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INTRODUCTION

We propose an optimal-level distributed transform for wavelet-based spatiotemporal data compression in wireless sensor net-
works. Although distributed wavelet processing can efficiently decrease the amount of sensory data, it introduces additional com-
munication overhead as the sensory data needs to be exchanged in order to calculate the wavelet coefficients. This tradeoff is ex-
plored in this paper with the optimal transforming level of wavelet transform. By employing a ring topology, our scheme is capable
of supporting a broad scope of wavelets rather than specific ones, and the “border effect” generally encountered by wavelet-based
schemes is also eliminated naturally. Furthermore, the scheme can simultaneously explore the spatial and temporal correlations
among the sensory data. For data compression in wireless sensor networks, in addition to minimizing energy and consumption,
it is also important to consider the delay and the quality of reconstructed sensory data, which is measured by the ratio of signal to
noise (PSNR). We capture this with energy Xdelay/PSNR metric and using it to evaluate the performance of the proposed scheme.
Theoretically and experimentally, we conclude that the proposed algorithm can effectively explore the spatial and temporal corre-
lation in the sensory data and provide significant reduction in energy and delay cost while still preserving high PSNR compared to
other schemes.

Copyright © 2008 Siwang Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

the algorithm can be executed efficiently. However, the above

Edging toward real world deployments, wireless sensor net-
works have revealed vast potentials in a plethora of appli-
cations including battle field monitoring, environmental ex-
ploration, and precision agriculture [1, 2]. Owing to the se-
vere resource constraints such as memory space, computa-
tion power, and communication bandwidth, gathering all the
raw, original sensory data is not often feasible in wireless sen-
sor networks. Motivated thereby, extensive research efforts
have been focusing on wavelet data compression in wireless
sensor networks, with a goal of data amount reduction and
hence energy conservation. For example, the WISDEN sys-
tem [3] is designed for structural monitoring. In this sys-
tem, wavelet compression is first performed in a single sen-
sor node and the wavelet coefficients are then sent for fur-
ther processing at a central location. Aiming at time-series
sampled by a single sensor node, RACE [4] proposes a rate
adaptive Haar wavelet compression algorithm. The support
of Haar wavelet is 1 and its structure is simple. As a result,

wavelet-based approaches do not exploit the fact that data
originated from physically proximate sensors are often highly
correlated. Consequently, energy can be wasted due to the
transmission of redundant data. Dimensions [5, 6] propose a
hierarchical routing scheme with its wavRoute protocol. This
scheme exploits the temporal data redundancy at the bottom
level of the routing hierarchy firstly, and then performs spa-
tial data reduction in the middle. Still, there exists the trans-
mission of spatially redundant data from the bottom to the
middle of the hierarchy.

On the other hand, a series of papers have pioneered
in wavelet-based distributed compression [7-10] recently. In
[7, 8, 10], distributed wavelet transforms (WT) are imple-
mented based on a one-dimensional chain network model.
Although these schemes are simple to implement, they have
ignored “border effect” of wavelet transform. Even for large
scale sensor networks, border effect still can have significant
impact on the quality of reconstructed sensory data. Indeed,
the chain network model employed [7, 8, 10] exaggerates



EURASIP Journal on Advances in Signal Processing

the “border effect” particularly. Transforming level is another
important property of wavelet transform. Although higher
compression efficiency can be obtained along with increas-
ing transforming levels, additional energy and delay cost are
introduced as more sensory data need to be exchanged to
perform the transform. Therefore, it is important to look for
the optimal transforming levels in conjunction with proper
topology. Although Haar wavelet-based adaptive level mul-
tiresolution representation is proposed in [10], the scheme
is difficult to generalize to wavelet function with arbitrary
length support. Moreover, the scheme has ignored network
delay, which is crucial for certain applications. Performance
evaluation of distributed WT algorithms is also an interesting
problem. In [9], irregular WT is studied and its performance
is evaluated using “mean square error” (MSE) and energy
metrics separately. On the contrary, in [7-10], the metrics of
evaluation involve many aspects, such as energy consump-
tion, reconstruction quality metric, delay, and so on. How-
ever, they only use those metrics unilaterally without con-
sidering their relation. This, in turn, has also limited their
performance and application scope.

Motivated thereby, in this paper, we propose a ring
topology-based, optimal-level distributed transform for
wavelet functions, whose support length can be arbitrary.
Our scheme simultaneously exploits the spatial and tempo-
ral correlation residing in the sensor data within clusters.
The ring model will naturally eliminate the “border effects”
encountered by WT and hence further strengthen its sup-
port to general wavelets. Furthermore, our scheme is capa-
ble of accommodating a broad range of wavelets which can
be designated by different applications. Moreover, we pro-
pose a scheme of optimal level of WT, which can explore the
tradeoft between the benefit of distributed WT and the cor-
responding overhead. We evaluate the performance of data
compression for sensor networks with energy x delay/PSNR
metric, which gives enough consideration in the tradeoff of
energy consumption, network delay, and the quality of re-
constructed sensory data. Theoretically and experimentally,
we analyze the performance of our proposed algorithm and
perform comparison with other schemes.

The remainder of this paper is organized as follows. In
Section 2, we first study the border effect in sensor networks,
then detail the ring model and describe the optimal WT
thereon. In Section 3, we present the performance evaluation
model for data compression in sensor networks, and then an-
alyze the performance of the proposed framework. Experi-
mental study is presented in Section 4 and we conclude in
Section 5.

2. SPATIAL-TEMPORAL WAVELET COMPRESSION

In this section, we first examine the potential impact of bor-
der effect on sensory data reconstruction in sensor networks,
and then present the network model and the construction of
the virtual ring topology to eliminate the border effect. Sub-
sequently, the optimal transforming-level-based algorithm
for compressing spatial and temporal correlated data is de-
tailed.

2.1. Border effect in sensor networks

We assume that sensory data collected are stored in each sen-
sor node in a distributed fashion. While these data can be
compressed employing wavelet based on one-dimensional
network model [2], border effect will induce errors when re-
constructing the sensing field. If the reconstructed data are
different from the original data, the results are considered to
be distortive.

For general wavelet functions with arbitrary supports, let
their lowpass and corresponding highpass analysis filter be

L,,—ii<n<j, i1=0,j >0, "
Hy—ih<n<jy i=0,j,>0.
Let
L=max ((i1+j1+1), (+j2+1)), (2)
I = max (i}, i), (3)
J = max (ji, j2). (4)

As a consequence of border effect, we have the following the-
orem.

Theorem 1. Performing K-level distributed WT on sensory
data stored in N sensor nodes, ifZK([(ZK —DI2KT+ 70K =
D(J - 1)/25)+ @5 = 1)I +] - 1) < N, where [ is a opera-
tor of bounding, then the sensor nodes whose reconstructed data
are distortive amount to 2K([(2X — D1/2K1+ 12X - 1)(J -
/2K + 2K = 1)(I+] = 1), otherwise, the reconstructed sen-
sory data in all N sensor nodes will be distortive.

Proof. The sensory data stored in N sensor nodes can be re-
garded as a one-dimensional array with N elements. Using
wavelet function as defined by (1)—(4), we perform K-level
WT on the one-dimensional array. According to the decom-
position steps of Mallat algorithm [11]

. .
X =D Ly,
n

: : (5)
dif' = > Hpoxyl,
n
where i > 0, x;"! and d"" is the kth approximation and detail
coefficients in the (i+1)th level WT, respectively. If the border
of the array is not extended, the distortive detail coefficients
in the Kth level WT will amount to

[(ZK—I)AL[(2"—1)(11—1)1 ©)

2K 2K

The distortive approximation coefficients correspondingly

-] [ -1(-1)
R e N

According to the reconstruction steps of Mallat algorithm,

= 3 L+ 3 Hy e, ®)
k k




Siwang Zhou et al.

.< '
M ° .'ﬁ.:(\::
A

=
O
)

FIGURE 1: Ring topology based on virtual grid.

Along with (3) and (4), the total number of the distortive
sensory data becomes

[ -1 [ -1nUu-1
R (R s Sl |

+ (K -DI+J-1).

This shows that the sensory data reconstructed are dis-
tortive as compared to those originally stored in the sensor
nodes. For simplicity, we consider wavelet function to have
the same analysis and synthetic filters. Obviously, if Num
> N, all N reconstructed sensory data are distortive. O

Here, we give a simple example to illustrate the border
effect. Assume that the number of nodes in a network is 400,
and a 3-level WT on the sensory data employing Daubechies
9/7 wavelet is performed. There will be 105 nodes whose re-
constructed data are distortive according to Theorem 1. This
accounts to around a quarter of all the sensor nodes. From
Theorem 1 and this example, we conclude that the border
effect can potentially have significant impact on the recon-
struction of sensory data.

2.2. Ring topology based on virtual grid

Below, we describe a ring topology based on virtual grid. As
we will illustrate later, ring-topology-based WT can elimi-
nate border effect and can fully explore the spatial correlation
among sensory data.

2.2.1. Virtual grid and data correlation model

We assume that the sensor network is divided into different
clusters, each of which is controlled by a cluster head [12].
Our focus is given to energy-efficient gathering of the sen-
sory data from various cluster members to the cluster head.
Routing the data from the cluster head to the sink is out of
the scope of this paper although it may benefit from the com-
pression algorithm presented in this paper. We assume that in
a cluster, nodes are distributed in a virtual grid as illustrated
in Figure 1. The distance among nodes can be estimated ac-
cording to the distance among the corresponding grid cells.
It can also be calculated according to the factual positions of
the nodes. The division of cells in a cluster relies on the net-
work topology and node density. We assume that one cell at

least contains one node and in each cell, one node is selected
as the reporting node (for reporting the data to the cluster
head).

Without confusion, we will simply use node to refer to
this reporting sensor. We remark that this model is neither
restrictive nor unrealistic. In the worst case, a single node
can logically reside in one grid cell and can be required to
report its data corresponding to every query or during every
specified interval.

There exists a certain correlation for the sensory data
stored in each node, which can be described using a corre-
lation model. Let correlation coefficient p represent the data
correlation and let , represent correlation scope. In correla-
tion model, p will be zero if the distance between two nodes
exceeds 7y. If the distance is d (d < 7;), thenp = 1 — d/r,.

2.2.2. Ring topology based on virtual grid

The key for our construction is that we form a ring topology
among the reporting sensor nodes, as illustrated in Figure 1.
To do this, we initially select a node randomly as the ring
head, and then determine a neighboring node as its next
node. This neighbor-selection procedure will be repeated un-
til the ring topology is completed. In order to maximize the
correlation among neighboring nodes and hence the effect of
compression, the ring can be computed in a centralized man-
ner by the cluster head and broadcast to all nodes. Notice that
multiple rings may be available due to node density.

In this ring topology, neighboring nodes belong to spa-
tial adjacent grid cells. A node on the ring receives data from
one of its neighbors, fuses the data with its own, and fur-
ther forward the results to the other neighbor. As the nodes
are relaying the sensory data, WT will be executed and cer-
tain wavelet coefficients will be actually stored locally and
some others will be forwarded. Indeed, nodes in a particu-
lar grid cell can alternatively participate in the ring and hence
the data-gathering procedure. This way, energy consumption
can be more evenly distributed among the nodes and thus
extend the network lifetime. Readers are referred to [13] for
approaches of scheduling nodes within one grid, for exam-
ple, power on and off, for this purpose.

Given the ring topology, in each data gathering round, a
node will be chosen as the “head” of the ring and the nodes
will be indexed accordingly as so, $1,...,Si...,Sn-1, Where N
is the number of nodes on the ring. In addition, we assume
that sensor i stores data cj;, j = 0,1,..., M — 1, where j is the
temporal index and c;; represents the sensory data of sensor
i at time index j. Evidently, dependent on M, each sensor
will window out history data. Accordingly, we can arrange
the sensory data on the ring according to their spatial and
temporal relationship to a matrix C° = {cji},0 <i<N,0 <
j < M, where column i represents the data of sensor node i.
For ease of notatign, we will use d to denote column i. No-
tice that Cy and Cy-; are adjacent on the ring topology and
hence will possess relatively higher correlation. As we will de-
tail later, this unique feature of ring topology is in particular
adapt to WT with arbitrary supports and can effectively help
us eliminate the border effects of WT.
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We remark that while extensive data-gathering struc-
tures have been studied in the literature, they are usually
tree-based. Undeniably, the ring construction requires care-
ful study in order to best benefit from its special properties.
While considering this as our future work, we provide here
a brief discussion. First of all, due to the procedure of dis-
tributed wavelet compression, it is desirable to have higher
data correlation among neighboring nodes. This way data
can be better compressed while being forwarded along the
ring and hence energy can be saved. Often, this can be nat-
urally satisfied by selecting physically proximate nodes to be
neighbors on the ring. At the same time, the longer the ring,
the more compression can possibly be achieved. However,
with increasing the length of the ring, the number of wavelet
coefficients will also increase which can in turn introduce ad-
ditional calculation and storage cost. Additionally, network
delay for data gathering will also increase as the ring length
increases. Balancing the size of the ring and the number of
the rings will require careful tradeoff among all the above-
mentioned factors.

2.3. VGRT-based optimal level spatial-temporal
wavelet transform

2.3.1.  Spatial-temporal wavelet transform

Our goal is to employ the WT for compressing sensory data
on the ring so that it can be energy efficiently transmitted
to the cluster head. The approach is to simultaneously ex-
ploit the temporal and spatial correlation among the nodes’
data and reduce the redundancy thereby. As the data is repre-
sented by matrix C°, the temporal (within a node) and spa-
tial (among multiple nodes) correlations are then captured
by the columns and rows, respectively. Correspondingly, in
our design, we will first perform WT on each column and
then perform WT on the rows. Furthermore, these column
WT and row WT can be performed recursively to achieve a
K-level WT. Notice that column WT is within a single node
hence no communication is required although data will be
buffered. On the contrary, the row WT is among the sensor
nodes and hence requires additional communications.

Our first step is to perform transform on the columns of
CY to exploit temporal correlation. Let L, and H,, be lowpass
and highpass analysis filters, respectively, we have

C;lﬁﬁ = ZL(n—Zm)Ci(n)>
n

- (10)
cinlf = ZL(,,_Z,,,)Ci(n), 0 <m < N/2,
n

where C,lnLl represents the mth approximation wavelet co-

efficient in the ith column in the first level of the column
WT, C,lﬂlf is the corresponding detail wavelet coefficient, and

Ci(n) denotes the nth element of d Notice that this trans-
form is performed within each node on its own sensory data
and thus does not require any communication among the

nodes on the ring. Subsequently, we can realign the resultant
wavelet coefficients and obtain matrix

. LL 1L LL 3
€0,0 0,1 Co,N-1
L cbL cbL
M/2-1,0 CM/2-1,1 M/2—1,N—1
C =1 (11)
1L,H 1L.H 1,H
0,0 Co,1 Co,N-1
LH LH LH
L CM/2-1,0 CM/2-1,1 CM/2-1,N-1

Given matric C;, our second step is to perform WT on its
rows to explore the spatial correlation among the nodes. Note
that the first and the last columns are adjacent on the ring
topology, and this resembles a periodic extension to the sig-
nal. Towards this end, for general wavelets with arbitrary
supports whose lowpass analysis filter is L,, —i; < n < j;
and highpass analysis filter is H,, —i < n < j,, where
i1, 12, j1, j2 = 0, we analyze the different cases of the row
transform based on whether j; and j, are even or odd.

Case 1. If j; is even and j; is odd, by performing WT on the
rows in a similar way to the column WT, we obtain

(L 1,LH 1,LL 1,LH 1
0,0 0,ho 0,In/2-1 0,hin/2-1
LLL 1,LH LLL 1L,LH
c CM2-10y CM/2-1h CM2-1nny EM2—1hnn
2= 1LHL LHH LHL LHH ’
CO,lo CO,ho COJN/z—l CO,hN/z—l
1L,HL LHH 1L,HL 1LHH
L CM2-10y CM/2-1h CM2-1npey M2-1hypy )

(12)

where [; = ((N — ji +2i)/2 mod N/2), hj = (N — j, +
2i +1)/2 mod N/2), cbE and ¢};fiF represent the approxi-
mation coefficients in the first level of the row WT, and c};5H
and c;1H represent the corresponding detail coefficients. We
remark that for a node with index i, if 7 is even, the node

. I,L LHL .
stores coefficients c,, (y_ ji+i)/2 mod N/2 and ¢, (x - j14+i)/2 mod N/25
if i is odd, the node stores coefficients c:,;,Lg\,_ jr+i)/2mod N/2 and

c,];ﬁg_ j+iyamodn/2 0 < m < M/2 — 1. Notice that this trans-

form is performed among the sensor nodes on the ring to
harvest the spatial correlation and hence resultant wavelet
coefficients cannot be realigned as in the column WT.

Based on the approximation coefficients in C,, we can
obtain matrix C! as

1,LL 1,LL 1,LL
Co,ly oy 0,21
Cl,LL 1,LL 1,LL
Cl = Ll LI Lina-1 (13)
1,LL 1,LL 1,LL

CM-10, CM2-14

CM/2’1;IN/2—1
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We can perform the second-level column and row WT on
matrix C! as those to matrix C° and extend to the Kth level
spatiotemporal WT similarly.

Once the K-level WT is performed, the original data
gathered by the nodes on the ring is transformed to the
wavelet domain. Since the spatial and temporal correlations
are exploited, we can represent the original data using fewer
bits. In lossless compression, all the wavelet coefficients will
be encoded and sent to the cluster head; in lossy com-
pression, according to different application-specific require-
ments, the wavelet coefficients can selectively be encoded and
sent to the cluster head by different nodes.

Case 2. 1f j; and j, are both odd, while we can perform the
transform following similar procedure, the matrices will be
significantly different. Due to space limitation, we omit them
here but remark that those nodes whose indexes are odd will
not store wavelet coefficients.

When we perform row WT, the first group of approx-
imation coefficients is calculated using the data stored in
the ((N — i;) mod N)th node to the (j; mod N)th node and
are stored in the (j; mod N)th node. The corresponding de-
tail coefficients are calculated using the data stored in the
(N — iy)th node to the (j> mod N)th node and are stored in
the (j, mod N)th node. When j; is odd and j, is even, it will
be similar to the first case, and when j, and j, are both even,
it will be similar to the second case discussed above. i; and i,
will not affect the distribution of wavelet coefficients.

2.3.2. Optimal transforming level of wavelet function

In this subsection, we will study how many transforming
levels needed to be performed to obtain optimal network
performance. We evaluate network performance with energy
and delay.

From data compression’s point of view, WT is desired
only if the average number of encoding bits of wavelet co-
efficients can be reduced. Let Bx_; and B be the average en-
coding bits of wavelet coefficients in the (k — 1)th and the kth
level, respectively, then we have

Bi—1 — Br = f(data, wavelet). (14)

Since most of energy consumption is data transmission
and most of delay factor is in the transmission time for wire-
less sensor networks, we measure energy and delay in terms
of the size of data being transmitted. We might as well denote
e(-) and d(-) are energy and delay cost function respectively.
Studying the optimal transforming level of spatial-temporal
WT, we have the following theorem.

Theorem 2. Let Ejn and Dy N be the additional energy and
delay cost by distributed spatial-temporal the kth-level WT, re-
spectively, K; = max (k : Exin — e(Bk-1 — Bx) < 0), Ky =
max (k : Dxin — d(Bk—1 — Bx) < 0), then the optimal trans-
forming level of spatial-temporal WT K is K = min (Kj, K3).

Proof. The energy consumption and delay of sending (Bx—; —
By) bits data is e(Bxk—1 — Bx) and d(Bk-1 — Bi), respectively.
If the energy and delay cost generated by the kth level WT

are all less than or equal to that of the (k — 1)th level WT,
then the kth level WT would be performed. So we can easily
obtain Theorem 2. O

The optimal transforming level of wavelet function can
be calculated distributively by the nodes on the ring. With-
out loss of generality, we assume that the energy function
e(-) and delay function d(-) have been loaded to nodes in
advance. The energy and delay are calculated by nodes dur-
ing they perform WT. Each node forwards the value of energy
and delay while the data are sent to the next node to produce
wavelet coefficients. So the node, which stores the last col-
umn wavelet coefficients, knows the total energy and delay
cost in the corresponding transforming level, and thus it can
decide if the next transforming level will be performed. If the
decision is “YES,” then the new level WT will be initiated by
the node that stores the first column wavelet coefficients. The
decision can be easily transmitted to the node thanks to the
ring topology.

2.4. Discussion

In the above WT, the ring head can be alternated among dif-
ferent nodes when performing the data-gathering procedure.
Consequently, the wavelet coefficients will be distributed to
different nodes accordingly which in turn will balance the
energy consumption within the cluster. Furthermore, neigh-
boring nodes on the ring belong to spatial adjacent virtual
grids, so the data gathered by the neighboring nodes are
more likely spatially correlated. Because the calculation of
approximation and detail wavelet coefficients are for neigh-
boring nodes within a support length, performing WT based
on the ring can make full use of spatial correlation to remove
the data redundancy and hence reduce transmission cost.

More importantly, performing WT based on ring topol-
ogy naturally eliminates the “border effect” problem inher-
ent in WT. It is well known that general wavelet functions are
defined on the real axis PR while the signal is always limited
in a finite region &. Therefore, the approximate space L?(R)
will not match the signal space L*(R) which will result in the
“border effect” and thus introduce errors during signal re-
construction. One of the general methods to deal with “bor-
der effect” is extending border. The ring topology resembles
a periodic extension to the signal that naturally dissolves the
“border effect.”

Before going forward, we remark here that our scheme
aims at traditional wavelet transform and hence is not di-
rectly applicable to the second-generation wavelet. Moreover,
due to the strick requirement of the topology for data for-
warding, the scheme lacks robustness in its current form.
These are considered our future work.

3. PERFORMANCE EVALUATION

In this section, we analyze the energy consumption and delay
of the proposed scheme, and then present a model to evalu-
ate the data compression algorithms for wireless sensor net-
works.
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3.1. Energy consumption and delay analysis

We now briefly analyze the total energy consumption and de-
lay of the proposed scheme. For this purpose, we adopt the
first-order radio model described in [12]. In this model, a ra-
dio dissipates Eelec amount of energy at the transmitter or re-
ceiver circuitry and €,mp amount of energy for transmit am-
plifier. Signal attenuation is modeled to proportional to d?
on the channel, where d denotes distance. For k bits data and
a distance d, the transmission energy consumption Etyx and
reception energy consumption Egy can be calculated, respec-
tively, as

ETx(k) d) = ETx—elec(k) + ETx—amp(k) d))
Erx(k,d) = Eelec X k + €amp X k X d?, (15)
ERx(k) = ERx—elec(k) = Eelec x k.

We further assume that the sensor nodes can transmit
simultaneously and neglect the processing and propagation
delay. Let the transmission time of one data unit be one unit
time. Let Ejy and Dyy represent the energy consumption
and delay resulting from communication among the nodes
within the cluster for performing the proposed WT. We can
derive the following theorem.

Theorem 3. For general wavelets with arbitrary supports, let
the lowpass analysis filter be L,,, —iy < n < ji, and let the high-
pass analysis filter be H,, —i; < n < ja, where i1, i, j1, j2 = 0.
For a K-level distributed spatiotemporal WT based on the ring
topology proposed above, to gather the sensory data in a cluster
of N node,

Ein = Ewav + Eopr,s (16)

K i+ -1
Dy = Z ( max ( Z qil;ll +BL>
e

1 0<I<N/2"—1 i—0

ir+jr—1
H H
+ max H B (17)
0<l<N/2"1( ; qinl )

+ (N—Z”)(BL+BH)),

K N/2"-1 i+tji+1 i+l
3 (B 2man( X (dhr8+ 3 (afhen)

i=0 i=0

i+ji+1
+€amp< Z ((qlnl+BL) dml)

i=0
qlnl + B dml)) ) >

irtja+1

+ 2

Eopr = i <2Eelec (BL (N_zn) +B" (N - 211))

n=1

— i +N+2(n=1) (2" 1) (ihjy ) +N-2"—1
L
+Eamp( B 'djmodN

j=—iHNF2 Q2" 1) (i 4y )

—i+N+2(n—1)+Q2" ' =1) (i +j)+N-2"—1
+ Z BH'djmodN>>
j=—iAN+2 U2 1) (12 +j2),
qml qn( i+ N+271+(271=1) (i1 +j1)+27~1i) mod N,
qml qn( i +N+271+(271=1)(ir+j,)+2""1i) mod N,
—i+N+2"+(2" 1 =1) (i +j1)+2" 1 -1 2
Ginl = < d] mod N) >
J=—i+N+20+(2n 1 = 1) (i1 + 1)
i AN (28— 1) (i ) 427 1 2
Ginl < d; mod N) .
Jj=—i+N+27+(2n 1 = 1) (i +j2)
(18)

Ewav and Eopr are the energy consumption for producing the
wavelet coefficients and forwarding the values of energy and
delay, respectively. BL and BY are the bit number storing the
value of energy and delay, introduced by the production of
low- and high-wavelet coefficients, respectively. qh; and qv;
are the data amount transmitted by the ith node when the
Ith approximation coefficient and the corresponding detail co-
efficient in the nth level row WT are calculated, respectively,
dj mod n is the distance between the (j mod N)th node and the
((j + 1) mod N)th node, Eil is the processing energy of when
the Ith wavelet coefficients are calculated in the nth level WT.

Proof. When the Ith approximation wavelet coefficient in the
nth level row WT is calculated, the transmitting cost Ey, is

i1+
Eﬁ,l = Erx + Erx = 2Eelec Z diny

i=0

1
i+ (19)
L gL
t €amp Z (qinl 'dinl)-
i=0

When the [th detail wavelet coefficient in the nth level row
WT is calculated, the transmitting cost E, is

i+ jo ir+j
Efly = 2Eaec D' g+ €amp >, (qhy-dfy).- (20)
i=0 =0

When the nth level WT is performed, the processing cost E,
is

N/27 -1
> Eb,. (21)
1=0
Then, if K-level WT are performed, the energy cost Ex is
K N/27 -1
En =2, (Ep + > (B +Eff,z)>. (22)
n=1 =0
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Taking (19), (20), and (21) into (22), we can obtain (16).
In the system of CDMA, the communication interference
among nodes is little, so the wavelet coefficients can be cal-
culated simultaneously. The network delay of the nth WT is

itjp—=1 it g
Dy = max ( ~>+ max ( )
N eiznyan1 1o i) T _MAX =0 4inl
(23)
Hereby, it is easy to get (17). O

Noting that Ei, includes two parts, one is the process-
ing cost when nodes perform column WT in a single node,
and the other is the processing cost when nodes fuse data
obtained from the proceeding nodes. We can conclude from
the theorem that, along with increasing levels of the WT, the
energy cost also increases. However, the detail wavelet coeffi-
cients stored by the nodes also increase. As a result, the data
can be coded using fewer bits.

For performance comparison, we employ a nondis-
tributed approach for data gathering. In this approach, sensor
nodes in the cluster will send their data to the cluster head di-
rectly and thus no internodes communications are required.
Comparing the energy consumption and delay between our
algorithm and the nondistributed approach, we have the fol-
lowing theorem.

Theorem 4. Let the average distance between nodes and the
cluster head be D meters. Let the amount of the original data
that is quantized be Q bits and let the amount of data be Q'
bits after K-level distributed spatiotemporal WT is performed.
(1) If Q" = Q— En/(Edlec + €amp - D?), the energy consumption
by performing our algorithm is less than that of nondistributed
approach; (2) if Q" < Q — D, the delay by performing our
algorithm is smaller than that of the nondistributed approach.

Proof. Suppose that the cost of transmitting data to clus-
ter head is Et, and then the total energy consumption Ep
by performing our algorithm is Ep = En + Er = En +
Eeec-Q'-D? = Ein + Q' (Eelec + €amp-D?). The total energy
consumption Ec for the nondistributed approach is Ec =
Er = Q(Eeiec + €amp-D?). From Ep < Ec, we can get Q' <
Q — En/(Edec + €amp-D?). Suppose that Dy is the delay of
transmitting the data to the cluster head, then the total delay
for our algorithm is Dp = D7 + Diy = Q" + Dix;, and the de-
lay for the nondistributed approach is Dc = Dr = Q; from
Dp < Dg, we can easily get Q" < Q — Din. O

Noting that the ratio of the total energy consumption of
our algorithm and that of the nondistributed approach is

Ep _ En+t EeecQ' + €ampQ'D? _ En N Q
Ec EelecQ + GameD2 EelecQ + EameDZ Q '
(24)

Evidently, Ep/Ec will decrease when the distance D in-
creases. Therefore, we can conclude that with increasing the
distance between the cluster members from the cluster head,
the proposed algorithm will save more energy.

3.2. Performance-evaluation model

We now establish a model to evaluate the performance of
data compression algorithms for sensor networks.

One important goal of designing a sensor networks is to
reduce energy consumption of sensor nodes and prolong its
lifetime correspondingly. However, for many applications, in
addition to minimizing energy cost, it is also important to
consider the delay incurred in compressing sensory data. So,
it is necessary to look for the tradeoff point between energy
consumption and network delay. We capture this with energy
X delay metric.

In data compression, the ratio of signal to noise (PSNR)
is often used to evaluate the algorithm efficiency. PSNR has
some relations with the compression ratio. Generally, high
PSNR will be subject to low compression ratio and vice versa.
We pursues high PSNR when designing data compression al-
gorithm for sensor networks.

Based on the above analysis, we propose the following
model to evaluate the performance of data compression al-
gorithm.

energy X delay

EP = f(energy, delay, PSNR) = PSNR ,

(25)
where EC and delay represent energy consumption and net-
work delay, respectively, performance evaluation function EP
is decided by energy, delay, and PSNR. The delay cost can be
calculated as units of time, and we assume that 1 bit sensory
data can be transmitted in 1 unit time.

Obviously, minimizing energy X delay/PSNR satisfies the
requirement to energy consumption and lower network de-
lay while obtaining high PSNR. So, EP is a reasonable model
for evaluating data compression algorithm for sensor net-
works.

4. SIMULATION AND RESULTS

In this section, using Haar wavelet, we evaluate the perfor-
mance of our algorithm and in particular compare it with
the nondistributed approach.

We consider a ring composed of 128-896 nodes, assum-
ing the average distance among the neighboring nodes is
5 meters. We use real life data obtained from the Tropical
Atmosphere Ocean Project (http://www.pmel.noaa.gov/tao),
which are the ocean temperatures sampled by 896 sen-
sor nodes from different moorings at different depths at
12:00 pm from 1/20/2004 to 5/26/2004. In the experiment,
we employ uniform quantization and no entropy coding.
Three cases are compared: optimal transforming level of
wavelet, nondistributed approach, and 2-level WT. The rea-
son for choosing 2-level WT is that the appropriate level of
transforming 65536 (256 256) data is 2 based on the conclu-
sion from standard signal processing techniques. The results
are shown in Figures 2 to 6 and Table 1.

Figures 2—4 illustrate the relationship among energy con-
sumption, delay, data reconstruction quality, and the posi-
tion of cluster head for optimal level, distributed 2-level WT
and nondistributed approach, respectively. Here, “distance”
denotes the average distance between cluster head and sensor



14

200

8 EURASIP Journal on Advances in Signal Processing
X 107 X 104
15, 6
5
2 105 E4
gs =
E
SRR R 2
1
0 0
200 200
70 150 70
, 100 60 . 100 60
Mang, 50 ~0 ) D%'?c g X @
g R\ e 40 \s)
) 0" 30 ponR () 0730 PR (&
(a) The relation among PSNR, distance, and energy (b) The relation among PSNR, distance, and delay
FIGURE 2: Optimal level WT.
x108 x10*
2.5 6~ -
g
>~
oo
s}
=
35|
Is[a - Is[a -
12(‘5- ¢,
( a») € a»)
) 0" 40 poNR{ K 0" 40 poNR
(a) The relation among PSNR, distance, and energy (b) The relation among PSNR, distance, and delay
F1GURE 3: Distributed 2-level WT.
x108 x10*
6~ - 14 <
54
z 44
5 3y
L)
5 24

100

(a) The relation among PSNR, distance, and energy (b) The relation among PSNR, distance, and delay

Ficure 4: Nondistributed approach.



Siwang Zhou et al.

x 10!
9

8

7

Energy x delay/PSNR
w

20 40 60 80 100 120 140 160 180 200
Distance (m)

—— Nondistributed approach
—*— Distributed 2-level WT
—— Optimal-level WT

(a) Cluster head locates in different position

x1012
14 T T T T T T T

Energy x delay/PSNR

Number of nodes

—+— Nondistributed approach
—*— Distributed 2-level WT
—0— Optimal-level WT

(b) The number of nodes is different

FiGure 5: Comparison of performance.

0.35 T T T T T
0.3 1

0.25 1

0.15 1

Percent

0.1 | 1

0.05 1

~0.05 : : : : :
DBl  DB2 DB3 DB4 DB5S DB6  DB7

Wavelet functions

—+— Distributed 2-level WT
—— Optimal-level WT

(a) Impact on number of distorted nodes

70 T T T T T

65 1
60 5
55
50
45

PSNR (dB)

40
35
30
25

20 L L L L L I
DB1 DB2 DB3 DB4 DB5 DB6 DB7

Wavelet functions

—+— Distributed 2-level WT
—— Optimal-level WT

(b) Impact on PSNR

F1GURE 6: Impact of “border effect.”

nodes, and “PSNR” indicates the data reconstruction qual-
ity as detailed in the previous section. As we can see, along
with the increasing of PSNR and distance, the performances
of distributed algorithms are better than nondistributed ap-
proach, and our proposed algorithm has the least energy con-
sumption and delay. Notably, the shape of Figure 2 is not as
regular as Figures 3 and 4. This is because our algorithm can
adjust the transform level adaptively according to the dis-
tance, and thus the size of energy consumption, delay, and
PSNR varies along with the transform level irregularly.

In Figure 5, we compare the performance of our pro-
posed approach, 2-level WT, and nondistributed approach
using energy X delay/PSNR metric. Figure 5(a) shows sce-
nario when the cluster head is located at different positions.
Figure 5(b), shows the scenario where the number of nodes
are varying. Again, “distance” denotes the average distance
between the cluster head and sensor nodes. Figure 6(a) shows
the performance comparison when the scopes of sensor net-
works are different. The results show that distributed al-
gorithms outperform nondistributed approach significantly
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TaBLE 1: The relations among optimal transforming level, distance, the reconstructed quality, energy, and delay.
Opt-level Distance (m) PSNR (dB) Energy (107 nJ) Delay (10* units)
1 20 61.1 0.8 5.3
2 30 58.4 1.0 3.6
3 40 56.8 1.3 3.2
3 50 56.6 1.6 3.2
4 60 55.4 2.0 3.1
4 70 55.4 2.4 3.1
4 80 55.4 2.8 3.1
4 90 55.4 3.4 3.1
4 100 55.4 3.9 3.1
4 110 55.4 4.6 3.1
4 120 55.4 5.3 3.1
4 130 55.4 6.0 3.1
5 140 55.4 6.9 3.1
5 150 55.4 7.8 3.1
5 160 55.4 8.8 3.1
5 170 55.4 9.7 3.1
5 180 55.4 11.0 3.1
5 190 55.4 11.9 3.1
5 200 55.4 13.1 3.1

when employing the energy X delay/PSNR metric. Our pro-
posed algorithm also outperforms the general distributed al-
gorithm.

Figure 6 shows the impact of border impact on data re-
construction. Figure 6(a) indicates that the percentage of
nodes, in which the reconstructed data is distortive out of the
total 256 nodes, increases if the border effect is not removed
along with the alteration of the wavelet function (From DB1
to DB7). Accordingly, the reconstructed data quality (PSNR)
deteriorates as compared with our approach. In Figure 6(b),
we intentionally employ threshold and quantization to form
an application scenario where the compression is lossy. It
shows that, even with lossy compression, in terms of data re-
constructed quality, our approach far outperforms the tradi-
tional distributed 2-level WT approach.

The relationship among optimal level of WT(Opt-level),
distance between nodes and cluster head, PSNR, energy con-
sumption, and delay is captured in Table 1. The result shows
that the optimal transforming levels are different along with
the variety of distance between nodes and cluster head while
ensuring almost the same reconstructed quality. When the
distance increases, the energy consumption increases and
network delay decreases correspondingly. This is because en-
ergy consumption is dependent on the distance under first-
order radio model, and network delay only relies on the
average number of encoding bits. In our simulation, when
the proportion of the discarding detail coefficients to total
wavelet coefficients in the WT reaches 73 percent, the PSNR
is still reach 49 dB. We believe that the reasons are the data
used in the simulation have strong spatio-temporal correla-
tions and our algorithm can move them efficiently.

As we can see from the simulation results, the optimal
level of WT is 0 when the distance between nodes and clus-

ter head is less than 20 meters. This indicates that WT is not
necessary under this case, and the non-distributed approach
obtain good performance, for it has no additional energy
consumption. However, with increasing distance between the
nodes and the cluster head, the benefit of compression out-
weigh the energy consumption due to inter-node commu-
nication for performing the WT, and then the proposed al-
gorithm will save more energy. Table 1 shows that different
transforming levels needed to be performed to obtain the
similar PSNR while minimizing energy and delay cost.

5. CONCLUSION

In this paper, we have proposed a distributed optimal-level
spatiotemporal compression algorithm based on the ring
model for general wavelets with arbitrary supports. Our al-
gorithm can accommodate a broad range of wavelet func-
tions in order to effectively exploit the temporal and spa-
tial correlation for data compression. Furthermore, the ring
topology can effectively eliminate the “border effect” by nat-
urally extending the signal space. In particular, our algorithm
can choose optimal transforming levels to obtain better per-
formance according to the given network circumstance. The
proposed energy X delay/PSNR model is capable of effectively
evaluating the data compression algorithms for wireless sen-
sor networks. The theoretical and experimental results show
that the proposed scheme can achieve significant reduction
in energy consumption and delay for data gathering in a sen-
sor cluster.

We are currently investigating the methods to effectively
accept or reject the detail wavelet coefficients generated by
the scheme so that constant or limited bit rate for sensor
transmission can be achieved.
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