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INTRODUCTION

Many image and signal processing techniques have been applied to medical and health care applications in recent years. In this pa-
per, we present a robust signal processing approach that can be used to solve the correspondence problem for an embedded stereo
vision sensor to provide real-time visual guidance to the visually impaired. This approach is based on our new one-dimensional
(1D) spline-based genetic algorithm to match signals. The algorithm processes image data lines as 1D signals to generate a dense
disparity map, from which 3D information can be extracted. With recent advances in electronics technology, this 1D signal match-
ing technique can be implemented and executed in parallel in hardware such as field-programmable gate arrays (FPGAs) to provide
real-time feedback about the environment to the user. In order to complement (not replace) traditional aids for the visually im-
paired such as canes and Seeing Eyes dogs, vision systems that provide guidance to the visually impaired must be affordable, easy
to use, compact, and free from attributes that are awkward or embarrassing to the user. “Seeing Eye Glasses,” an embedded stereo
vision system utilizing our new algorithm, meets all these requirements.

Copyright © 2008 Dah-Jye Lee et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

for the visually impaired. In particular, vision systems are be-

Traditionally, the visually impaired have used canes and/or
Seeing Eye dogs to help them move about. In the appropriate
settings, both of these approaches work well but both have
limitations. Canes, for instance, provide information only at
the lower leg level as they sweep back and forth. A visually
impaired person using a cane is vulnerable to obstacles that
are not at ground level, such as tree branches or low ceilings
in stairwells. Guide dogs can be trained to help in these sit-
uations, but communication between the dog and the user
is limited to an indication that they are approaching an ob-
stacle, often accompanied by a directional change to avoid
it. If the visually impaired were to have accurate informa-
tion about the environment, they could more safely navigate
through it.

Available assistive technologies range from canes with
embedded GPS systems to PDAs with Braille-based email,
word processing, and music players, and so forth. Recent
technological advances have made possible additional aids

ing developed which allow the visually impaired to receive
“visual” information through other senses by converting 3D
information about the environment into alternate represen-
tations, such as audio signals or electrical stimulation. For
example, the tongue- display system uses voltage stimulation
and a special mouthpiece to send visual information to the
tongue of a user [1]. The vOICe vision technology group
aims to provide similar feedback to the user through the use
of sound [2]. By utilizing a pair of cameras and a laptop PC,
the vOICe vision system provides audio information about
the environment around the user. Kulyukin et al. developed
an intelligent robot called “robotic guide dog” to comple-
ment the performance of a guide dog in environments that
are not familiar to the dog or its handler [3]. Peli et al. de-
scribe an embedded system that aids those not fully visually
impaired to recognize faces [4].

Based on a review of the literature, we have identified the
most important characteristics of a supplemental guidance
system for the visually impaired if it is to well received and
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widely used. First, the complete system must be affordable.
One technology specialist for the visually impaired observed
that any assistive technology costing more than $1,000 will
succeed only if its benefits are enormous and obvious [5].
The system must also be compact and portable, with low
power consumption so that its operation is not limited. It
should be a turnkey system that is as easy to use as an MP3
player. Moreover, it should not cause discomfort or diminish
the user’s ability to hear. For the visually impaired, hearing
is the most important sensing ability, so the operation of a
supplemental guidance system must not block hearing. Ap-
pearance and cosmetic appeal are also important factors. As
noted in [5], visually impaired people would be reluctant to
use anything in public that makes them appear obviously dif-
ferent from others or that could cause embarrassment. The
existing systems and devices mentioned above [1-4] fail to
meet these requirements.

Stereo vision is an important technique used to obtain
depth information of objects in a 3D scene from two or more
images taken from different view points [6]. To determine
distance to objects, a stereo vision system must solve two im-
portant problems: the correspondence problem and 3D recon-
struction. A solution to the latter is relatively straightforward
if the geometry is known or the calibration of the two cam-
eras is done properly. For a visual guiding system, highly ac-
curate 3D scene reconstruction is not necessary. To meet the
operational requirements of such a system, it is sufficient to
produce—in real time—reasonable estimates of the location
of potential obstacles and their distance from the user.

The major challenge in 3D information extraction is the
correspondence problem, or determining which pixel or fea-
ture in one view corresponds to which pixel or feature in the
other view. Once this information is found, depth informa-
tion can be inferred. Scharstein and Szeliski provide an ex-
haustive analysis and comparison of the best stereo vision
algorithms [7]. Most of these stereo vision algorithms are
poorly suited for implementation in hardware, an important
concern in meeting the cost, size, power consumption, and
real-time requirements of our application.

Because stereo vision is an ill-posed problem, constraints
associated with added assumptions are typically enforced to
obtain satisfactory results. For example, similarities between
images taken from two different viewpoints are strength-
ened by controlling the lighting or restricting the length of
the baseline between the cameras. Given properly calibrated
cameras, the correspondence problem can be reduced to the
1D problem of matching pixels or features in corresponding
scan lines. By processing 1D signals from the image data, a
detailed disparity map of differences between the two views
can be generated, allowing the distance to objects in the scene
to be computed.

In this paper, we present a robust 1D signal matching
method that employs spline representations and a genetic al-
gorithm to obtain a dense disparity map. By imposing im-
plicit smoothness constraints, matching parameters can be
solved in terms of their spline representations by minimiz-
ing a certain cost function. A genetic algorithm that is able
to eliminate local extremities is then used to perform the
optimized matching. Unlike most genetic algorithm-based

stereo vision techniques (e.g., [8, 9]) that result in sparse dis-
parity maps, our new algorithm generates a dense disparity
map from matching camera scan line pairs. The increased
information is very desirable for applications requiring 3D
information extraction. Moreover, the algorithm is inher-
ently parallel, well suited for implementation in hardware,
and easily extended to solve image registration and motion
detection problems. We demonstrate the validity of our algo-
rithm by presenting reconstruction results from four distinct
scenarios.

Furthermore, we describe a new visual guiding device
called “Seeing Eye Glasses” that meets the requirements we
have identified and that utilizes our signal matching algo-
rithm. The device is made possible by advances in technol-
ogy that allow embedded systems to become both smaller
and faster. Two compact color CMOS imagers are used as the
input devices, and a custom-designed FPGA-based board is
used as the visual data processing engine. The system uses a
new stereo vision algorithm to extract 3D information from
the environment in real time. From that information, the sys-
tem detects potential obstacles and computes the approxi-
mate distance to these obstacles and the time to impact. The
Seeing Eye Glasses use miniature vibrators mounted in the
frame near the ears to warn the user about imminent colli-
sions. By changing the vibration frequency and controlling
the vibrating actuator on each side separately, both direction
and distance information can be conveyed.

The rest of this paper is organized as follows. Details
about the algorithm and the processing flowchart are pre-
sented in Section 2. Section 3 discusses the hardware ar-
chitecture of our embedded system as well as the hard-
ware implementation of our spline-based genetic algorithm.
Section 4 shows the simulation results of the algorithm and
discusses the features of the proposed system. Finally, con-
clusions and future work are discussed in Section 5.

2. SIGNAL MATCHING ALGORITHM

A general approach to solve the correspondence problem can
be formulated as follows. First, consider the disparity field de-
fined by the distance a pixel in one image must be shifted to
match the position of the corresponding pixel in the second
image. More precisely, the disparity field, d(x), is defined for
each pixel x by the following relationship:

I(x+d(x)) = L(x), (1)

where I; and I, are intensity profiles from the left and right
view points, respectively. Once a reasonable estimate of the
disparity field is known, 3D reconstruction is easily com-
puted.

The most common method used to obtain optimal
matching results is to minimize the error between the left im-
age (shifted by the calculated disparities d(x)) and the right
image:

D (h(x+d(x) - I(x))™. (2)

X
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FiGure 1: Control grid not aligned with the pixel grid. FiGure 2: Linear spline basis functions
However, due to the ill-posed nature of stereo vision,  aligned with the pixel grid and can be expressed as
added constraints should be considered together with (2).
These are explained in Section 2.3. X = mx;, (5)

2.1. Spline representation for disparity fields

The disparity smoothness constraint specifies that the dis-
parity changes slowly between any two points located near
each other. This constraint can be enforced implicitly by us-
ing splines to represent the disparity field. In other words, the
disparity field can be expressed as 1D splines controlled by a
smaller number of displacement estimates lying on a coarser
spline control grid [10].

Figure 1 shows a small set of pixel grid and control grid
points. The small circles represent the control points for
spline representations, and the vertical and horizontal lines
form the pixel grid. Every image line has one set of control
points that can be used to represent the disparity field. In
this example, the spline control points are placed directly be-
tween two adjacent pixels and located three pixels apart in
each scan line.

Depending on the basis function used, different spline
representations such as block, linear, or B-Spline can be de-
rived. Figure 2 shows the basis functions of a linear spline.
The small circles represent the control points that can be used
to calculate the disparity field d(x). The basis functions are
implemented as

fl-x x € [0,1],
B(x)_{l-i—x x € [-1,0]. 3)

In our implementation, basis functions are shifted versions of
each other as shown in Figure 2. In other words, they share
the following forms:

Bi(x) = B(x — X)) (4)

The linear spline is selected because it is easy to imple-
ment (relative to methods requiring more complex compu-
tations), it can be processed quickly, and it provides satisfac-
tory accuracy for applications such as obstacle avoidance and
distance estimation. Figure 1 shows that the control points
need not fall exactly on pixel positions. In order to sim-
plify hardware implementation and speed up the computa-
tion process, we impose the condition that the spline control
points are subsamples of the pixel grid [10], that is, they are

where m is the subsampling ratio, and x; represents the pixel
grid. In this paper, we select m to be 20 pixels, which gives a
total of 32 control points (i = 0,1,2,...,31) for each line in
a 640 % 480 image . The disparity field can then be calculated
as

d(x) = > diBi(x), (6)
where each B;(x) is a basis function with finite support.

2.2. Geneticalgorithm

The genetic algorithm (GA) is an optimization tool, using
stochastic global searching to mimic the metaphor of natural
biological evolution. The technique is often used in comput-
ing to find exact or approximate solutions to optimization
and search problems. Compared to traditional search meth-
ods, the four most obvious differences of GAs are the follow-
ing [11].

(1) GAs search in parallel.

(2) GAs do not require the calculation of derivative infor-
mation or other auxiliary knowledge.

(3) GAs use probabilistic rather than deterministic transi-
tion rules.

(4) GAs work on an encoding of the parameter set rather
than the parameter set itself.

If the solution of a problem can be encoded into the form
of chromosomes, and the relative performance of each chro-
mosome can be evaluated separately, GAs often achieve sat-
isfactory results. GAs are iterative procedures that maintain
a population of candidate solutions encoded in the form of
chromosome strings. After initialization of the first popula-
tion, each candidate is evaluated and assigned a fitness value
determined by a function of the decoded bits contained in its
chromosome [12]. The most important processing in each
generation includes the selection of candidates and chromo-
some reproduction. For the selection procedure, a few of the
fittest individuals in the population are chosen according to
their fitness values. For reproduction, the gene pool is filled
by randomly applying (with specified probabilities) three ge-
netic operators: crossover, mutation, and insertion [11]. All
of these operators are used in finding the disparity map.
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2.3. Spline-based GA matching for 1D profile pairs

Based on the tools mentioned in Sections 2.1 and 2.2, we
present a new spline-based 1D intensity profile matching
technique to solve the correspondence problem. A dense dis-
parity map is generated for each pixel in the overlapping
area of the image pair (areas seen in both left and right im-
ages). Because of the built-in smoothness constraint, the ap-
proach is able to give satisfactory results, as will be shown in
Section 4. The algorithm integrates the spline representation
in every generation, takes every position available in the im-
age into account, and produces a more detailed disparity map
than other approaches. In this paper, we assume the intensity
profile pair shares enough similarity for matching, which is
the prerequisite for stereo vision.

Our goal is to minimize (2) to solve for the disparity field.
However, due to the noise present in acquired images, taking
(2) as the only term in the cost function is far from realistic.
For real applications, the following constraints should also be
enforced to reduce the searching space [13].

(1) Epipolar constraint: the corresponding points can lie
only on the epipolar line in the second image.

(2) Uniqueness constraint: each pixel in one image corre-
sponds to at most one pixel in the other image; in the
cases of self-occlusion, no pixel may match.

(3) Ordering constraint: for surfaces of similar depth, cor-
responding feature points typically lie in the same or-
der on the epipolar line.

(4) Photometric compatibility constraint: the intensities
of the same point in the two images likely only differ
by a small amount.

(5) Geometric similarity constraint: geometric character-
istics of features such as line length or orientation do
not differ greatly between images.

(6) Disparity smoothness constraint: the disparity changes
slowly almost everywhere in the image between two
points that are near each other.

(7) Figural disparity constraint: if a point lies on an edge
element in one image, the corresponding point must
also lie on an edge in the other image.

(8) Feature compatibility constraint: points can match
only if they have the same physical origin, such as a dis-
continuity on an object’s surface or being in the border
of a shadow cast by another object.

(9) Disparity limit constraint: the disparity cannot exceed
some fixed limit.

Constraint 1 is considered automatically, because we are
dealing with the canonical camera configuration, in which
case the epipolar line coincides with the scan line. Con-
straints 2 and 3 can be integrated into the cost function by
adding two terms shown in (7). Constraint 4 is the funda-
mental of matching, which corresponds to the idea of min-
imizing (2). Constraints 5, 7, and 8 can be used to check
the validity of the result. Constraint 6 is taken care of by the
spline representation. And finally, Constraint 9 is considered
when we create the chromosomes for each generation. The

final cost function is given in (7):
fe) = £(ZdBi)
—w - g(zl <x N Zﬁisi(x)) - Ir(x)>2
+w; - gox + w; : %(cym - K(C,(Y))).

(7)

In (7), i is the index of the control points, and x is the pixel
position in the left image which has a possible match. Oy is
the ordering constraint indicator: O, = 1 if the ordering con-
straint is violated, otherwise Oy = 0. Y is a vector of posi-
tion and each element of it is expressed as

Y(j) = x+d(x) = x+ SdiBi(x). 8)

Meanwhile, the dummy variable for the summation y satis-
fies

y €N, y € [min(Y), max(Y)]. 9)
C,(Y) is a counting function. It takes a vector Y as an

input and returns the number of the elements in Y with a

value equal to y. K(x) is an indicator function, defined by

x=>1,

K(x) = {(1) x =0. (10)

Finally, w; (i = 1,2, 3) are, respectively, the weights for inten-
sity error, the ordering constraint, and the uniqueness con-
straint. It is possible to weight the intensity error from vari-
ous parts of the intensity profile differently to get an even bet-
ter match within certain local areas. For example, the error
can be weighted more when the intensity is at a local maxi-
mum or minimum position by adding more terms to the cost
function.

3. IMPLEMENTATION
3.1. Processing flowchart

Figure 3 shows the data flow of the implementation of our
genetic algorithm, which begins by creating 10 randomly
generated sets of possible solutions called citizens. As men-
tioned previously, the subsampling ratio for our spline con-
trol points (the m value in (5)) is set to 20, which gives 32
control points. Each citizen contains initial estimates of so-
lutions to the 32 (i values in (6). For each 1D image line pair
(from both left and right images), the cost/fitness function
is evaluated using all 10 citizens. If the fitness result is lower
than a predetermined threshold, then a sufficiently good so-
lution is deemed to have been found and the process stops.
Otherwise, the individual status of each citizen is considered.

If its fitness is above a specified value, a citizen is consid-
ered to be good and it is preserved. If it is not considered to
be a good citizen, then it will undergo crossover, mutation,
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FiGure 3: Dataflow of genetic algorithms.

or the insertion process [11] depending on specified proba-
bilities (corresponding to the % signs shown in Figure 3). In
our current implementation, both probability values were set
to 50%, meaning that there is a 50% chance that a bad citizen
will undergo crossover or mutation. A random number gen-
erator generates a number between 1 and 100; if the number
is less than the desired probability value then the citizen un-
dergoes crossover or mutation. If neither crossover nor mu-
tation is carried out, then a new citizen is generated to replace
the bad citizen. This process is called insertion. The whole
process of checking fitness and rearranging or inserting new
citizens (solutions) is repeated for a fixed number of itera-
tion, currently set to 100. Limiting the number of iterations
and bounding the processing time are critical for real-time
execution.

3.2. Hardware architecture

The system we have developed implements real-time 1D sig-
nal matching for visual guidance on a custom FPGA board
called Helios [14]. The FPGA is the sole computational sup-
port for this embedded stereo vision sensor. It supports
all processing associated with sensing, communication, and
control. Our platform uses a Virtex-4 FX60 FPGA that in-
cludes two 400 MHz PowerPC CPUs on-chip, in additional
to configurable logic resources. Thus, our application has
two forms of computational support: conventional proces-
sors to run compiled C code, and custom hardware realized
in the FPGA fabric.

Fundamental to the FPGA architecture is the notion of
a peripheral core (pcore) that contains a circuit module. As
shown in Figure 4, the processor local bus (PLB) ties directly
to the PowerPC on the FPGA chip. Because the PLB con-
nects directly to the CPU, the response time is fastest for
pcores placed directly on the PLB. The on-chip peripheral
bus (OPB) can be connected to the PLB through a bridge,
allowing communication to and from the PowerPC via the
PLB. Since they cannot be accessed directly by the CPU,
pcores connected via the OPB generally have longer response
times. Thus, the two available buses tend to separate the com-
ponents in the system into two categories, with those per-
forming the most time critical operations connected to the
PLB. Figure 4 shows the architecture of the components real-

ized in the FPGA, including the pcores and the physical com-
ponents themselves.

This hardware architecture includes a camera inter-
face pcore that connects to two CMOS imagers, 32 MB of
SDRAM for image storage, 4 MB of SRAM for fast tempo-
rary image storage during processing, a vision processing en-
gine for running image processing algorithms, and a digital-
to-analog converter pcore that converts image data to analog
form for transmission to a remote base station for debugging.
Besides the output devices that provide feedback to the user,
other peripheral devices such as a compass, a GPS receiver,
and a modem can be connected to the OPB to expand the
capabilities and functionality of the guidance system.

3.3. Hardware implementation

The hardware providing computational support for our
guidance system consists of three major components: an im-
age smoother, a collection of random number generators,
and a datapath realizing the spline-based genetic algorithm.
Each of these components is discussed in detail below.
Figure 5 shows a block diagram of the image smoother
that reduces the negative impact of noise in the image. This
component is implemented as part of the camera interface
pcore so that incoming image pixels are smoothed inline in
real-time at camera frame rate. As can be seen, the smoother
computes the average of each set of five adjacent pixels. This
is done in multiple pipelined stages, each adding a single cy-
cle of latency. In the first cycle, two separate additions are
performed, one with three operands and one with two. On
the next cycle, the two partial sums are added, and then the
division by 5 takes place. This latter operation is completed in
a single cycle using a lookup table (LUT). As a result of this
implementation, smoothed pixel data is available just a few
cycles after the original pixel was obtained from the camera.
The block diagram in Figure 6 shows the random num-
ber generators that support the genetic algorithm hardware.
The design includes a random number FIFO that holds ap-
proximately 8000 random 8-bit numbers generated by soft-
ware running on the on-chip PowerPC processor. The design
also includes 4 registers used to generate random numbers in
the indicated ranges. (Rnd10 generates numbers from 0 to 9,
Rnd 32 generates numbers from 0 to 31, etc.) Each register
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uses the original random byte stored in the random number
FIFO to generate its output.

Rnd256 uses the number stored in the FIFO without
modification. These values are interpreted as signed integers
(—128 to 127) for the creation of initial genes, and inter-
preted as unsigned integers (0 to 255) for the mutation oper-
ation. Rnd100 uses a LUT to divide the original value by 2.56
to generate random numbers from 0 to 99. As discussed in

Section 3.1, these values are used to determine when to per-
form crossover or mutation. The value in Rnd32 is obtained
by shifting the original value from the FIFO right by 3 bits,
generating a number from 0 to 31. These values are used to
determine the starting gene (of the 32 in each citizen) for
crossover operations. Rnd10 uses a LUT to divide the origi-
nal value by 25.6. The resulting values (from 0 to 9) are used
to randomly select one of the 10 citizens.

The datapath for the genetic algorithm is shown in
Figure 7. The blocks labeled “Left” and “Right” correspond
to block RAMs (BRAMs) that store the entirety of scan lines
from the left and right images, respectively. The contents of
these units are fed into the fitness module, which performs
the calculation of (7). The module requires eleven cycles to
determine whether a particular citizen is “good” or not, and
this information is evaluated by logic controlling the data-
path. If evaluated as “good,” the citizen is passed into the
gene BRAM bank for storage. Otherwise, crossover, muta-
tion, or insertion operations will be carried out depending
on randomly generated probability values as discussed in
Section 3.1.

The create gene module creates new citizens. For each re-
quest, a random value is obtained from Rnd256 (interpreted
as an integer ranging from —128 to 127) and passed into the
gene BRAM bank to replace a bad citizen.

The crossover and mutation modules perform crossover
and mutation, respectively. Their outputs are fed into the
gene BRAM bank. The Addr_In signal controls which of the
10 citizens stored in the bank is accessed. Likewise, the Ad-
drOut signal determines the citizen to be retrieved when
its value is need by another module. In cases where a spe-
cific citizen is needed, the 2 : 1 Mux selects C_Addr_In. In
cases where a random citizen is needed for crossover or mu-
tation, it is selected using a random value obtained from
Rnd10.
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The gene BRAM bank uses four BRAMs to encode the 32
genes. Each BRAM has a maximum size of 72 bits, enough to
encode 8 8-bit values. Each BRAM operates in parallel but is
accessed with the same address bits. This allows us to access
and use the full 32 genes for a given citizen in parallel. The
32 genes also represent 32 control points, each of which is
associated with 20 (subsampling ratio m) pixels. This means
we need just 20 pixels of information at a time from each scan
line when checking a citizen’s fitness.

All modules are designed to operate in a pipelined fash-
ion, meaning that each can begin a new computation before
its previous operations have completed. Moreover, by tim-
ing control signals such that modules do not interfere with
each other’s operations, multiple citizens can be processed
in parallel, further increasing performance. The parallel and
pipelined operation of the genetic algorithm module requires
a dedicated control unit (not shown) to generate control sig-
nals in the appropriate sequence and with the appropriate
timing. The control unit for the genetic algorithm datapath is
designed as a One-Hot encoded state machine with multiple
paths through the state diagram, one for each major opera-
tion. At initialization, the control unit creates 10 new random
genes for testing. It is also fed the probability of mutation and
crossover, ensuring that the correct number of crossovers and
mutations takes place.

4. RESULTS

4.1. Embedded hardware components

Similar to the vOICe system, our embedded guidance sys-
tem utilizes standard eyeglass frames to house the cameras.
Unlike the vOICe system, however, our system utilizes field-
programmable gate arrays to implement the hardware and
software, reducing its overall size. In particular, our proto-
type system uses the Helios board (shown in Figure 8(a))
developed at Brigham Young University [15]. The board is
based on a powerful Xilinx Virtex-4 FPGA chip that includes
two 400 MHz PowerPC processors, allowing for both custom
hardware and software. By carefully utilizing the strengths of
both hardware and software, the complete system can run in
real time. Our Seeing Eye Glasses contain two CMOS cam-

eras (one shown in Figure 8(b)) that feed image data to the
camera interface pcore on the FPGA. The actual connection
to the camera is made through a daughter board (shown in
Figure 8(c)) that connects to Helios via a 120-pin header. The
FPGA performs our spline-based GA stereo vision algorithm,
interprets (in software running on the on-chip CPUs) the re-
sulting disparity map, and provides the location and time-to-
impact of the obstacles to the user through a set of microvi-
brators.

4.2. Simulation results

Our spline-based GA stereo vision algorithm was tested using
both indoor and outdoor scenes. Figure 9 shows a hallway
containing a garbage can in the area of normal traffic flow.
This scenario represents commonly occurring situations in
which the assistive guidance system should help, so it consti-
tutes a good test of the algorithm’s ability to determine the
presence of obstacles. In the figure, dark portions of the dis-
parity map are considered background, and gray portions are
considered as the obstacle or foreground. As can be seen, the
algorithm spotted the garbage can; the system could make
use of this information to alert the visually impaired user of
the approximate distance and direction to the obstacle.

Key to this approach is the assumption that rough esti-
mates of distances to obstacles are sufficient for assisted nav-
igation, so full and precise reconstruction of the complete
3D scene is not necessary. To obtain the results shown in
Figure 9, results from multiple image frames were used to
calculate the time-to-impact for the observed obstacle. An
automated threshold was applied that isolated all the pixels
in the disparity map with a disparity greater than or equal to
the maximum disparity found minus an automated thresh-
old value (e.g., the top 20% of disparity values). Erosion and
dilation morphological operations were then used to filter
image noise using a simple 3 x 3 kernel.

The “hallway” scene in Figure 9 shows a wall to the right
and a workbench on the left relatively close to the cameras.
This scenario is more challenging than the previous in two
important respects: the images exhibit greater variations in
illumination (the bright ceiling lights are directly visible),
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FIGURE 9: Indoor scenes: “garbage can” and “hallway”

and the cameras were not perfectly calibrated in the canon-
ical configuration (with the epipolar line parallel to image
scan lines). The cameras are tilted slightly with respect to
each other. Despite these challenges, the disparity map is ac-
curate enough for the system to determine the location of
(and hence distance to) the obstacle. No image rectification
was necessary and no special compensation was added for
the variations in illumination.

Figure 10 shows the image pairs and disparity maps of
two outdoor scenes. Both show promising results that are ad-
equate for the system to warn the user about obstacles and

the distance to them. Hardware simulations indicate that our
current FPGA-based design is able to process 640 x 480 im-
ages at 9 to 11 frames per second, a sufficient rate to direct a
user at the normal walking speed of 4.0 feet (1.2 meters) per
second, or to provide update information approximately ev-
ery 5 inches (12 cm). Processing speed varies with the num-
ber of iterations required to reach an acceptable solution.
Note that the disparity maps of the “hallway” and “truck”
scenes detect areas of glare and shadow that are on the bot-
tom of the disparity map and assign disparity values to them.
These areas can be mistaken as obstacles because they are
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FiGgure 10: Outdoor scenes: “truck” and “planter”.

close to the user. However, given a known camera height
(or the height of the user), these areas can be determined to
be directly in front of the user and at the same level as the
ground the user walks on. Although the glare areas shown in
both scenes seem to be at the same location, they have dif-
ferent distance values that are not reflected in the binarized
disparity maps. Objects appearing near the bottom of the
image and at a distance equal to the height of the user can
be removed. The guiding device can then ignore them and
not send out a warning signal to the user. In the figure, the
“planter” is located at the bottom of the image but “further”
from the cameras than the known distance to the ground.
Hence, the planter would be correctly identified as an obsta-
cle. In the case that these areas are near the bottom of the
image and have distances greater then the user’s height, then
they will be interpreted as a drop-off (e.g., curb, pothole, de-
scending staircase) and an appropriate warning signal would
be sent.

4.3. Anticipated embedded system

The disparity information found by the algorithm leads di-
rectly to reasonable estimates of distances to potential ob-
stacles in the user’s surroundings, and then these estimates

trigger warnings to the user. Because the system operates
in real time, the warnings come quickly and reliably as the
user moves through the environment. Figure 11 illustrates
the complete Seeing Eye Glasses system. At the user’s dis-
cretion, the system provides information in the form of au-
dio feedback in conventional headphones or vibrations pro-
duced by microvibrators mounted on the ends of the frame
near the ears. The latter feedback system warns the user by
gently tapping on the skin. Time-to-impact is indicated by
varying the tapping frequency, and the direction to the obsta-
cle is indicated by differences in the magnitude or intensity of
the tapping on one side relative to the other.

Relative to a conventional laptop computer, the Helios
board offers substantial advantages. Most importantly, it is
much smaller and lighter, yet its FPGA resources make possi-
ble levels of performance that exceed what a laptop can pro-
vide. The reduced size makes it easy for a user to carry or
wear in the course of her normal activities. Because it mea-
sures just 2.5 X 3.5 inches (with a typical stacking height of
9mm), it can be incorporated into a small package, includ-
ing the battery. With one thin connecting cable to the glasses
and a second to the earphones (if the user opts for audio feed-
back), the appearance of the overall system would not differ
noticeably from that of popular electronic devices. Thus, the
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FiGure 11: Anticipated embedded stereo vision system.

Seeing Eye Glasses system meets all requirements mentioned
in Section 1, including the cosmetic appeal.

This system supplements other assistive tools such as See-
ing Eye dogs and canes. Because the Seeing Eye Glasses are
worn just like normal sunglasses, the user’s hands are free to
hold a cane or a dog’s harness.

The system can also be augmented with additional func-
tionality without modifying the existing hardware. For ex-
ample, using the visual cues from a sequence of image
frames, the system can calculate not only the time-to-impact
for obstacles, but also the tilting of the head by the user. This
could, for example, be used to warn a user with an impaired
sense of balance of an impending fall. By being both unob-
trusive and simple to use, the embedded system can provide
visual guidance to the visually impaired.

5. CONCLUSION

This paper has presented an embedded stereo vision system
that can be used to assist the visually impaired. Our system
design takes advantage of technologies we developed for mil-
itary applications—real-time on-board vision processing for
obstacle detection and avoidance on very small unmanned
air vehicles—and applies them to an important application
in health care.

Our approach uses splines and a genetic algorithm to per-
form stereo vision correlation in order to generate dense dis-
parity maps. These disparity maps, in turn, provide rough
distance and orientation estimates to the user, assisting in the
navigation through an unknown environment. Using dispar-
ity maps from multiple image frames, the time to impact an
obstacle and the tilt of head can also be calculated.

Our results showed that our algorithm provides adequate
results for the purpose of guiding a human user. The algo-
rithm does not require complicated image rectification, and
it is robust in the face of imperfect stereo system configura-
tion, improperly calibrated cameras, and variations in illumi-
nation. A simulation of a preliminary hardware design shows
that the system is able to update the 3D information at 9 to
11 frames per second. We anticipate that design optimiza-
tions will result in higher frame-rates sustained in real-time
operation.

Future work includes completing the hardware and soft-
ware design for the FPGA as well as building the embedded

stereo vision system itself. Better interpretation of the dis-
parity map for detecting shadows on the ground, drop-offs
associated with stairways and curbs, and overhangs such as
tree branches and low ceilings will improve the reliability of
the system.
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