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This paper analyzed the implementational aspects of the contourlet filter bank (or the pyramidal directional filter bank (PDFB)),
and considered its application in image coding. First, details of the binary tree-structured directional filter bank (DFB) are
presented, including a modification to minimize the phase delay factor and necessary steps for handling rectangular images. The
PDFB is viewed as an overcomplete filter bank, and the directional filters are expressed in terms of polyphase components of
the pyramidal filter bank and the conventional DFB. The aliasing effect of the conventional DFB and the Laplacian pyramid
to the directional filters is then considered, and the conditions for reducing this effect are presented. The new filters obtained
by redesigning the PDFBs satisfying these requirements have much better frequency responses. A hybrid multiscale filter bank
consisting of the PDFB at higher scales and the traditional maximally decimated wavelet filter bank at lower scales is constructed
to provide a sparse image representation. A novel embedded image coding system based on the image decomposition and a
morphological dilation algorithm is then presented. The coding algorithm efficiently clusters the significant coefficients using
progressive morphological operations. Context models for arithmetic coding are designed to exploit the intraband dependency
and the correlation existing among the neighboring directional subbands. Experimental results show that the proposed coding
algorithm outperforms the current state-of-the-art wavelet-based coders, such as JPEG2000, for images with directional
features.
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1. INTRODUCTION

Wavelet and filter bank (FB) have been one of major research
topics in signal processing for the last two decades [1]. It
is shown that the continuous wavelet functions and their
associated regular FBs are optimal representations of one
dimensional piecewise smooth signals [2]. However, the
direct extension of wavelet to two dimensions by the tensor
product of one dimensional wavelet is no longer optimal
for image representation due to the intrinsic geometri-
cal structure of typical natural images [3]. In short, the
separable wavelets are still optimal in representing point
discontinuities in a two-dimensional signal, but not effec-
tive in capturing line discontinuities, which correspond to
directional information in the image. Therefore, integrating
geometric regularity in the image representation is a key
challenge to improve the performances of current image
coders.

Recently, Candès and Donoho constructed the curvelet
transform [4], and proved that it is an essentially optimal
representation of two variable functions, which are smooth
except at discontinuities along C2 (twice differentiable)

curve. The nonlinear approximation of a function f , f (c)
M ,

reconstructed by M curvelet coefficients has an asymptotic

decay rate of ‖ f − f (c)
M ‖2 ≤ CM−2(log2M)3. This decay

rate of the approximation error is a significant theoretical
improvement compared to those by wavelet and Fourier
coefficients, which are O(M−1) and O(M−1/2), respectively
[2]. Since the space of smooth functions with singularities
along C2 curves is similar to that of natural images with
regions of continuous intensity and discontinuous along
smooth curves (edges), there is a strong motivation for
finding a similar transform in the discrete domain [3].

In [5], Do and Vetterli proposed the pyramidal direc-
tional filter bank (PDFB) to implement the contourlet
transform. The PDFB or contourlet FB is a combination of
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the Laplacian pyramid [6] and the conventional directional
filter bank (DFB) [7]. It unites the advantages of both
systems, which are multiresolution and multidirection. The
authors also show that the contourlet transform can achieve
the asymptotic optimal result as the curvelet transform.
Essentially, these conditions assume that the directional
filters have good passband and stopband characteristics in
the Fourier domain.

The contourlet transform and its associated FB has
been an active subject of research in recent years [8–12].
However, there has been no comprehensive work on the
detail implementation of the FB and its application in image
coding.

Because of its effectiveness in representing natural image,
the PDFB has been used in image coding recently [13–
16]. These works, however, are based on the original
implementation of the PDFB [5], which contains aliasing in
the directional filters. Therefore, the achieved coding results
are not comparable to state-of-the-art wavelet-based coders,
such as JPEG2000.

The contribution of this work is as follows. First,
we provide detail explanations of the DFB tree as it is
implemented in the contourlet FB [17]. Moreover, the
structure is modified to minimize the phase delay of the
DFB basis. We also demonstrate how to handle size-limited
images along the DFB tree and the effect of the binary
tree on the frequency supports of the DFB directional
filters. Our second contribution is to demonstrate several
aliasing problems of the DFB tree and the PDFB. It
is shown that some of these aliasing problems can be
attenuated by changing the design criteria of the filters
in the Laplacian pyramid of the PDFB. Finally, a novel
embedded image coding system based on the image decom-
position and a morphological dilation algorithm are pre-
sented. Experimental results show that the proposed coding
algorithm outperforms the current state-of-the-art wavelet-
based coders, such as JPEG2000, for images with directional
features.

1.1. Notations and paper outline

Here, we briefly review the notations and terminology used
in 2-D multirate system. For fundamental operations in
multidimensional 2-D systems, we refer to [18].

(i) Uppercase and lowercase bold face letters repre-
sent 2 × 2 square matrices and 2 × 1 column vectors,
respectively. For example, h(n) is a function defined on
the 2-D integer lattice (n1,n2)T , and π is (π,π)T . Bold
letters variables are employed frequently to compress math-
ematical expressions. For example, H(ω) is the same as
H(ω1,ω2).

(ii) The superscripts T and −T denote the transpose,
transpose of the inverse, respectively.

(iii) N (M) is defined as the set of integer vectors of the
form Mx, where x ∈ [0, 1)2. |M| represents the determinant
of the matrix M. The number of elements in N (M) is equal
to |M|.

(iv) The Fourier transform of a 2-D filter h(n) is defined
as

H(ω) =
∑

n∈Z2

h(n)e− jωTn, where ω = (ω1,ω2
)T
. (1)

(v)Matrix exponential notations greatly simplify 2-D
multirate system expressions. The notation zM is defined as

zM �
[
zm11

1 zm21
2 , zm12

1 zm22
2

]T
, where M =

[
m11 m12

m21 m22

]
.

(2)

Therefore, H(ωM) = H(MTω) = H(m11ω1 + m21ω2,
m12ω1 + m22ω2).

The following matrices are used to decimate subband
images in the PDFB:

Q0 =
[

1 −1
1 1

]
, Q1 =

[
1 1
−1 1

]
, R0 =

[
1 1
0 1

]
,

R1 =
[

1 −1
0 1

]
, R2 =

[
1 0
−1 1

]
,

R3 =
[

1 0
1 1

]
, D0 =

[
2 0
0 1

]
,

D1 =
[

1 0
0 2

]
, D2 =

[
2 0
0 2

]
= 2I.

(3)

Paper outline

The DFB is analyzed in detail in Section 2. We first show
how the DFB tree can be implemented by a binary-tree
structure, as in [5, 7, 19]. The tree structure is then modified
by adding delay and advanced blocks at appropriate places
to make sure that the phase delays of the overall directional
filters in the DFB tree are minimized. We also show how
rectangular images are handled along the tree structure. In
Section 3, the PDFB is viewed as an overcomplete FB, and
the equivalent directional filters are expressed in terms of
the polyphase components. The aliasing problems existing
in the PDFB structure are analyzed in Section 3.1, where
it is shown that most of the aliasing can be removed if
the two lowpass filters employed in the pyramid satisfy the
Nyquist criteria. Discussion and simulations in Section 3.2
demonstrate the improvement of the PDFB with new design
conditions. In Section 4, we describe a novel embedded
image coding scheme based on the image decomposition
obtained by a combination of PDFB and wavelet filter bank.
The morphological operation is employed progressively
to identify clusters of significant coefficients in each bit
plane. Context-based arithmetic coding is used to encode
these significant coefficients. We design the context models
so that the intraband and interband correlations of the
overcomplete PDFB can be well exploited. The coding
results and discussions are presented in Section 4.4. Section 5
concludes the paper. Parts of this work have been presented
in [20, 21].
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2. ITERATIVE TREE STRUCTURE FOR
THE DIRECTIONAL FILTER BANK

The DFB is a 2n-band maximally decimated, perfect recon-
struction (PR) FB introduced by Bamberger and Smith in
[7]. The original construction of an eight-band DFB, whose
frequency partitioning when n = 2 (or 3) is in Figure 1, uses a
two-level (or three-level) binary tree of two-channel FBs. The
construction is not easy to generalize to 2n-band DFB, n > 3,
since two-channel FBs with different passband supports are
needed at different levels of the tree. A new construction
of the DFB tree is proposed in [22]; its implementation is
included in the contourlet toolbox [5]. Figure 2 illustrates
this new implementation of the DFB for the case n up to 3.

In order to explain the DFB tree in Figure 2, we need to
define four matrices Pi, i = 0, 1, 2, 3 from the previously
defined matrices. The following matrix identities can be
easily checked:

P0 = R0Q0 = D0R3, P1 = R1Q1 = D0R2, (4)

P2 = R2Q0 = D1R1, P3 = R3Q1 = D1R0, (5)

RiDn
1 = Dn

1R2n
i , i = 0, 1, RiDn

0 = Dn
0R2n

i , i = 2, 3,
(6)

Q0Q1 = 2I, R0R1 = R2R3 = I. (7)

An unimodular matrix is a matrix with determinant equal
to ±1. A resampling matrix is an unimodular matrix having
integer elements. The matrices Ri, i = 0, . . . , 3, as well as
Sn
i , n = 3, i = 1, . . . , 2n, at the end of the DFB tree are

resampling matrices. The exact values of Sn
i are later defined

in (10) and (11). When an image is down- or upsampled
by a resampling matrix, its pixels are simply reorganized (or
the image is resampled). For example, the rectangular image
with white line border in Figure 8(b) can be obtained by
downsampling the corresponding image in Figure 8(a) by R3.

The DFB binary tree in Figure 2 is constructed by using
fan FBs. However, these fan FBs use different decimation
matrices. In the first level, the fan FB uses the decimation
matrix Q0; the two fan FBs at the second level use the
decimation matrix Q1. If we switch the decimation block
Q0 at the first level and the fan FBs at the second level
and apply multirate FB theory, it is straightforward to show
that the overall filters have frequency supports as depicted
in Figure 1(a) and the decimation ratios of all four output
bands are 2I. The expressions for these four directional filters

from fan filters H
( f )
0 (z) and H

( f )
1 (z) are in (12)–(15).

Beginning from the third level, four types of resampled
fan FBs referred to as F0,F1,F2, and F3 are used. The
positions of these four resampled fan FBs at the third
level of the DFB tree are illustrated in Figure 2. Each of
these fan FBs has two outputs: 0 and 1. We call them
resampled fan FBs because the input of Fi is resampled by
the unimodular matrix Ri before entering the fan filters. If we
switch the resampling matrices and the fan filters, the shape
of the equivalent frequency response of the fan filter will be
parallelograms, as demonstrated in Figure 3.

One can obtain a 2n+1-band DFB from the tree structure
of the 2n-band DFB by appending fan FB’s F2k+p at outputs

p of F2k and F2k+1 of the nth level, where k, p = 0, 1. This
iterative division of the frequency plane to produce finer
direction can be explained as follows. Let us consider the first
subband (number 0) of a four-band DFB, which is denoted
as x(n). This signal is also the input of a fan FB of type
F0 to obtain eight-band DFB (Figure 2). Since the outputs
of a four-band DFB are decimated by 2I, the frequency of
the subband 0 in Figure 1(a) is magnified by 2 in both ω1

and ω2 directions, as illustrated in Figure 4(a). The frequency
regions that correspond to band 0 and 1 in an eight-band
DFB (Figure 1(b)) are mapped to the two darker and the two
lighter regions, respectively. On the other hand, by switching
the resampling block R0 and the fan filters, the effective
support of the fan FB type F0 has parallelogram shapes as
illustrated in Figure 3. One can see that indeed the two fan
filters in fan FB type F0 in Figure 3 separate subband 0 and
subband 1 of an eight-band DFB.

Following multirate signal processing theory, when the
signal x(n) is decimated by P0, the frequency content of X(ω)
is mapped to the support of X(P−T0 ω) (Figure 4(b)). By the
observation of the two Figures 3(b) and 4, we can see that in
order to obtain a sixteen-band DFB from eight-band DFB,
we need to attach fan FB type F0 and F1 on the two outputs
of the FB type F0 at the third level of the DFB tree.

In order to determine the subband number at the output
of the resampled fan FBs Fi for a 2n-band DFB (n ≥ 3), we
only have to follow the path of the subband in the binary tree
and collect the output number at each level of the tree. The n-
digit number is the binary form of the subband number (see
Figure 2 for the case of an eight-band DFB). The numbering
of directional subbands in 2n-band DFB has to start from 0,
beginning from the left to right, top to bottom, as depicted
in Figure 1.

After iteratively cascading fan FBs to create an n-level
tree for a 2n-band DFB, the equivalent decimation matrices
for each subband will not be the same. By following the
above cascading rule, the overall decimation matrix can be
determined. For example, the subband i in the 2n-band DFB
whose binary representation is i = m1m2 · · ·mn has the
following overall decimation matrix:

Pn
i =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q0Q1

n−1∏

j=2

Pmj , 0 ≤ i < 2n−1,

Q0Q1

n−1∏

j=2

P(mj+2), 2n−1 ≤ i < 2n,

(8)

where Pi’s are defined in (4) and (5). Using the matrix
identities from (4) to (7), we can further simplify the overall
decimation matrices as

Pn
i = D2

n−1∏

j=2

D0R(3−mj ) = diag
(
2

(n−1)
, 2
)n−1∏

j=2

R2(n− j−1)

(3−mj ) , (9)

for 0 ≤ i < 2n−1. The final step of the analysis FB is to
resample subbands by backsampling matrices Sn

i to make the
overall decimation matrix diagonal:

Sn
i =

(n−1∏

j=2

R2(n− j−1)

(3−mj )

)−1

=
n−1∏

j=2

R2(n− j−1)

(2+mj ) . (10)
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Figure 1: Frequency divisions of the conventional DFB [7] in case of (a) four-channel DFB and (b) eight-channel DFB.

First level

H
( f )
0

↓ Q0

H
( f )
1

↓ Q0

Second level

H
( f )
0

↓ Q1
0

H
( f )
1

↓ Q1

0

1

H
( f )
0

↓ Q1
1

1

H
( f )
1

↓ Q1

0
z1

Third level

F0

H
( f )
0

↓ R0 ↓ Q0
1 ↓ S3

1 1

↓ R0

H
( f )
1

↓ Q0
0 ↓ S3

0 0

F1
H

( f )
0

↓ R1 ↓ Q1
0 ↓ S3

2 2

H
( f )
1

↓ R1 ↓ Q1
1 ↓ S3

3 3

F3 H
( f )
0

↓ R3 ↓ Q1
1 ↓ S3

7 7

H
( f )
1

↓ R3 ↓ Q1
0 ↓ S3

6 6

F2
H

( f )
0

↓ R2 ↓ Q0
0 ↓ S3

4 4

H
( f )
1

↓ R2 ↓ Q0
1 ↓ S3

5 5

Figure 2: The iterative tree structure for the conventional DFB [22].
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Figure 3: Resampled fan FBs of types F0 and F1 used after level two of the binary DFB tree: (a) original structures and (b) equivalent

structures obtained by switching the resampling blocks and the filters H
( f )
i .
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Figure 4: Illustration of frequency mapping when a 2-D signal X(ω) is downsampled by P0, (a) X(ω) is the subband 0 in a four-band DFB
in Figure 1(a) decimated by 2I, (b) the support of X(P−T0 ω).

By similar derivation, one can show that the backsampling
matrices for subband i, 2n−1 ≤ i < 2n are

Sn
i =

n−1∏

j=2

R2(n− j−1)

mj
. (11)

The process in the synthesis tree is exactly the reverse of the
analysis side.

2.1. Phase correction in the DFB tree

Although the construction of the DFB using iterative fan
FB described above has many advantages, it also has one
potential problem. Typically, the two prototype fan filters
are linear phase with different phase delay. However, the
resampling blocks in the tree further deviate the overall phase
delay of the directional filters. In processing a size-limited
image, periodic or symmetric extension is used to obtain
PR without introducing additional samples. If symmetric

extension is used in the DFB tree, the phase delay at each level
should be less than the overall decimation ratio. For example,
if the phase delay of a particular subband filter at level n is
larger than the decimation ratio of that subband, then the
subband image will have an artificial border inside the image.
As a result, the two subband images at level n+1 coming from
that subband will have large areas of border artifacts.

2.1.1. Phase correction in the four-band DFB tree

In order to reduce the phase difference of these linear-phase
filters at each level of the tree, delay and advance blocks are
inserted at appropriate branches. In order to simplify our

discussion, let us assume that the first fan filter H
( f )
0 (z) used

in the tree in Figure 2 is zero phase, and the second filter

has a phase factor of e− jω1 , which means that H
( f )
1 (z) =

z−1
1 H

( f )
1r (z), where the subscription r of any filter in this

paper denotes that the transfer function is zero phase and
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that the corresponding frequency response is real. Available
methods for designing PR linear-phase fan FBs satisfying the
condition above can be found in many previous works such
as [23–25], and will not be discussed here. At the second level
of the tree, the equivalent frequency responses of the four
directional filters are

H0(ω) = H
( f )
0 (ω)H

( f )
0

(
ωQ0

) =: H0r(ω), (12)

H1(ω) = H
( f )
0 (ω)H

( f )
1

(
ωQ0

) =: e− j(ω1+ω2)H1r(ω), (13)

H2(ω) = H
( f )
1 (ω)H

( f )
0

(
ωQ0

) =: e− jω1H2r(ω), (14)

H3(ω) = H
( f )
1 (ω)H

( f )
1

(
ωQ0

) =: e− j(2ω1+ω2)H3r(ω). (15)

Since the equivalent decimation matrix of these filters is
Q0Q1 = 2I, the delays of the filter in n1 and n2 directions can
be kept less than the decimation ratios in those directions. In
this case, the decimation ratios in n1 and n2 are two. Since
the delay factor in H3(ω) is z−2

1 z−1
2 , an advance block z1 is

inserted at its output as in Figure 2.

2.1.2. Phase correction in the 2n-band DFB tree

As mentioned earlier, four types of resampled FBs (F0, F1,
F2, and F3) are used starting from level three of the tree
(Figure 2). Using the noble identities [18], switching the
resampling block and the fan filter in type Fi results in a
filter whose frequency response is of parallelogram shape
with corresponding decimation matrix Pi as defined in (4)
and (5). Figures 3(a) and 3(b), respectively, show examples of
the FBs before and after switching for types F0 and F1. It can
be shown that the overall decimation matrices starting from
level three to the end of the tree including the backsampling
matrices Sn

i are Dn−2
0 for subbands 0 to 2n−1 − 1 and Dn−2

1

for subbands 2n−1 to 2n − 1. Therefore, the task of the delay
block is to keep the distance between the center of symmetry
of the filter and that of the directional filter at level two less
than (2n−2, 1) for the first half, and (1, 2n−2) for the second
half of the tree. For example, the subband 0 of a 16-band
DFB can be obtained by cascading the resampled fan FB of
type F0 to output 0 of the eight-band DFB in Figure 2 (before
the backsampling matrix S3

0), as shown in Figure 5. Hence,
the equivalent filter H2−4

0 (z) (the superscript 2−4 represents
transition from level two to level four of the tree) for output

0 can be expressed in terms of the prototype filter H
( f )
1 (z) as

H2−4
0 (z) = H

( f )
1

(
zR0
)
H

( f )
1

(
zP0R0

)
. (16)

Since the phase factor of H
( f )
1 (z) is e− jω1 , the phase factors

of H
( f )
1 (zR0 ) and H

( f )
1 (zP0R0 ) are e− jω1 and e− j(2ω1+ω2),

respectively. Hence, the phase factor of H2−4
0 (z) is e− j(3ω1+ω2).

Since the equivalent decimation matrix of this path is D2
0 =

diag(4, 1) in order to keep the center of symmetry in the
range (4 − 1), an advance block zd2 with d = 1 is inserted
before the backsampling matrix S4

0 as illustrated in Figure 5.
Following similar analysis, it can be shown that for

an n-level tree DFB with n ≥ 4 in order for the overall
directional filters to have their centers of symmetry within
the decimation ratios, a delay block zd2 with d = ±2(n−4)

must be added to the resampled fan FBs of types F0 and
F1 at level n ≥ 4, as depicted in Figure 3. The value of d
is positive for subbands 0, 1, . . . , 2n−2 − 1 and negative for
subbands 2n−2, . . . , 2n−1 − 1.

For the cases of resampled fan FBs of types F2 and F3,

we assume that the first fan filter H
( f )
0 (z) is zero phase and

the second fan filter H
( f )
1 (z) has a phase factor of e− jω2 .

Therefore, a delay block zd1 with d = ±2(n−4) must be added
to the resampled fan FBs of types F2 and F3 at level n ≥ 4.
The value of d is negative for subbands 2n−1, . . . , 3× 2n−2 − 1
and positive for subbands 3× 2n−2, . . . , 2n − 1.

In order to demonstrate the effect of phase correction,
we display six basis functions of the contourlet FB without
and with phase correction in Figure 6. The six basis functions
are chosen to be more vertical to demonstrate horizontal
shift, and created by setting a coefficient of each selected
subband to one and all others to zero. The positions of
these six coefficients are in the same row and equally spaced
in columns. Hence, the ideal reconstruction would contain
six directional impulse responses nearly equally spaced in
horizontal direction (they will be exact if all filters are
zero phase). The upper and lower images in Figure 6 are
the reconstructions of the PDFB without and with phase
correction, respectively. We can see that without phase
correction, the centers of the six basis functions are shifted
(from the vertical dotted lines). This is minimized when
phase correction is applied. This property is very important
when one would like to take advantage of the interscale
and inter-band relationship between coefficients at the same
location [26].

2.2. Processing size-limited images along the DFB tree

One problem related to the implementation of the DFB that
so far has not received sufficient attention in the literature
is how to handle border extension of size-limited images
so that the transform by DFB is PR and nonexpansive.
Two methods that permit such critical representation are
periodic extension and symmetric extension. Generally,
the boundary reflection method is preferred over periodic
extension because the periodic extension method creates
artificial edges at the border of the image. However, mirror-
symmetry extension is not possible for the DFB. This is
because mirror-symmetry extension requires that the 2-D
filters to be symmetric through vertical and horizontal axes
(or quadrantally 2-D symmetric [27]), which is not possible
for fan filters. Therefore, in this section, we consider only
periodic extension for the DFB tree.

Let us assume that the input image to the DFB tree in
Figure 2 is of a rectangular size N × M, where N and M

are even numbers. When being convolved with H
( f )
i (z), i =

0, 1 at the first level of DFB tree, the image is periodically
extended. When the convolved images are decimated by Q0,
the resulting images will have rectangular shapes rotated by
45◦. These rotated rectangular images are not easy to store
and process at the second level of the DFB tree. Instead, after
decimation of the convolved images by Q0, we can keep only
rectangular images of size 1/2 max(M,N)×1/2(M+N). This
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F0 H
( f )
0
(
ωR0

)

↓ P0
1

H
( f )
1
(
ωR0

)

↓ P0
0

F0 H
( f )
0
(
ωR0

)

↓ P0
1

H
( f )
1
(
ωR0

)

↓ P0 zd2
0 ↓ S4

0

Figure 5: Subband 0 of the 16-band DFB. The figure shows the path (bold line) from level two to level four with corresponding transfer
function H2−4

0 (z).

Figure 6: Six contourlet basis functions created by the PDFB
without phase correction (upper part) and with phase correction
(lower part).

operation is best explained by an example. The Boat image in
the rectangular region with white line border in Figure 7(a) is
of size 200×300. After downsampling by Q0, the rectangular
image that we need to keep is of size 150 × 250, in the
rectangular region with white line border in Figure 7(b).

At the second stage of the tree, we need to pay special
attention to border extension of the two outputs of the first
level. We cannot use periodic extension because it will lead
to disturbing border artifact along diagonal line at the center
of reconstructed images. Instead, we have to extend the two
rectangular subband images in such a way that the periodic
extensions at the first level of the DFB tree are preserved. This
extension is illustrated in Figure 7(b), where the rectangular
image inside the dotted line is the extended images in the
second level of the DFB tree.

The decimation ratio for the first two levels of the DFB
tree is 2I, the size of subband images enters fan FB Fi in
Figure 2 is of size M/2 × N/2. Beginning from the third
level of the tree, the decimation ratio of the fan FB Fi is Pi,
which can be interpreted as a downsampling by 2 in row (or
column), followed by a resampling operation. The resampled

images need to be parallelogram periodically extended so
that there are no new borders at the extension area around
the rectangular subband images. Figure 8 contains the Boat
image downsampling by D0 and downsampling by P0. The
image in Figure 8(a) is periodically extended, but the image
in Figure 8(b) is parallelogram periodically extended.

2.3. Aliasing on the binary tree of
the conventional DFB

The conventional DFB realized by a binary tree of maximally
decimated two-channel FBs [7] is very efficient. However,
it also leads to aliasing problems to the overall directional
filters, which can be divided into two types: highpass aliasing
and stopband aliasing components. From Figure 2, one can
see that the DFB tree needs only one prototype fan FB [19].
Following the path to obtain subband 0 of an eight-band
DFB (Figure 1(b)) in the DFB tree in Figure 2 and using
noble identities of multirate system theory [18], we can move
all the decimation blocks to the right-hand side, after all the
filtering blocks. The directional filter corresponds to subband
0 in the DFB tree is given by

H0
(
ω1,ω2

) = H
( f )
0 (ω)H

( f )
0

(
ωQ0

)
H

( f )
1

(
ω2R0

)

= H
( f )
0

(
ω1,ω2

)
H

( f )
0

(
ω1 + ω2,−ω1 + ω2

)

×H
( f )
1

(
2ω1, 2

(
ω1 + ω2

))
,

(17)

where the frequency supports of H
( f )
0 (ω1,ω2), H

( f )
0 (ω1 +

ω2,−ω1 + ω2), and H
( f )
1 (2ω1, 2(ω1 + ω2)) are plotted in

Figure 9(a). The dark, white, and gray areas correspond to
the passband, stopband, and transition band, respectively.
Assume that these filters have reasonably good frequency
responses, that is, flat passband and stopband and narrow
transition band. The resulting filter H0(ω1,ω2) will have its
frequency support as in Figure 9(b), of which the transition
bands include the areas ω2 ≈ ±π. By similar geometric
arguments, one can show that half of the directional filters
in the DFB have transition band in the high-frequency
areas ω2 ≈ ±π; while the other half have transition band
in the areas ω1 ≈ ±π (see Figure 10(b)). Therefore, the
impulse responses of directional filters of a DFB have a strong
directional component and a high-frequency vertical (or
horizontal) component. This highpass aliasing component is
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(a) (b)

Figure 7: Boat image of size 200× 300 (a) periodic extension of the original image and (b) after downsample by Q0.

(a) (b)

Figure 8: Boat image obtained from the original image of size 100 × 300 with periodic extension by downsampling using matrices (a) D0

and (b) P0.

not very strong, but still visible (see the leftmost image in
Figure 16(b)).

This highpass aliasing problem is more pronounced in
the directional filters of the second resolution of the PDFB if
the lowpass filter of the Laplacian pyramid in the PDFB does
not satisfy the Nyquist criterion with respect to decimation
matrix D2, that is, if its passband and transition band are
not restricted within [−π/2,π/2]2. This condition will be
discussed in Section 3. The equivalent directional filters of
the PDFB in [5] at the second level of the pyramid are
plotted in Figure 9(c), where the aliasing at high frequency
is displayed very clearly.

The stopband aliasing problem of the DFB will appear
when the number of directional bands increases. The
frequency responses of the directional filters will have
some peaks in the stopband regions. This is because when
more fan filters with decimation blocks are cascaded, their
transition bands will overlap. The two aliasing problems of
the directional filters generated by the DFB tree are illustrated
in Figure 10.

3. THE PYRAMIDAL DFB FOR
THE CONTOURLET TRANSFORM

The PDFB (or contourlet FB) is created by combining
the Laplacian pyramid and the DFB with 2n orientational
subbands [5]. It is shown in this section that the combination
of a Laplacian pyramid and a four-band DFB is equivalent
to an overcomplete five-band FB. Let us denote the two
two-dimensional lowpass filters in the Laplacian pyramid in

Figure 11 as G(z) and F(z). The first filter can be written in
type I polyphase form as follows:

G(z) = G(0)(zD2
)

+ z−1
1 G(1)(zD2

)

+ z−1
2 G(2)(zD2

)
+ z−1

1 z−1
2 G(3)(zD2

)

= gT
(

zD2
)

e(z),

(18)

where g(z) = [G(0)(z),G(1)(z),G(2)(z),G(3)(z)]T , and e(z) =
[1, z−1

1 , z−1
2 , z−1

1 z−1
2 ]T . Similarly, let f(z) be the column matrix

of the (type II) polyphase components of the interpolation
filter F(z), that is,

F(z) = F(0)(zD2
)

+ z1F
(1)(zD2

)

+ z2F
(2)(zD2

)
+ z1z2F

(3)(zD2
)

= fT
(

zD2
)

e
(

z−1).

(19)

The detailed output of the Laplacian pyramid is denoted as
d(n) in Figure 11(a). If one considers the four polyphase
components of d(n) as the four outputs of an FB with input
x(n) then it can be shown that the polyphase matrix of that
FB is I− f(z)gT(z).

In the PDFB depicted in Figure 11(a), a four-band DFB is
applied to the detailed signal d(n). Let E(z) be the polyphase
matrix of the four directional filters of the four-band DFB, as
defined in (12)–(15), that is,

[
H1(z),H2(z),H3(z),H4(z)

]T = E
(

zD2
)

e(z), (20)

where e(z) = [1, z−1
1 , z−1

2 , z−1
1 z−1

2 ]T . The input x(n) goes
through the Laplacian pyramid and the four-band DFB to
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H
( f )
0 (ω1,ω2) H

( f )
1 (2ω1, 2(ω1 + ω2))

H
( f )
0 (ω1 + ω2,−ω1 + ω2)

↓ 4 0
0 2

(a)

ω2

ω1

(π,π)

(−π,−π)

(0, 0)

(b)

ω2

ω1

(π,π)

(−π,−π)

(0, 0)−π
2

π
2

(c)

Figure 9: Aliasing effect on DFBs obtained by using the tree structure: (a) the equivalent structure to obtain subband 0 in eight-band
DFB structure in Figure 2, (b) the equivalent directional filter H0(ω1,ω2). Black, gray and white colors denote passband, transition band,
and stopband, respectively, and (c) an example of the amplitude of frequency response of a contourlet basis at the second resolution level,
displayed as a gray-scale image.

(a)

Stopband
aliasing

High frequency
aliasing

(b)

Figure 10: The frequency responses of (a) a fan filter with very small transition band, and (b) the directional band of a sixteen-band DFB
created from the fan filter of (a).

produce four subsampled outputs yi(n), i = 1, 2, 3, and 4.
These four signals can be considered as the outputs of the
analysis side of an FB with input x(n), and it can be shown
that the polyphase matrix of this overall FB is Ẽ(z) = E(z)(I−
f(z)gT(z)).

Therefore, the PDFB in Figure 11(a) is equivalent to the
five-band analysis FB in Figure 11(b) with the same lowpass
filter G(z) and four directional filters H̃i(z) which are given
as

[
H̃1(z), H̃2(z), H̃3(z), H̃4(z)

]T = Ẽ
(

zD2
)

e(z). (21)

3.1. Aliasing effect of the Laplacian pyramid

In order for the PDFB to achieve its potential performance,
it is necessary that the equivalent directional filters have
excellent frequency responses. In general, the construction
of the PDFB consists of a separable Laplacian pyramid and
a binary-tree conventional DFB [7]. Thus, there are two
sources of aliasing that will be considered in this section:
those on the DFB tree, and those caused by the pyramid
structure.

The equivalent directional filters H̃i(z) in (21) can be
expressed in terms of the lowpass filters G(z), F(z) and the
four highpass filters Hi(z). Let us consider a realization of
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x(n)
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↓ D2

↑ D2
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−
+ d(n)

H1

H2

H3

H4

↓ D2

↓ D2

↓ D2

↓ D2

y0(n)

y1(n)

y2(n)

y3(n)

y4(n)

(a)

x(n)

G
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↓ D2
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↓ D2
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y0(n)

y1(n)

y2(n)

y3(n)

y4(n)

(b)

Figure 11: The four-band PDFB (a) the analysis side of the PDFB, (b) equivalent overcomplete FB, and (c) the synthesis FB.

Aliasing

(a)

Aliasing

(b)

Figure 12: Examples of equivalent directional filters in the PDFB (a) the equivalent filter H̃1(ω1,ω2) of four-band PDFB, (b) a directional
filter of eight-band PDFB, function associated with filter H̃1(z).

the PDFB constructed using the “9-7” biorthogonal filters
as the lowpass filters G(z) and F(z) as in [5]. The fan FBs
in the DFB tree structure are implemented using the ladder
structure (with filter lengths of 21 and 41) in [23]. The first
directional filter for the case of four-band DFB is plotted in
Figure 12(a). It is observed that the directional filters have
“bumps” in the stopband region. Similarly, an eight-band
DFB can be obtained by cascading one more step of two-
channel filter banks at the binary tree. Its first directional
filter is presented in Figure 12(b) showing more bumps in
the stopband. It will be shown later that this effect is due
to aliasing resulting from decimation and interpolation of
the Laplacian pyramid, and the heights of these peaks are
independent from the directional filters in the DFB.

Let FH1(z) = F(z)H1(z) be written in a polyphase form
as

FH1(z) = FH(0)
1

(
zD2
)

+ z−1
1 FH(1)

1

(
zD2
)

+ z−1
2 FH(2)

1

(
zD2
)

+ z−1
1 z−1

2 FH(3)
1

(
zD2
)
,

(22)

where FH(i)
1 (z)is the polyphase components of FH1(z). By

some manipulation, it can be shown that the block diagrams

in Figures 14(a) and 14(b) are equivalent, where FH(0)
1 (z) is

the first polyphase component of FH1(z). Consider the signal
y1(n) in Figure 11(a). The corresponding block diagram

can be redrawn as in Figure 13(a), where the subsystem in

the dotted rectangle is equivalent to FH(0)
1 (z). Using the

noble identities, the top path in Figure 13(a) can be further
simplified as in Figure 13(b).

Since the PDFB is realized by FIR filters, the filters are
not ideal, their frequency responses have transition bands.
Figure 15(a) shows the passband support of FH1(z). The

resulting filter FH(0)
1 (zD2 ) in Figure 13(b) is obtained by

downsampling followed by upsampling the filter FH1(z)

by D2. The corresponding frequency response FH(0)
1 (DT

2 ω)
whose supports are displayed in Figure 15(b) can be given by

FH(0)
1

(
DT

2 ω
) = 1∣∣D2

∣∣
∑

k∈N (DT
2 )

FH1
(
ω − 2πD−T

2 k
)
. (23)

Therefore,

H̃1(ω) = H1(ω)− 1∣∣D2
∣∣G(ω)

×
∑

k∈N (DT
2 )

F
(
ω − 2πD−T

2 k
)
H1
(
ω − 2πD−T

2 k
)
.

(24)

Assuming that the lowpass filter G(ω) is approximately zero
in its stopband regions, two of the aliasing terms in the
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Figure 13: The equivalent structure to the directional filter H̃1(ω1,ω2) in the four-band PDFB in Figure 11.

↓ D2↑ D2 FH1(z)

(a)

FH(0)
1 (z)

(b)

Figure 14: Equivalent block diagrams.

summation can be neglected, and the overall filter H̃1(ω) can
be approximated by

H̃1
(
ω1,ω2

) ≈ H1
(
ω1,ω2

)
(

1− 1∣∣D2
∣∣G
(
ω1,ω2

)
F
(
ω1,ω2

)
)

− 1∣∣D2
∣∣G
(
ω1,ω2)F

(
ω1,ω2−π

)
H1
(
ω1,ω2−π

)
.

(25)

The second term in (25) produces the peaks in stopband of
H̃1(ω) (see Figure 12). The positions of these peaks are in the
passband of the modulated directional filter H1(ω1,ω2 − π),
so the only way to eliminate these “bumps” is to reduce
the overlapping transition bands between G(ω1,ω2) and
F(ω1,ω2 − π). Since both G(z) and F(z) are lowpass, and if
the Nyquist sampling condition is satisfied, the above aliasing
term will be cancelled. Therefore, the two filters in the
Laplacian pyramid should satisfy the following conditions:

G
(
ω1,ω2

) ≈ 0, F
(
ω1,ω2

) ≈ 0

when
∣∣ω1

∣∣ >
π

2
or

∣∣ω2
∣∣ >

π

2
.

(26)

This means that the cutoff frequency of G(z) and F(z) must
be a little less than π/2 in order to keep approximately zero
response beyond π/2. For convenience, we call the conven-
tional PDFB (with cutoff frequency at π/2) aliasing PDFB,

and the one satisfying the above constraints nonaliasing
PDFB.

Recently, a new contourlet FB is presented in [28]. The
new FB replaced the Laplacian pyramid by a multireso-
lution FB implemented in frequency domain. This new
construction of contourlet FB removed the aliasing problems
by requiring the lowpass filters to have frequency support
strictly restricted in [−π/2,π/2]2 region. In order for the
new contourlet FB to be PR, its multiresolution FB has to be
implemented in frequency domain, which implies periodic
extension for size-limited images. This will lead to border
artifact problem for image coding application.

3.2. Reduced aliasing pyramidal directional filter bank

In order to demonstrate the aliasing effect from the direc-
tional filters in the PDFB, the impulse responses of the
overall directional filters at different scales are compared in
Figure 16. Figure 16(b) shows the impulse responses at four
scales as highlighted in Figure 16(a) for the case of aliasing
PDFB, where the lowpass filters G(z) and F(z) are obtained
by the “9-7” biorthogonal FB. Similarly, Figure 16(c) shows
the impulse responses for the case of nonaliasing PDFB,
where the filters G(z) and F(z) are designed so that the transit
bands are between π/4 < |ωi| < π/2 and the frequency
responses are approximately zero when π/2 < |ωi|. The
DFB in both aliasing and nonaliasing PDFBs is identically
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(a) (b)

Figure 15: The frequency supports of (a) FH1(ω) and (b) FH (0)
1 (DT

2 ω).

realized by a binary tree of two-channel fan FBs, which
are implemented by a two-step ladder structure [23]. Both
decompositions have 32, 16, 8, and 4 directional subbands at
the first, second, third, and fourth resolutions, respectively,
as displayed in Figure 16. It is evident that the filters in
Figure 16(c) have much less aliasing and better directionality
than those in Figure 16(b).

In practice, most of the unwanted aliasing components
considered in the previous section can be reduced if the two
lowpass filters in the pyramid have slightly smaller passband.
Figures 17(a) and 17(b) show examples of the frequency
responses of the first directional filters of the four-band and
eight-band PDFBs whose F(z) and G(z) are designed to have
a transition band 0.3π < |ωi| < 0.6π. Comparing to the
frequency responses presented in Figures 12(a) and 12(b),
it is clear that those aliasing bumps have been significantly
suppressed.

4. IMAGE CODING USING HYBRID OVERCOMPLETE
PDFB ANDWAVELET FB

Although the equivalent directional filters of the PDFB (or
contourlet basis) are efficient in representing image contours,
its performance tends to be lower than that of the traditional
discrete wavelet transform (DWT) when the image sizes
get smaller. In our nonlinear approximation experiment
[20] with typical testing images (Lena and Barbara), the
best results are achieved when the PDFB is used at higher
resolution, and the DWT is used when the image sizes are less
than or equal to 128× 128. For the image coding application
in this paper, we use a five-level image decomposition: the
PDFB is used at the highest two resolutions, and the DWT
is used in the next three resolutions. Figure 18(a) depicts the
frequency supports of the hybrid FB. The Barbara image and
its decomposition by the hybrid FB are illustrated in Figures
18(b) and 18(c), respectively.

Since significant coefficients of the PDFB are sparser than
those of wavelet, utilizing the statistical properties of the
transform coefficients is a crucial task in the design of high-
performance PDFB-based coders. An explicit way to solve
this problem is to classify the coefficients of each subband

into two subsets that separate insignificant and significant
coefficients. Thus, the quantization and estimated models
can be adapted to each subset independently.

A potential approach to exploit this behavior has been
introduced with the morphological operation for wavelet
coding [29]. Based on the observation that clusters tend
to grow in both spatial and frequency domain, the previ-
ously detected significant coefficients are used as seeds for
the search of new significant ones. The clustering trend
of significant coefficients also exists in the PDFB bands.
This suggests using a morphological dilation to identify
the significant coefficients in the PDFB subbands before
the coding step. Thus, different probability models can
be estimated for significant and insignificant coefficients
separately. On the other hand, although the overcomplete
transform introduces more coefficients to be coded, strong
correlations exist between neighboring directional subbands
that can be adopted to improve probability modeling.

4.1. Progressivemorphological dilation

Dilation is a morphological operator frequently adopted
[30]. Let I be a binary-valued image where dilation will be
applied. Dilation of a given set A ⊆ I with set B ⊆ I is defined
by [31]

A⊕ B =
⋃

b∈B
Ab, (27)

where B is a binary-valued array called a structuring element
(SE), Ab denotes the translation of A to a point b. The
dilation operation produces an enlarged set, A ⊕ B, which
can also be written as A ∪ (A ⊕ B \ A), where (A ⊕ B \ A)
represents the set of new points obtained by dilation. If A is
the set of previously detected significant points, the points
in set (A ⊕ B \ A) have a much higher probability to be
recognized as significant.

Organizing and representing each subband of PDFB as
irregularly shaped clusters of significant coefficients provide
an efficient way for accurate probability modeling. Exploiting
cross-scale dependency and correlation between neighboring
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Figure 16: (a) The essential frequency supports of directional filters in the PDFB at different scales: level 1 with 32 bands, level 2 with 16
bands, level 3 with 8 bands, and level 4 with 4 bands. The corresponding impulse responses in case of (b) aliasing Laplacian pyramid filters
and (c) nonaliasing Laplacian pyramid filters.

Reduced
aliasing

(a)

Reduced
aliasing

(b)

Figure 17: Examples of directional filters in the PDFB (a) H̃1(ω1,ω2) of a four-band PDFB and (b) a directional filter of an eight-band
PDFB.

DFB bands of the overcomplete pyramid can further improve
the detection accuracy of significant coefficients. Moreover,
shaping the clustering boundaries with less cost should
be also considered with adaptive SE’s [32]. A progressive
morphological dilation method is proposed to find the cor-
relations among PDFB subbands. Six passes are performed
at each bit-plane. Three different SE’s, as shown in Figure 19,
are adopted for variant steps of dilation.

(1) Significance detection (SD) pass: the intraband depen-
dency is exploited in this pass. The square SE1 in
Figure 19(a) is adopted to detect new significant
coefficients based on significant neighbors in the
previous bit-planes.

(2) Cross-band prediction (CBP) pass: based on the fact
that the interband correlation exists between the
successive decomposition levels, a significant cluster
in a children subband can be predicted by those in the
parent subband. The diamond SE2 in Figure 19(b)
is employed to dilate around the associated children
coefficients corresponding to each significant coeffi-
cient in the parent subband.

(3) Neighboring correlation prediction (NCP) pass: this
pass is designed to capture the redundancy among
the overcomplete directional subbands. If the two
spatial filters have small angle difference in their
principal directions, their corresponding decimated
subbands exhibit significant dependency between
those coefficients at the same positions relative to
their upper-left corners. Hence, the distribution of
significant coefficients of each directional subband
is highly correlated to their neighboring subbands
(cousin subbands). For the current subband, those
coefficients associated with the identified significant
coefficients in the cousin subbands are evaluated
using SE1 to find new significant coefficients.

(4) Boundary shaping (BS) pass: typically, on the bound-
aries of a large cluster, there are a few scattered
significant coefficients located in small isolated clus-
ters. It is difficult to forecast the dimension of these
isolated clusters. Hence, adaptive dilation is expected
to search around a cluster. The smaller rood SE3 in
Figure 19(c) is adopted for dilation on the previously
formed cluster boundaries which are identified by the
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Figure 18: The PDFB employed in image coding. (a) The partitioning of the frequency plane by a hybrid PDFB and wavelet decomposition,
(b) the Barbara testing image, and (c) the image representation by the five-level multiscale FB having the frequency supports in (a).

(a) SE1 (b) SE2 (c) SE3

Figure 19: Structuring elements used in the progressive morpho-
logical dilation.

insignificant coefficients. The boundary extension is
adaptively controlled based on the occurrence of
new significant positions detected. It stops when the
recursive dilation results in no more new significant
coefficients.

(5) Sparse significant coefficients detection (SSD) pass:
although most of the significant coefficients have
been recognized by the previous four passes, there
are still few sparse significant coefficients remained
undetected. Those coefficients that have not been

c11 Parent

Previous
cousin

c9

c1 c2 c3

c4 C c5

c6 c7 c8

Next
cousin

c10

Figure 20: Context modeling template.

processed are scanned and coded in a raster order.
The dilation using SE1 is implemented if a new
significant coefficient is found.

(6) Magnitude refinement (MR) pass: refine those sig-
nificant coefficients that have been recognized in
previous bit-planes.
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(a) (b)

(c) (d)

Figure 21: Reconstructed Barbara images at 0.15 bpp using (a) JPEG2000, PSNR = 25.93 dB and (b) PDFB, PSNR = 26.74 dB. (c) and (d)
are zoom-in images of (a) and (b), respectively.

4.2. Contextmodeling

According to the conditional probability theory, context
modeling can exploit the intersymbol redundancy by switch-
ing between different probability models [33]. In embedded
coding systems, the coding is conducted on a series of signif-
icant maps that correspond to a set of decreasing thresholds.
After each pass of coding, all coefficients are quantized to
specific values and can be used as context information. Thus,
a significant context template, as described in Figure 20, is
defined to exploit the coefficients that have been coded by
the previous passes or bit-planes.

In Figure 20, C is the current symbol to be coded.
c1, . . . , c11 are reconstructed values up to the current coding
pass of the corresponding coefficients. We define a series
of reconstruction matrices Yn

s , in which each element is
the reconstructed value of the corresponding coefficient, n
indicates the order of coding passes, s denotes the subband
index. Assume C is the (i, j)th element of the binary
significance map in pass n of subband s. Thus, the intraband
correlation is derived from the 8 neighboring coefficients,

cm = yn
′

s (i + a, j + b), a, b = −1,0, or 1, m = 1, . . . , 8,
(28)

where n′ = n− 1 or n since the morphological dilation does
not guarantee a raster scan order for the coefficients that have

been coded. The coefficients of parent and cousin subbands
are also used to exploit the interband dependency

c9 = yns−1

(
Nc(i),Nc( j)

)
,

c10 = yn−1
s+1

(
Nc(i),Nc( j)

)
,

c11 = ynP(s)

(
Pc(i),Pc( j)

)
,

(29)

where P(·) specifies the parent of band s, Nc(·) and Pc(·) are
functions for the cousin and parent subbands, respectively,
that specify the coordinates corresponding to the positions
in the current subband. Considering the weak correlation
among the cousin subbands for wavelet, c9 and c10 are not
used for coding wavelet coefficients in the simulation. Thus,
theNCP pass is executed only for those directional subbands.

4.3. Algorithm summary

In this section, we summarize the coding algorithm. Six
passes are designed in this approach. The produced pro-
gressive bitstream can be truncated at any pass. Let wij(k)
be the coefficient with the coordinate (i, j) relative to
the upper-left corner of subband k. LSC(k) and LIC(k)
represent the lists of significant and insignificant coefficients,
respectively. D(SEm), m = 1, 2, 3, denotes the operation
of morphological dilation with the structuring element
specified by SEm. V[wij(k)|SEm] = wij(k) ⊕ SEm \ wij(k),
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defines the vicinity of wij(k) generated by dilation with
SEm. Let P(k) and N(k) be the parent and cousin bands of
subband k, respectively. C[wij(k)] and N[wij(k)] denote the
corresponding coefficients in P(k) and N(k) associated with
wij(k).

The PDFB-based coding algorithm is summarized as
follows.

(1) (Initialization): decompose the image with PDFB.
Find the maximum number of bit-planes M and set
n←M.

(2) (SD pass): if n =M, go to step (6).

Apply D(SE1) to each entry of LSC(k). Encode all
w ∈ V[wij(k)|SE1] that have not been scanned with
arithmetic coding, if w is insignificant, attach it to the
end of LIC(k); else encode the sign of w, and add it
to the end of LSC(k).

(3) (CBP pass): if k = 0, that is, the LL band, go to step
(5).

For the significant coefficients of P(k), apply D(SE2)
to each entry of C[wij(P(k))]. Similar to SD pass,
encode each newly scanned coefficient and add these
coefficients to the end of either LSC(k) or LIC(k)
depending on whether they are significant or not.

(4) (NCP pass): if subband k is a wavelet band, go to step
(5).

For the significant coefficients of N(k), apply D(SE1)
to each entry of N[wij(N(k))]. Encode each scanned
coefficient. Add the coefficient to the end of LSC(k)
if it is found to be a new significant coefficient;
otherwise append it to LIC(k).

(5) (BS pass): apply D(SE3) to each entry of LIC(k). If
a new significant coefficient is found, the recursive
dilation is implemented around it until no more
new significant coefficient is detected. Encode the
scanned coefficients and update LSC(k) and LIC(k)
correspondingly.

(6) (SSD pass): the remaining coefficients are scanned
and coded in raster order. However, if one significant
coefficient is found, apply D(SE3) at once, then
continue to scan the following coefficients that have
not been coded. Update LSC(k) correspondingly.

(7) (MR pass): if n =M, go to step (8).

Encode the nth bit of those significant coefficients
recognized by previous bit-planes.

(8) (New bit-plane): empty all LIC ’s, set n ← n − 1, and
go back to step (2).

4.4. Image coding results

For the sake of comparison, the proposed PDFB-based
algorithm is compared with three state-of-the-art wavelet-
based coding schemes: SPIHT [34] with arithmetic coding,
JPEG2000 [35], and the embedded coder of morphological
representation of wavelet data (MRWD) [29]. Two 512×512

Table 1: Performance comparison (PSNR [dB]) for Barbara.

Rate (bpp) SPIHT MRWD JPEG2000 PDFB

0.10 24.24 24.15 24.66 25.24

0.15 25.63 25.32 25.93 26.74

0.20 26.63 26.86 27.31 27.84

0.25 27.56 27.51 28.36 28.94

0.30 28.54 28.16 29.24 29.86

0.40 30.09 30.18 30.83 30.97

0.50 31.38 31.31 32.26 32.42

Table 2: Performance comparison (PSNR [dB]) for Lena.

Rate (bpp) SPIHT MRWD JPEG2000 PDFB

0.10 30.17 30.18 29.87 29.86

0.15 31.87 31.55 31.69 31.87

0.20 33.12 33.14 32.97 33.07

0.25 34.09 33.90 34.13 33.98

0.30 34.93 34.57 34.75 34.91

0.40 36.22 36.17 36.09 35.96

0.50 37.20 37.01 37.22 36.78

grayscale images, Barbara and Lena, are tested. A 5-level
decomposition is used for SPIHT, MRWD, and JPEG2000
with “9/7” Daubechies wavelet filters. On the other hand, a
5-level PDFB decomposition, as described in Figure 18(a), is
applied in the proposed scheme, where the four coarser levels
are decomposed using “9/7” filters and the level with the
finest resolution is decomposed into 16 directional subbands
using PDFB.

Tables 1 and 2 show the performance of different coding
systems on Barbara and Lena testing images in terms of
PSNR. The performances are calculated by truncating the
embedded bitstreams at different rates during decoding.
In the comparison, the proposed algorithm consistently
outperforms all the other three schemes. Although the over-
complete transform is employed in the proposed scheme,
the improvements are still remarkable for rich-edgy images.
This is because the PDFB can represent the geometrical
regularity of image structures with fewer coefficients and
smaller magnitudes. Hence, the proposed algorithm is more
efficient at very low bit-rates when a few of significant
coefficients are actually used for reconstruction. For instance,
the PDFB-based coder gains 0.81 dB in PSNR over JPEG2000
at 0.15 bpp for Barbara image. Figure 21 shows the recon-
structed Barbara images at 0.15 bpp for JPEG2000 and the
proposed coder. Moreover, with reduced aliasing artifact
in the proposed PDFB structure, the textures and edges
information are better preserved as shown in Figure 21. On
the other hand, the PDFB-based codec exhibits competitive
performance for smooth images, such as Lena. As shown in
Figure 22, the performance of our codec is comparable to
that of the other three coders, and the performance difference
is getting smaller as the bit-rate decreases.
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Figure 22: Comparison of rate-distortion curves using SPIHT, MRWD, JPEG2000, and the proposed PDFB-based codec: (a) Barbara, (b)
Lena.

5. CONCLUSION

This work provides a detail examination of the contourlet
FB implementation, including a modification to minimize
phase delay and an explanation on image border extension
along the DFB tree. The paper also discusses the PDFB
for the contourlet transform as an overcomplete FB and
shows that the equivalent directional filters of the PDFB
suffer from the aliasing effects due to its implementation
structure. By imposing the conditions that the two lowpass
filters of the Laplacian pyramid should have frequency
supports restricted within [−π/2,π/2]2, the aliasing in the
stopbands is removed. The equivalent directional filters of
the PDFB have excellent passband and stopband charac-
teristics, which is the key requirement for the contourlet
to attain its asymptotic approximation power of smooth
signal having discontinuities around C2 curve. We propose
a novel embedded image coding scheme using hybrid
overcomplete PDFB. The improved design of the PDFB
helps to reconstruct images with directional features by
fewer coefficients than other image decompositions. Based
on the progressive morphological dilation of significant
coefficients, the highly concentrated PDFB significant coef-
ficients are identified by exploiting the intraband statistical
dependencies. The correlation exists among the neighboring
directional subbands is also adopted to reduce the high
redundancy of the overcomplete transform. Experimental
results justify that the proposed algorithm is superior
to the state-of-the-art wavelet-based coders for rich-edgy
images.
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