratio of conventional LR method, has been used. The
proposed empirical technique computes corrective exponent
adaptively in each iteration using first-order derivative of

the restored image in the previous two iterations. On use of
this exponent, the AALR method emphasized speed and sta-
bility, respectively, at the early and late stages of iterations.
The experimental results were found to support that AALR
method gives better results in terms of low RMSE, high SNR,
even when 43% of iterations are fewer than conventional LR
method. This adaptive method has simple form and can be
very easily implemented. Moreover, computations required
per iteration in AALR are almost the same as those in con-
ventional LR method. AALR with WWF yields better result,
in terms of SNR, than the recently published state-of-the-
art methods [10, 21, 22]. An expression for predicting the
acceleration step in AALR method has also been derived.
The noise amplification and restoration of higher-frequency
components, even beyond those present in observed image,
result in very complex restoration process. We explained the
superresolution property of the accelerated method analyti-
cally and verified it experimentally. We have also done ana-
lytical analysis of our proposed method, which confirms its
signal-dependent noise amplification characteristic.

In the AALR, we have assumed that the PSF is known
and shift-invariant. However, in many cases, the PSF is un-
known and shift-variant. In such blind deblurring problem,
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FIGURE 4: “Lenna” image: (a) SNR of the LR (dotted line); SNR of the AALR (solid line); (b) RMSE of the LR (dotted line), RMSE of the

AALR (solid line).

the PSF is estimated from noisy and blurred observations. It
is an open problem to extend the proposed AALR method to
perform deblurring as well as the estimation of PSE. The pro-
posed AALR method is also not applicable for shift-variant
(spatially varying) PSF, however, we are working in this di-
rection.

APPENDIX
DERIVATION OF (21)

For making mathematical step understandable, we rewrite
(19) as follows:

XML = XR(f) + YE(F), (A1)

where

Y&(F) = ﬁzwf(? —WH*(VU*(»). (A.2)

For estimating noise amplification during iteration, we use
covariance analysis. By using covariance, we find the rule of
how spatial frequency evolves from one iteration to next it-
eration. Covariance of X**! for two different spatial frequen-
cies is given as

W) = E[IXM(F) - EXMU (D]
< {XR(F) - EIXU O,

Using (A.1) in (A.3) and after the rearrangement of terms,
we get the following relation:

T
=k (5 )+ i 5 ) + - (. ) + oy (F ).
(A.4)
Using (A.2) and (A.3), we get

W F) = Mz;z;;{H(V)H*(V’)U(V)U"*(V')
x E[X*(f = v)X¥ (f = )]}
- M?;z;;{me*(v')uwwk*(v')
x E[X*(f = ]EXK(F - )]},

(A.5)
us (F. )

? — —
= LSS HOH UG (s (F-n T )
v (A.6)

Using (A.2), we get
#I;(Y*(?’?l)
_ 4 k* kXK (f —
- L ;{H(V)U WMEX* ()X (f -]}

q * T * T L
— vy 2 HOUN WEXE(OIEXS (F - )]}
(A7)

v
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FIGURE 5: Iteration versus g. (a) Cameraman image, (b) Lenna image.

(c) (d)

FIGURE 6: Spectra of images from Figure 1. All spectra are range compressed with log,,(1 + |-|%). (a) Original image in Figure 1(a). (b)
Blurred image in Figure 1(b). (c) Figure 1(c). (d) Figure 1(d).
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Similarly, [9] M. A. T. Figueiredo and R. D. Nowak, “An EM algorthim for
wavelet-besed image restoration,” IEEE Transactions on Image
k i ] a
.“X*Y(f)f ) Processing, vol. 12, no. 8, pp. 906-916, 2003.

= 3 LU U B (OXHT = ]}
= i 2 U WELX (FIELXA(F -],
(A.8)
We further assume that one spatial frequency is indepen-
dent from the other, that is, correlation term at two different

spatial frequencies are zero. From (A.4), (A.6), (A.7), and
(A.8), we have

Uk (Fo )

[ 2 — —
= W (P P+ o S THO) P UR0) Pt (F = =)

T %;Re(H*(v) U)E(1X5(P)1°)

2q % —\ (2
—M—NgRe(H MU @) [EXSO)

(A.9)

where Re denotes the real part of complex quantity.
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