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Time-frequency distributions (TFDs) are powerful tools to represent the energy content of time-varying signal in both time and
frequency domains simultaneously but they suffer from interference due to cross-terms. Various methods have been described to
remove these cross-terms and they are typically signal-dependent. Thus, there is no single TFD with a fixed window or kernel that
can produce accurate time-frequency representation (TFR) for all types of signals. In this paper, a globally adaptive optimal kernel
smooth-windowed Wigner-Ville distribution (AOK-SWWVD) is designed for digital modulation signals such as ASK, FSK, and
M-ary FSK, where its separable kernel is determined automatically from the input signal, without prior knowledge of the signal.
This optimum kernel is capable of removing the cross-terms and maintaining accurate time-frequency representation at SNR as
low as 0 dB. It is shown that this system is comparable to the system with prior knowledge of the signal.
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1. INTRODUCTION

Bilinear time-frequency analysis has been widely used to
analyze time-varying signals such as in speech, music
and other acoustical signals, sonar, radar, geophysics, and
biological signals. However, a major drawback of this method
is the presence of cross-terms in the time-frequency repre-
sentations (TFRs) [1]. If the cross-terms are not minimized
in the time-frequency distribution (TFD), they will reduce
the autoterms resolution and make interpretation of the true
signal characteristics difficult [2]. To overcome this, most of
the TFDs employ some kind of smoothing kernel, window,
or filter [3]. Smoothing, however, causes the autoterms to
be smeared and as a result the TFR losses its concentration
[4]. For signal analysis and classification, an optimal distri-
bution should have reasonable cross-terms suppression and
minimal smearing of the autoterms. Previous works have
shown that the optimal kernel is signal-dependant [2, 3, 5].
Generally, there is no single TFD with a fixed window or
kernel which would perform well for all signals. A kernel
might perform very well for a certain class of signals but is
not optimal for other types of signals. For optimal TFR, the
selection of appropriate kernel requires prior knowledge of

the signal components under observation, which are usually
not available in many applications. With this in mind, we aim
to design an optimal kernel that will work in noncooperative
environment, where signals are unknown in nature.

Adaptive kernel, which is capable to change according
to the signal of interest, will be able to give optimal
TFR for a substantially wide range of signal types. Several
researchers have developed the adaptive kernel TFRs, which
are optimized either globally and applied to the entire signal
[5, 6], or optimized at every time instant or every frequency

interval [2–4]. The globally adapted kernel is inappropriate
for signals whose time-frequency behavior changes with time
or frequency such as in multicomponent signals because the
kernel will not be able to adapt with the changes within the
evaluation period. Whenever the signal parameter changes, it
will fail to produce the optimal TFR. Locally adapted kernel,
on the other hand, will be able to detect the changes and
optimize accordingly but it requires extensive [2] or repeated
computation algorithms [4]. Due to the computational
complexity, some of these methods are not suitable for real-
time analysis [2, 4] unless they are optimized [3]. Most of the
researches in this area focus mainly on linear FM [2, 3, 5, 6]
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and biological signals [7, 8]. Not much attention has been
given to digital communication signals.

This paper suggests a globally adaptive optimal ker-
nel smooth-windowed Wigner-Ville distribution (AOK-
SWWVD) for digital modulation signal such as ASK, FSK,
and M-ary FSK. These signals are time-varying signals
which frequencies vary with time but are time-invariant
in their modulation parameters such as symbol rate and
frequency deviation. The optimal kernel depends only on the
modulation parameters of the signals of interest, which are
assumed invariant throughout the evaluation period. Thus,
a globally adapted kernel is used to avoid the unnecessary
computations in locally adapted kernel. Optimal kernel in
our context is a kernel which gives a TFR with minimal
smearing of the autoterms and strong suppression of the
cross-terms components.

This correspondence is organized as follows. In
Section 2, we give a summary of signals that are used for the
evaluation in this paper. A brief discussion on bilinear time-
frequency distribution is given in Section 3. In Section 4,
the general equations of the bilinear product in time-lag
domain for both autoterms and cross-terms are derived. The
kernel parameters are then determined mathematically for
the FSK and ASK signals. A guideline on how to determine
the kernel parameters for optimal TFR is given. Based
on these guidelines for optimal kernel design, an adaptive
system which requires no prior knowledge of the signal
is designed in Section 5. Section 6 shows the performance
comparison between this adaptive system and an optimal
system where its kernel is mathematically designed based on
prior knowledge of the signal. They are compared in terms
of main-lobe width (MLW), peak-to-side lobe ratio (PSLR),
bias in symbol-duration (SDB), and signal-to-cross terms
ratio (SCR). Conclusions are given in Section 7.

2. SIGNALMODELS

Types of digital modulation which are considered in this
paper are ASK, FSK, and M-ary FSK. These signals are
commonly used in the digital communication. Consider an
arbitrary digital communication signal, formed as a sum
of N short-duration complex exponential signals, given as
follows:

z(t) =
N∑

k=1

Ak exp
(
j2π fk(t − (k − 1)Tb + ϕ)

)

×Π(t − (k − 1)Tb),

(1)

where k is the binary sequence number starting with one,
Ak is the amplitude, fk is the subcarrier frequency, ϕ is the
phase, and Tb is the symbol duration of the signal. ASK signal
has constant frequency fk and phase ϕ, but its amplitude Ak

changes according to the symbol sequence transmitted, Ak =
1 when symbol “1” and Ak = 0 when symbol “0.”

FSK and M-ary FSK signals have constant amplitude
Ak and phase ϕ, but varying frequency fk according to the
symbol sequence sent. fk is the subcarrier frequency at kth
symbol for FSK and M-ary FSK. For FSK signal, fk = f0

when symbol “0” and fk = f1 when symbol “1.” For M-
ary FSK, fk is set according to the combination of bits in a
symbol. For all signals, the box function is defined as

Π(t) = 1, for 0 ≤ t ≤ Tb,

= 0, elsewhere.
(2)

The signal parameters of the signals used in this paper are
given as follows:

(1) FSK1: f0 = 2125 Hz, f1 = 2295 Hz, Tb = 20 ms,
ϕ = 0;

(2) FSK2: f0 = 2125 Hz, f1 = 2295 Hz, Tb = 13.33 ms,
ϕ = 0;

(3) FSK3: f0 = 2125 Hz, f1 = 2295 Hz, Tb = 10 ms,
ϕ = 0;

(4) FSK4: f0=2125 Hz, f1=2295 Hz, Tb=8 ms, ϕ=0;

(5) ASK: f0 = 2000 Hz, Tb = 10 ms, ϕ = 0;

(6) 8FSK: 600 Hz ≤ fk ≤ 2000 Hz, Tb = 20 ms, fdev =
200 Hz, ϕ = 0;

(7) 16FSK: 400 Hz ≤ fk ≤ 3400 Hz, Tb = 20 ms, fdev =
200 Hz, ϕ = 0.

3. BILINEAR TIME-FREQUENCY DISTRIBUTION

The bilinear formulation for time-frequency distributions
[9] is given as

ρz(t, f ) =
∫∞

−∞
G(t, τ) ∗

(t)
Kz(t, τ) exp(− j2π f τ)dτ, (3)

where G(t, τ) is the time-lag kernel function and Kz(t, τ) is
the bilinear product. The bilinear product is further defined
as

Kz(t, τ) = z
(
t +

τ

2

)
z∗
(
t − τ

2

)
, (4)

where z(t) is the analytic signal of interest. In this paper, we
use a separable kernel which is separated in time and lag such
that

G(t, τ) = H(t)w(τ), (5)

where H(t) is the time-smooth (TS) function and w(τ) is the
lag-window function. The separable kernel smooth-window
Wigner-Ville distribution (SWWVD) is given as

ρz,SWWVD(t, f ) =
∫∞

−∞
H(t) ∗

(t)
Kz(t, τ)w(τ) exp(− j2π f τ)dτ.

(6)

Any function similar to the popular window functions
used in filter design or spectrum analysis or pulse shaping
functions in digital communications can be used as the lag-
window and the TS function. For a distribution with reduced
cross-terms, the kernel used should be a low-pass window
in lag domain and low-pass filter in the Doppler domain
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(Doppler domain, υ is the Fourier Transform pair of time
domain, t as the frequency domain, f is the Fourier Transform
pair of lag domain τ) as the autoterms are concentrated
around the origin and the lag and Doppler coordinate axes
[10, 11]. We use Hamming window as the lag-window and
raised cosine pulse as the TS function. Hamming window is
given as

w(τ) = 0.54 + 0.46 cos
πτ

Tg
, |τ| ≤ Tg. (7)

This lag window has the cutoff lag at

τc = Tg. (8)

Raised-cosine pulse is given as

H(t) = 1 + cos
(
πt

Tsm

)
, 0 ≤ t ≤ Tsm,

= 0, elsewhere.

(9)

The Doppler representation of this TS function obtained
from the Fourier transform with respect to time for H(t) is

h(υ) = sin(πυTsm)
πυTsm

+
1
2

sin(π(υ− 1/2Tsm))
π(υ− 1/2Tsm)

+
1
2

sin(π(υ + 1/2Tsm))
π(υ + 1/2Tsm)

.

(10)

It is a low-pass filter in the Doppler domain, where the
cutoff Doppler is

υc = 3
2Tsm

. (11)

4. TIME-LAG REPRESENTATION

This section describes the general bilinear product of the
signals of interest in the time-lag domain and how the
information is used to determine the kernel parameters.

4.1. Bilinear product of digital modulation signals

For an arbitrary digital modulation signal, the time-lag
representations of the bilinear product defined in terms of
the autoterms and cross-terms are given as follows. The
derivation from (12) to (17) is given in the appendix:

Kz(t, τ) = Kz,auto(t, τ) + Kz,cross(t, τ), (12)

Kz,auto(t, τ) =
N∑

k=1

Kz,k,k

(
t −

(
(2k − 1)Tb

2

)
, τ
)

, (13)

Kz,cross(t, τ)

=
N∑

k=1,
k /= l

N∑

l=1

Kz,k,l

(
t − (k + l − 1)Tb

2
, τ − (k − l)Tb

)
,

(14)

where k and lrepresent the sequence of symbol present in the
received signal. Both the kth and lth autoterms and cross-
terms components in (13) and (14) are further defined as

Kz,k,k

(
t −

(
(2k − 1)Tb

2

)
, τ
)

= |Ak|2 exp
(
j2π fkτ

)
KΠ

(
t −

(
(2k − 1)Tb

2

)
, τ
)

,

(15)

Kz,k,l

(
t −

(
(k + l − 1)Tb

2

)
, τ − (k − l)Tb

)

= AkA
∗
l exp

(
j2π
(
(k − 1) fk − (l − 1) fl

)
Tb
)

× exp
(
j2π
(

( fk + fl)
2

)
τ
)

× exp
(
j2π( fl − fk)t

)
KΠ

(
t −

(
(k + l − 1)Tb

2

)
,

τ − (k − l)Tb

)
,

(16)

where fk and flrepresent the frequency of the symbol and Ak

and Alrepresent the amplitude of the symbol. The bilinear
product of the box function Π(t) defined in (2) is defined as

KΠ

(
t −

(
(k + l − 1)Tb

2

)
, τ − (k − l)Tb

)

= Π
(
t − kTb +

τ

2

)
Π
(
t − lTb − τ

2

)
.

(17)

For a given kth auto-term, the single-lag component with
the frequency fk lies along the time axis at lag τ = 0. On
the other hand, the cross-term between kth and lth symbol
has Doppler frequency component at υ = ( fl − fk) and lag-
frequency component at f = ( fk + fl)/2 and is located at
lag |τ| > 0. This is consistent with the findings by various
researchers [2–6, 10, 11] which state that autoterms are
concentrated along the axis while the cross-terms are located
away from the axis. By choosing appropriate parameters
for the separable kernels, the autoterms can be preserved
while the cross-terms are suppressed. The cross-terms can
be suppressed by using low-pass filter and low-pass window.
Suitable length of TS function H(t) removes the Doppler
frequency, υ components, while appropriate window width
of lag-window, w(τ), removes cross-terms that lie at lag |τ| >
0.

4.2. Bilinear product of FSK/M-ary FSK signal

For simplicity, we will first evaluate FSK signal of 4 symbols
length in the time-lag domain. The same argument can
be used for signal of other symbol length and for M-ary
FSK signal. The time-lag representation for the FSK will be
represented based on a binary sequence of “1101” and the
modulation parameters defined in Section 2. Discussion will
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be on selected autoterms and cross-terms components. For
this signal, fk = fl for k = 1, 2, 4 and fk = f0 for k = 3. Based
on (15), the auto-term at k = 2 is

Kz,2,2

(
t − 3Tb

2
, τ
)
= exp

(
j2π f1τ

)
KΠ

(
t − 3Tb

2
, τ
)
. (18)

This function is centered at time t = 3Tb/2 and lag τ = 0.
Autoterms are generated by the autocorrelation of the same
symbol. On the other hand, cross-terms are generated by
the correlation of different symbols. The cross-term between
different symbols that have the same frequency but fall at
different time instants can be seen at k = 1 and l = 4, which
refers to the interaction between the 1st and the 4th symbols.
From (16), the cross-term is expressed as

Kz,1,4(t − 2Tb, τ + 3Tb)

= exp
(
j2π f1(τ − 3Tb)

)
KΠ(t − 2Tb, τ + 3Tb).

(19)

This cross-term is centered at t = 2Tb and τ =
−3Tb/2. The cross-term between symbols that have different
frequency can be seen at k = 2 and l = 3, which refers to the
interaction between the 2nd and the 3rd symbols. From (16),
this is expressed as

Kz,2,3(t − 2Tb, τ + Tb)

= exp
(
j2π( f1 − 2 f0)Tb

)
exp

(
j2π
(

( f1 + f0)τ
2

))

× exp
(
j2π( f0 − f1)t

)
KΠ(t − 2Tb, τ + Tb).

(20)

This cross-term is centered at time t = 2Tb and lag τ =
−Tb with Doppler-frequency component of υ = ( f0− f1) and
lag-frequency component of f = ( f0 + f1)/2.

All autoterms and cross-terms of the bilinear product
for the FSK signal are shown in Figure 1. Autoterms are
lightly dotted while the cross-terms are densely dotted. From
Figure 1, we can see that, in general, the autoterms lie along
the time axis and centered at lag, τ = 0, while the cross-terms
are elsewhere. To preserve the concentration of the autoterms
while removing cross-terms, a lag-window should cover all
the autoterms while removing the cross-terms as much as
possible. The lag-window width, Tg , can be set such that

|Tg| ≤ Tb. (21)

By setting this limit, the whole autoterms, which are
along the time axis, can be preserved. However, unavoidably,
part of the cross-terms such as at k = 2, l = 3 and k =
3, l = 4 is also preserved due to their adjacency to the
autoterms as shown in Figure 1. These adjacent cross-terms
contribute as interference if they have nonzero Doppler
frequency. A smaller lag-window width could remove more
of the adjacent cross-terms but at a price of reducing the
autoterms concentration and causes smearing in the TFD.

By not minimizing the lag window further, a TS function
is included in the SWWVD. The TS function acts like a low-
pass filter in the Doppler frequency, υ domain, as shown

in (10). It removes the Doppler-frequency components of
the remaining cross-terms which cannot be removed by
the lag-window due to their adjacency to the autoterms.
The smoothed bilinear product, Rz,sm(t, τ), is a convolution
between the TS function and the bilinear product of the
signal which relates to (6):

Rz,sm(t, τ) = H(t) ∗
(t)
Kz(t, τ). (22)

The smoothed bilinear product of the autoterms is given
as

Rz,sm,k,k(t, τ)

= H(t) ∗
(t)

exp
(
j2π fkτ

)
KΠ

(
t −

(
(2k − 1)Tb

2

)
, τ
)

= h(υ)|υ=0 exp
(
j2π fkτ

)
KΠ

(
t −

(
(2k − 1)Tb

2

)
, τ
)

= h(0) exp
(
j2π fkτ

)
KΠ

(
t −

(
(2k − 1)Tb

2

)
, τ
)
.

(23)

Since we want to preserve the autoterms, the cutoff
Doppler-frequency is set as υc > 0. The smoothed bilinear
product of the cross-terms is given as

Rz,sm,k,l(t, τ)

= H(t) ∗
(t)
e j2π( fk− fl)te j2π( f1+ f0)τ/2e j2π((l−1) fl−(k−1) fk)Tb

× KΠ

(
t − (k + l − 1)Tb

2
, τ − (k − l)Tb

)

= h(υ)
∣∣
υ= fk− fl

e j2π( fk− fl)te j2π( f1+ f0)τ/2e j2π((l−1) fl−(k−1) fk)Tb

× KΠ

(
t − (k + l − 1)Tb

2
, τ − (k − l)Tb

)

= h( fk − fl)e j2π( fk− fl)te j2π( f1+ f0)τ/2e j2π((l−1) fl−(k−1) fk)Tb

× KΠ

(
t − (k + l − 1)Tb

2
, τ − (k − l)Tb

)
.

(24)

To remove the cross-terms, the cutoff Doppler-frequency
of the TS function is set as υc ≤ | fk − fl|. From (11), for this
effect, the TS function parameter must be set such that

Tsm ≥ 3
2| fl − fk|

. (25)

However, for cross-terms between symbols of the same
frequency, where | fk − fl| = 0, the TS function will not be
able to remove them as they overlap with the autoterms.

Since FSK signal has two frequency components, the
Doppler frequency is the difference between the two fre-
quency components. For M-ary FSK signals, | fl − fk| is set
as the frequency deviation among the subcarrier frequencies.
Any Tsm lower than the limit in (25) will not be able to
remove the adjacent cross-terms, as the cutoff Doppler-
frequency will include the cross-terms. For concentrated
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autoterms, the low-pass filter should have a cutoff frequency
that is as big as possible [11]. A high Tsm setting results in
a small cutoff Doppler-frequency. This causes the autoterms
to smear in time. For the best result, Tsm should be set just
big enough to remove the cross-terms and not any bigger
although the autoterms are concentrated at the Doppler axis
to avoid smearing.

A balance choice of the values of Tg and Tsm will
minimize the cross-terms while preserving the concentration
of autoterms in the TFR [10]. For the FSK signal example, the
TS function will remove the cross-term at symbols of k = 2
and l = 3 because the Doppler-frequency is nonzero when
fk /= fl. The rest of the cross-terms at symbols k = 1 and
l = 4; k = 2 and l = 3; k = 3 and l = 4 and their reciprocal
pairs can be removed by the lag-window.

4.3. Bilinear product of ASK signals

The time-lag representation for the ASK signal will also be
represented based on the same binary sequence of “1101,”
for simplicity, and the modulation parameters defined in
Section 2. For this signal, fk = f0 for k = 1, 2, 4 and z(t) = 0
for k = 3. For k = 2, the auto-term is

Kz,2,2

(
t − 3Tb

2
, τ
)
= exp( j2π f0τ)KΠ

(
t − 3Tb

2
, τ
)
. (26)

This function is centered at lag τ = 0 and time t = 3Tb/2.
The cross-term at k = 1 and l = 4 refers to the interaction
between the 1st and the 4th symbols. Its bilinear product is
expressed as

Kz,1,4(t − 2Tb, τ + 3Tb)

= exp
(
j2π f0(τ − 3Tb)

)
KΠ(t − 2Tb, τ + 3Tb).

(27)

This cross-term is centered at t = 2Tb and τ = −3Tb. It
is shown that there is a delayed lag-dependant component
in this cross-term. The cross-term at k = 2 and l = 3,
which refers to the interaction between the 2nd and the 3rd
symbols, is expressed as

Kz,2,3(t − 2Tb, τ + Tb) = 0·KΠ(t − 2Tb, τ + Tb). (28)

Since the 3rd symbol in this signal is z2(t) = 0 (due
to symbol “0”), then there is no cross-term here. The
bilinear product representation of the ASK signal is shown
in Figure 2.

The locations of autoterms and cross-terms are similar to
the bilinear product of the FSK signal except that the cross-
terms do not have Doppler-frequency components since
there is only one subcarrier frequency present in ASK signal.
The lag-window will be able to remove the components that
lie away from the origin of the lag axis. By setting the lag-
window width Tg as in (21), the autoterms are preserved
while part of the cross-terms such as at k = 1 and l =
2 can be removed. Since the Doppler-frequency is zero
and the lag-frequency is equal to the signal frequency, the
remaining cross-terms do not introduce interference in the
time-frequency representation.
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t

Figure 1: Bilinear product of FSK signal with lag-window. The
bilinear products beyond the shaded area are removed.
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Figure 2: Bilinear product of ASK signal. The bilinear products
beyond the shaded area are removed.

The use of the TS function in the SWWVD will not
introduce any improvement in the TFR because all cross-
terms have zero Doppler-frequency. Thus, the TS function
property as a low-pass filter, in the Doppler-frequency
domain, will pass all cross-terms. The TFD with only a
lag-window, which is also known as window Wigner-Ville
distribution (WWVD), is sufficient for ASK signals. In this
paper, we use SWWVD on all the signals evaluated for
uniformity. In this case, the TS function parameter Tsm is set
to any small value so that it approaches an all-pass filter in
the Doppler-frequency domain.

4.4. Kernel parameters

Based on (21) and (25), the limits of kernel parameters
for various signals are summarized in Table 1. Tg,max is the
largest lag-window width that can be set in (7) in order
to obtain sufficient cross-terms reduction with minimal
autoterms bias. Tsm,min is the smallest TS function parameter
that can be set in (10) for the optimal representation. For
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ASK signal, Tsm can be set to any value, but preferably small
so that the TS function approaches an all-pass filter.

To prove the limits in (21) and (25), we compare the
performance of TFR with various kernels in terms main-
lobe width (MLW), peak-to-side lobe ratio (PSLR), symbol-
duration bias (SDB), and signal-to-cross-terms ratio (SCR).
These performance measures are adopted and modified
from [12], where they are used collectively to assess the
performance of the TFDs in terms of its concentration,
resolution, and interference minimization. In this paper, we
compare the TFDs using each measure individually so that
we will be able to see their effects independently.

MLW and PSLR are estimated from the power spectrum
which is obtained from the frequency marginal of the TFR
[13]. MLW is the width of the power spectrum, measured
at 3 dB below the peak. Low MLW shows good frequency
resolution as the peak is sharper and gives the ability to
resolve closely spaced sinusoids. PSLR is the power ratio
between the peak and the highest side-lobe, measured in dB.
PSLR should be as high as possible to resolve signal of various
magnitudes. The method to calculate MLW and PSLR is
shown in Figure 3.

To calculate SDB, the estimated symbol-duration, which
is obtained from the instantaneous frequency [13, 14] of the
TFR, is compared with the actual symbol-duration of the
transmitted signal:

SDB

= |actual symbol-duration− estimated symbol-duration|.
(29)

SDB shows the accuracy of the TFR in terms of time res-
olution of the digital communication signal. Previous TFD
such as spectrogram suffers from bias in its representation.
Its TFR fails to give the actual signal representation due to the
tradeoff between its time and frequency resolution [2, 9]. An
accurate time representation would give a biased frequency

Table 1: Limit of kernel parameters. (Obtained mathematically
from signal parameters.)

Signal Tg,max (ms) Tsm,min (ms)

FSK1 20.00 8.82

FSK2 13.33 8.82

FSK3 10.00 8.82

FSK4 8.000 8.82

ASK 10.00 —

8FSK 20.00 7.50

16FSK 20.00 7.50
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Figure 4: Time-frequency representation and the instantaneous
frequency estimate from the TFR of ASK signal using Tg = 10
milliseconds, Tsm = 10 milliseconds.

resolution and vice versa in spectrogram. Low SDB shows
that the TFR has good time resolution while low MLW shows
that it has concentrated frequency resolution.

The volume of the TFR represents the energy of the
signal. SCR is a ratio of autoterms power to cross-terms ratio
in dB:

SCR = 10 log
(

signal power
cross terms power

)
. (30)

High SCR shows high suppression of cross-terms in the
TFR. In general, a good TFR should have low MLW and low
SDB but high PSLR and high SCR.

The performance of TFD with various kernels is shown
in Table 2. From Table 2, it is shown that for FSK2, the
TFR is the optimal (low MLW, low SDB, high PSLR, and
high SCR) when Tg = 10 milliseconds and Tsm = 8.82
milliseconds. Comparing with Table 1 which sets Tg,max =
13.33 milliseconds and Tsm,min = 8.82 milliseconds, smaller
Tg gives better cross-terms suppressions which is seen in
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Table 2: Performance comparison for various kernel parameters. (Main-lobe width (MLW) and symbol-duration bias (SDB) should be low
but peak-to-side lobe ratio (PSLR) and signal-to-cross terms ratio (SCR) should be high. Area highlighted in blue shows the set of kernel
parameters that give optimal representation of the signals. It is shown that there are a few sets of kernel parameters that can give optimal
representation for each signal).

Kernel 
parameters

Performance 
measures

Signal

FSK1 FSK2 FSK3 FSK4 ASK 8FSK 16FSK

T   = 5 ms, 
MLW (Hz) 125.0 132.8 140.6 140.6 132.8 156.5 156.4

T     = 10 ms
SDB (ms) 0.406 0.483 0.625 0.406 0.125 0.250 0.188
PSLR (dB) 5.652 5.467 6.278 6.325 6.460 5.271 5.297
SCR (dB) 4.019 3.790 3.901 3.615 7.092 1.670 1.476

T   = 10 ms,
MLW (Hz) 62.50 70.31 70.31 70.31 70.31 75.75 75.88

T     = 5 ms
SDB (ms) 2.000 7.400 1.400 6.500 0.125 0.250 0.313
PSLR (dB) 5.455 5.427 5.303 5.646 6.129 5.234 5.293
SCR (dB) 5.626 5.053 4.890 4.120 5.998 0.951 1.702

T   = 10 ms, 
MLW (Hz) 62.500 70.31 70.31 70.31 70.31 75.34 75.34

T      = 8.82 ms
SDB (ms) 0.469 0.514 0.688 0.531 0.125 0.125 0.188
PSLR (dB) 5.718 6.672 5.422 5.663 6.129 5.318 5.308
SCR (dB) 6.501 6.607 6.483 5.653 8.068 2.934 2.525

T   = 10 ms, 
MLW (Hz) 70.31 70.31 70.31 70.31 70.31 75.24 76.47

T     = 10 ms
SDB (ms) 0.406 0.483 0.781 0.531 0.125 0.250 0.188
PSLR (dB) 5.721 6.726 5.405 5.567 6.129 5.249 5.291
SCR (dB) 6.994 6.998 6.879 5.933 8.095 3.027 2.574

T   = 10 ms, 
MLW (Hz) 70.31 70.31 70.31 70.31 70.31 74.80 75.75

T     = 12.5 ms
SDB (ms) 0.406 0.483 1.200 3.300 0.250 0.250 0.188
PSLR (dB) 5.702 6.704 5.378 5.801 6.130 5.231 5.282
SCR (dB) 7.151 7.711 7.562 6.513 7.198 3.159 2.657

T   = 20 ms, 
MLW (Hz) 39.06 39.06 39.06 39.06 39.06 45.24 42.62

T     = 5 ms
SDB (ms) 12.50 7.100 4.900 1.800 6.100 0.250 0.531
PSLR (dB) 5.824 5.334 5.472 5.329 6.830 5.459 5.247
SCR (dB) 5.287 4.158 4.046 3.536 4.712 4.017 4.018

T   = 20 ms, 
MLW (Hz) 39.06 39.06 39.06 39.06 39.06 44.68 43.40

T     = 7.5 ms
SDB (ms) 0.281 9.240 9.600 3.200 2.700 0.250 0.594
PSLR (dB) 5.833 5.326 5.835 5.957 5.599 5.418 5.316
SCR (dB) 6.415 5.390 4.786 4.309 8.012 4.478 4.851

T   = 20 ms, 
MLW (Hz) 39.06 39.06 39.06 39.06 39.06 44.22 45.15

T     = 8.82 ms
SDB (ms) 0.375 2.360 9.800 5.400 9.900 0.125 0.188
PSLR (dB) 5.843 5.238 5.614 5.252 6.026 5.234 5.240
SCR (dB) 6.567 5.571 4.986 4.468 5.107 4.977 5.290

g

sm

g

sm

g

sm

g

sm

g

sm

g

sm

g

sm

g

sm

higher SCR but it suffers from increased MLW from the
smearing of the autoterms. When Tg = 10 milliseconds
but Tsm < 8.82 milliseconds, the MLW is similar but
the SCR is smaller. This shows that the adjacent cross-
terms are not reduced effectively, resulting in low SCR.
However, the time resolution is good since the estimated
symbol-duration is close to the actual (small SDB) as
long as the parameter is not too small. Setting the Tsm

to be too small will cause significant smearing of the
autoterms in time direction, resulting in large SDB. As Tsm

gets bigger, the SCR is higher as the adjacent cross-terms
are removed. Although the SCR improves for large Tsm,
the SDB gets worse as a result of smearing in the time
representation. This is because the application of TS function
in time domain is a convolution operation. Thus, there is
a compromise between cross-terms suppression and time
resolution.

At the optimal Tsm, when the lag-window is set such that
Tg < 10 milliseconds, the SCR is higher because this window
has shorter length and thus it can remove more cross-terms.
However, it increases the MLW due to smearing of the
autoterms in frequency direction, resulting in worsening the
frequency resolution. Higher lag-window length at Tg > 10
milliseconds reduces the MLW and increases the autoterms
concentration, at the expense of reduced SCR. The TFD has
better frequency resolution but is unable to suppress cross-
terms effectively, as more cross-terms are passed through
the window. The presence of cross-terms in the TFR causes
misinterpretation of the signal, resulting in higher SDB.
Thus, there is a tradeoff between cross-terms suppression
and frequency resolution.

Similar observations can be made on other signal models
in this paper. The sets of kernel parameters that give the
optimal TFR for each signal models are colored in Table 2.
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A thorough performance analysis of FSK3 using various
kernel parameters is shown graphically in Figure 5. By
varying both kernel parameters, Tg and Tsm, an individual
graph on PSLR, SCR, MLW, and SDB is derived. Analysis
on these graphs shows that each performance measure
is optimum at a different set of kernel parameters. The
kernel parameters chosen must be able to give small MLW
and SDB but large PSLR and SCR, at the same time. A
balance must be made among these performance measures
to achieve the optimal TFR. In our case, optimal kernel
is set as a kernel with MLW ≤ 1/Tb, SDB < 10%, PSLR
> 5 dB, and SCR > 5 dB. PSLR and SCR are set to be
more than 5 dB, so that the kernel will be able to give
a reasonably good TFR in the presence of noise. For M-
ary FSK signals, these criteria are relaxed in terms of
PSLR and SCR, where they are set to be above 4 dB. Due
to the presence of multi-subcarrier frequencies, the cross-
terms in the TFR have more combination of the Doppler-
frequencies.

From the analysis of Figure 5, it is shown that the kernel
gives the best performance when Tg = 10 milliseconds and
Tsm = 8.82 milliseconds. Further analysis of these parameters
is performed by taking a slice at a-b, where Tg = 10
milliseconds and let Tsm vary. The performance of FSK3
under various Tsm values is then plotted in Figure 6(a). It
is shown that the optimal Tsm falls between 8 milliseconds
and 12 milliseconds. Next, the slice at c-d is observed for
Tsm = 8.82 milliseconds and let Tg vary, all the performance
measures are shown in Figure 6(b). It is shown that the
optimal Tg falls between 9 milliseconds and 11 milliseconds.
These findings are comparable to the results shown in Table 2
and consistent for all the signals in this paper. It is observed
that the TFR is optimal when Tg and Tsm are approximate to
the limits given in (21) and (25).

From the findings, we can see that the limits at (21)
and (25) can be used as the guideline for optimal TFR. For
some cases, a small variation from the parameters limit gives
better overall performance than at the limit itself. This is
because the optimality is seen as an overall performance
and each performance measure changes differently with the
change of kernel parameters. There are few sets of kernel
parameters that can give the optimal TFR as there is no
one specific kernel parameters that can give the optimal
performance for every performance measure used in this
paper, simultaneously. Thus, we can conclude that for
the best TFR, the lag-window width and the TS function
parameter should be set as close as possible to the limit
Tg,max and Tsm,min. However, for an adaptive optimal kernel
system which will function without prior knowledge of the
signal, we set the lag-window width as Tg,max and the TS
function parameter as Tsm,min so that a small bias in the
signal parameters estimate (this is likely to happen due to
the smoothing method (LOWESS) which will be discussed in
Section 5) will not affect the overall performance of the TFR.
For ASK signal, any value of Tsm set as the TS function does
not affect the performance. Based on previous discussion,
Tsm should be small so that the TS function approaches a
Dirac delta function. In this case, we set Tsm = Tg = 10
milliseconds.

4.5. Computation complexity

Assuming perfect knowledge of the signal, the number of
computation required to implement the optimal SWWVD
in terms of number of multiplication is given as [15]

(1) bilinear product requires NτN multiplications;

(2) product between bilinear product and the lag win-
dow requires NτN multiplications;

(3) convolution with the setup time-smooth function
requires NsmNτN multiplications;

(4) Fourier transform of the time-lag representation
requires 0.5 N2τN log2N2τ multiplications,

where N is the signal length, Nτ is the window length, Nsm

is the length of smoothing function, and N2τ is the length
that is multiple of 2 and is greater or equal to Nτ . Thus, the
total of multiplication required to compute SWWVD is (2Nτ

+ NsmNτ + 0.5N2τ log2N2τ)N .

4.6. Guideline to determine kernel parameters

Based on the analysis above, a guideline to determine the
separable kernel parameters for SWWVD is given as follows.

(i) For multifrequency signal,

|Tg| = Tb, Tsm =
[

3
2| fl − fk|

]
. (31)

(ii) For single-frequency signal,

|Tg| = Tb, Tsm = Tg. (32)

5. ADAPTIVE OPTIMAL KERNEL

Based on the analysis made in Section 4, we design an
adaptive optimal kernel SWWVD that is capable of giving an
optimal TFR without having prior knowledge of the signal.
In this system, first, the signal parameters such as symbol-
duration and subcarrier frequencies will be estimated from
the input signal. These parameters will be used to design
the optimal kernel for this signal. Symbol-duration is
determined from the autocorrelation function while the
subcarrier frequencies are determined from the spectrum of
the signal.

Since the kernel parameters can be set from the signal
parameters such as symbol-duration and subcarrier frequen-
cies, these parameters must be estimated from the input
signal before the TFR is calculated. Symbol-duration of a
random process can be estimated from the autocorrelation
of the signal and the subcarrier frequencies can be obtained
from the energy spectrum.

5.1. System design

Figure 7 shows the system design of the adaptive SWWVD.
For any unknown signal, first the bilinear product will be
calculated. From the bilinear product, the autocorrelation
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Figure 5: Performance of the TFR of FSK3 using various kernel parameters. (The optimal kernel is chosen from the kernel parameters that
give small MLW and small SDB but large PSLR and large SCR, simultaneously.)

function will be obtained. Based on the autocorrelation
function, the symbol-duration and subcarrier frequencies
will be estimated. These parameters are then used to design
the optimal kernel for this signal.

5.2. Bilinear product

For any unknown signal that is input into the system, we
will first calculate the bilinear product Kz(t, τ) given in (12)–
(17). The autocorrelation function of the signal can then be
calculated from the bilinear product.

5.3. Autocorrelation function

For a digital modulation signal with a pseudorandom
sequence, the autocorrelation function is given as [16]

Rz(τ) =
∫
Kz(t, τ)dt =

[
1− |τ|

Tb

]N−1∑

k=0

exp( j2π fkτ), (33)

where Tb is the symbol-duration or the period of the signal,
N is the number of symbol in the binary sequence, and fk is
the subcarrier frequency at kth symbol. The autocorrelation
function, Rz(t, τ), provides a measure on how closely the
signal matches a copy of itself as the copy is shifted τ units in
time [16]. The autocorrelation function of a periodic signal
is also periodic at the period similar to the signal.

5.4. Smoothing

In order to determine the symbol-duration, first we need
to find the envelope of the autocorrelation function. The
autocorrelation function satisfies the symmetry condition
indicated in the following:

R∗z (τ) = Rz(−τ). (34)

Consequently, we need to consider the envelope for
positive lag values only. It is obtained by multiplying the
autocorrelation function with its conjugate:

ERz(τ) = Rz(τ)·R∗z (τ) =
[

1− |τ|
Tb

]2

. (35)

However, due to the nonrandomness of the sequence and
the limitation of signal length in the signal that we evaluate,
the envelope that is obtained has some out-of-correlation
terms. The envelope has to be smoothed before it is used
for estimating the symbol-duration. In this paper, we use the
locally weighted regression (LOWESS), which is discussed in
detail in [17], as the smoothing function. This method is
an extension of the weighted least squares (WLSs) to locally
smoothing the scatterplots. The cost function of the weighted
linear regression is given as [18]

Jz(τ) = ∥∥ERz−βτ
∥∥2
W �

(
ERz−βτ

)∗
W
(
ERz−βτ

)
, (36)

where ‖·‖2 denotes the squares Euclidean norm, W is
any Hermitian positive-definite weight function, β is an
unknown N×n matrix, ERz is an N×1 vector of the envelope,
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Figure 7: System design of adaptive SWWVD.

and τ is an n × 1 vector. For normal linear regression, W
matrix is equals to 1. In most applications, we would like to
find the optimum β̂ which minimizes the cost function

β̂ = (τWτT)
−1
τWERz, W = diag{ω1, . . . ,ωn}. (37)

In WLS, β̂ is estimated for a given block of observed data.

However in LOWESS, β̂ is calculated at every τ, where three
main steps are carried out (1) determine the weights of all

time instances k, relative to τ; (2) estimate β̂0(τ) and β̂1(τ),
and (3) calculate the smoothed curve. Given an envelope of
the autocorrelation function, ERz for 0 ≤ τ ≤ T , first, the
weights are calculated. The weights can be seen as a window
function, which is given as

wk(τ) =
(

1−
∣∣∣∣
k − τ

Tr

∣∣∣∣
3)3

, for |k − τ| < Tr ,

= 0, for |k − τ| ≥ Tr.

(38)

At one particular τ = τ1, the weight wk(τ1) is centered
at k = τ1 and the weights are calculated for all time instances,
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k, 0 ≤ k ≤ Tr using (38). From simulation, it is shown that
for the type of signals in this paper, it is best to set as Tr

= 9.375 milliseconds. Once the weights are calculated, they
are used as the weight function in the WLS at τ = τ1. The
estimated envelope is given as

ÊRz(k) = β0(τ) + β1(τ)k. (39)

The error between actual and estimated envelope is given
as

e(k) = ERz(k)− ÊRz(k) = ERz(k)− β0(τ)− β1(τ)k, (40)

for 0 ≤ k ≤ T . The cost function of the localized WLS with
weight wk(τ) for (k,ERz(k)), Jz(τ) is given as

Jz(τ) = E

[∫ k=τ+Tr

k=τ−Tr

wk(τ)e2(k)dk

]

= E

[∫ k=τ+Tr

k=τ−Tr

wk(τ)(ERz(k)− β0(τ)− β1(τ)k)2dk

]
,

(41)

⎛
⎝
β̂0(τ)

β̂1(τ)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

∫ k=τ+Tr

k=τ−Tr

wk(τ)dk
∫ k=τ+Tr

k=τ−Tr

wk(τ)k dk

∫ k=τ+Tr

k=τ−Tr

wk(τ)k dk
∫ k=τ+Tr

k=τ−Tr

wk(τ)k2dk

⎞
⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎝

∫ k=τ+Tr

k=τ−Tr

wk(τ)ERz(k)dk

∫ k=τ+Tr

k=τ−Tr

wk(τ)ERz(k)k dk

⎞
⎟⎟⎟⎟⎠
.

(42)

Thus β̂0(τ) and β̂1(τ) are the values of β0(τ) and β1(τ)
that minimize (41). The smoothed point at τ1 using locally
WLS is (τ1, ÊRz(τ1)), where ÊRz(τ1) is the fitted value of the
regression at τ = τ1

ÊRz(τ) = β̂0(τ) + β̂1(τ)τ. (43)

The window function is then slid and centered at next
τ, noted as τ2 and then the weights wk(τ2) for all time
instant, k, τ2 − Tr ≤ k ≤ τ2 + Tr are calculated. Next,
β̂0(τ2) and β̂1(τ2) are estimated from the WLS and then, the
estimated ÊRz(τ2) is calculated. These steps are repeated for
all τ, 0 ≤ τ ≤ T . The autocorrelation function, envelope
of the autocorrelation function and envelope after LOWESS
smoothing, is shown in Figure 8.

The first crossing of the smoothed envelope is the
estimated symbol-duration, T̂b, which is used to set the lag-
window in (7) by equating Tg = T̂b. This lag-window is then
used in generating the TFR of the signal.
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Figure 8: The autocorrelation function of FSK signal and the
smoothed curve for symbol-duration estimate.

Table 3: Optimum and estimated kernel parameters.

Signal
Optimum kernel Estimated kernel

Tg,opt (ms) Tgsm,pt (ms) Tg,estt (ms) Tgsm,est (ms)

FSK1 20.00 8.820 18.70 8.800

FSK2 13.33 8.820 13.10 8.800

FSK3 10.00 8.820 8.400 8.800

FSK4 8.000 8.820 8.300 8.800

ASK 10.00 10.00 9.400 10.00

8FSK 20.00 7.500 18.70 8.600

16FSK 20.00 7.500 18.70 8.600

5.5. Power density spectrum

According to the Wiener-Khinchine theorem, the power
density spectrum is the Fourier transform of the autocorre-
lation function [16]. The power spectrum obtained from the
estimated autocorrelation function in (33) is

Sz( f ) = FT
τ→ f

{
Rz(τ)

} =
∫∞

−∞
Rz(τ)e− j2π f τdτ. (44)

From the power density spectrum, the frequency content
of the signal can be estimated. The smallest difference in the
subcarrier frequencies, Δ f , is used as the denominator to Tsm

at

Tsm =
[

3
2
|Δ f |

]
. (45)

The value of Tsm is then replaced into (10). For ASK
signals, where there is only one subcarrier frequency, Tsm is
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Table 4: Performance comparison between actual kernel and estimated kernel.

Signal Performance measures
Without noise SNR = 12 dB

Optimal kernel Adaptive kernel Optimal kernel Adaptive kernel

FSK1

MLW (Hz) 39.06 39.06 39.06 39.06

SDB (ms) 0.375 0.250 0.288 0.283

PSLR (dB) 5.843 7.093 5.842 7.054

SCR (dB) 6.507 6.570 6.565 6.569

FSK2

MLW (Hz) 54.69 54.69 54.68 54.69

SDB (ms) 0.514 0.514 0.536 0.536

PSLR (dB) 5.560 5.538 5.557 5.541

SCR (dB) 6.370 6.319 6.370 6.316

FSK3

MLW (Hz) 70.31 85.94 70.31 85.94

SDB (ms) 0.688 0.625 0.693 0.614

PSLR (dB) 5.422 5.574 5.567 5.573

SCR (dB) 6.483 6.428 6.370 6.425

FSK4

MLW (Hz) 85.94 85.44 85.43 83.59

SDB (ms) 0.469 0.500 0.463 0.500

PSLR (dB) 5.587 5.285 5.585 5.415

SCR (dB) 5.507 5.570 5.506 5.580

ASK

MLW (Hz) 70.31 70.31 70.94 70.31

SDB (ms) 0.025 0.025 0.050 0.050

PSLR (dB) 6.129 5.543 6.128 5.544

SCR (dB) 8.095 8.543 8.091 8.536

8FSK

MLW (Hz) 44.63 44.81 45.22 45.08

SDB (ms) 0.025 0.125 0.190 0.143

PSLR (dB) 5.418 5.590 5.407 5.603

SCR (dB) 4.478 4.785 4.407 4.730

16FSK

MLW (Hz) 43.20 43.73 43.20 43.73

SDB (ms) 0.532 0.188 0.566 0.443

PSLR (dB) 5.316 5.274 5.327 5.343

SCR (dB) 4.853 4.778 4.726 4.616

set as 10 milliseconds. This TS function is then used in the
SWWVD.

5.6. Computation complexity

To implement the adaptive SWWVD, the number of compu-
tations in terms of multiplication that is required is [15]

(1) bilinear product and autocorrelation function
require NτN multiplications;

(2) smoothing the autocorrelation (LOWESS) requires
Nτ times the computation as follows:

(a) weights function requires 12Nr multiplications;
(b) inverse matrix of (43) requires 8(6Nr + 6N2

r )
multiplications;

(3) power density spectrum (Fourier transform of
autocorrelation function) requires 0.5NτN2τ log2 N2τ

multiplications;

(4) product between bilinear product and the setup lag
window requires NτN multiplications;

(5) convolution with the setup time-smooth function
requires NsmNτN multiplications;

(6) Fourier transform of the time-lag representation
requires 0.5N2τN log2N2τ multiplications;

where Nr is the length of window function used in the
weight function. The total number of multiplication required
to implement the adaptive SWWVD is (2Nτ + NsmNτ +
0.5N2τ log2N2τ)N +Nτ[12Nr(4Nr + 5) + 0.5N2τ log2N2τ)]. The
adaptive SWWVD requires an additional multiplication of
Nτ[12Nr(4Nr + 5) + N2τ /2(log2N2τ)] than the computation
of the optimal SWWVD. However, in noncooperative envi-
ronment, this method is an advantage as it requires no prior
knowledge of the signal and yet able to give the optimal
representation of the signal.
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6. RESULTS

Assuming perfect prior knowledge of the signal, the optimal
kernel parameters are determined from (31) and (32) in
Section 4.4 and summarized in Table 3. Then they are
compared with the adaptive kernels which are obtained from
the estimated signal parameters as discussed in Section 5.
The signals are assumed to be under ideal conditions with
no interference due to noise. It is observed that the estimated
kernel parameters are close to the optimum parameters.
In general, the estimated lag-window width is smaller than
the optimum while the estimated time-smooth duration
approaches the optimum. A small variation in the estimated
value is due to the smoothing method (LOWESS) used in the
estimation of symbol-duration and subcarrier frequencies in
the adaptation process. However, it does not affect the TFR
significantly, as shown in Table 4.

To benchmark the adaptive kernel SWWVD against the
optimal kernel SWWVD, we compare the performance for
every signal at ideal case (without noise), and at SNR
of 12 dB. This is because most of the signal classification
techniques evaluate signals at SNR between 10 dB and 20 dB
[19]. A Monte Carlo simulation based on 100 realizations
was conducted for each signal to evaluate the robustness
of the TFR in the presence of noise. At every realization,
additive white Gaussian noise is added to the signal and
the performance of the TFR is noted. The performance
measures are then averaged and tabulated in Table 4. They
are compared in terms of MLW, PSLR, SDB, and SCR. On the
average, it is observed that the performance of this adaptive
system is comparable to the optimal system.

Next, for further analysis, the performance between
optimal SWWVD and adaptive SWWVD is compared for
FSK1 with SNR from −2 dB to 12 dB. This comparison is
shown graphically in Figure 9. At SNR > 0 dB, both optimal
SWWVD and adaptive SWWVD perform at comparable
results in terms of MLW, SDB, and SCR. The adaptive system
outperforms the optimal system in terms of PSLR. It is shown
that the performance difference between the optimal kernel
and adaptive kernel is insignificant and negligible.

Both the optimal system and the adaptive system start
to fail when SNR < 0 dB. MLW and SDB start to get bigger
while the PSLR and SCR start to get smaller than the assigned
limits. The TFR at SNR < 0 dB will not be able to give
the correct representation of the signal and thus causes
misinterpretation of the signal. Similar TFR performance of
the optimal SWWVD and the adaptive SWWVD is observed
for the other signals presented in this paper.

Performance comparability can also be seen in Figure 10,
where the TFR of FSK3 is obtained using optimal SWWVD
and adaptive SWWVD. The adaptive SWWVD shows a
cleaner TFR which indicate higher PSLR and SCR. All in
all, we can conclude that the performance of the adaptive
SWWVD is comparable to the optimal SWWVD even in
noisy conditions.

Next, the computation complexity is compared. In this
paper, the evaluated signal has the signal length N of 1024
sample points and the lag-window length Nτ is set as 512
sample points. N2τ is also equal to 512 sample points,
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Figure 9: Performance comparison between optimal kernel and
adaptive kernel for FSK1 in the presence of various SNR levels.

for this case. At worse case condition, the time-smooth
function Nsm is of 80 sample points (ASK signal). The
weight function Nr is set to be 75 sample points. From
the computation calculation in Section 4.5, the SWWVD
requires 4.535 × 107 multiplications to implement. On the
other hand, from Section 5.6, the adaptive SWWVD requires
1.871 × 108 multiplications, which is approximately 4 times
more computations as compared the optimal SWWVD. This
is the worst case condition, assuming that the computation
of LOWESS is not carried out using the optimized methods.
An improved method which requires less computation has
been developed [17].

Although there is a significant additional multiplica-
tion in the adaptive SWWVD, the improvement in the
time-frequency representation of signals in noncooperative
environment enables more efficient signal analysis. On top
of that, with the current advancement in the computer
processors, the adaptive SWWVD can be implemented
without causing much delays in the processing time by using
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Figure 10: The TFR using optimal SWWVD and using adaptive
SWWVD of FSK3.

Table 5: Instantaneous autocorrelation function of the box func-
tion.

Lag shift, τ Time instant when KΠ(t, τ) = 1

Tb t = Tb/2

Tb/2 Tb/4 ≤ t ≤ 3Tb/4

0 0 ≤ t ≤ Tb

−Tb/2 Tb/4 ≤ t ≤ 3Tb/4

−Tb t = Tb/2

multiple processors, parallel processing, and so on [20].
Other types of faster smoothing function in [18, 21, 22] and
the references in [22] can also be implemented to replace
LOWESS.

7. CONCLUSIONS

Signals with different signal parameters, that is, subcarrier
frequencies and symbol-duration need kernel with different
parameters for optimal TFR. There is no single kernel that
can be used optimally for all signals, even for signal of the
same modulation type but with different signal parameters.
The optimal kernel parameters can be determined mathe-
matically from the signals; Tsm length is the inverse of the
frequency deviation and the lag-window width Tg is symbol-
duration of the signal. By determining the kernel parameters,
the optimum distribution can be designed.

The performances of the system with adaptive kernel and
optimal kernel are comparable in terms of MLW, PSLR, SDB,
and SCR. This shows that the adaptive system designed can
be used to obtain optimal TFR automatically for signal in
noncooperative environment at the cost of some additional
multiplications.

APPENDICES

The bilinear product, which can be seen as the instantaneous
correlation function, is given in (4). For a short-duration
complex exponential signal,

z(t) = A exp( j2π f1t)Π(t), (A.1)

where Π(t) is the box function given in (2), the instantaneous
autocorrelation function (IAF) is given as

Kz(t, τ) = |A|2 exp( j2π f τ)Π
(
t +

τ

2

)
Π
(
t − τ

2

)

= |A|2 exp( j2π f τ)KΠ(t, τ),

(A.2)

where Tb is the signal duration, A is the amplitude, and
KΠ(t, τ) is the IAF of the box-function given as

KΠ(t, τ) = Π
(
t +

τ

2

)
Π
(
t − τ

2

)
. (A.3)

IAF provides a measure on how closely the signal matches
a copy of itself as the copy is shifted τ units in time [16].
For the IAF to have the maximum value, the signals must be
identical to each other at that instant. For a box function, this
condition is true when they occur at the same time instant
when the box function overlaps a copy of itself, τ = 0:

t +
τ

2
= t − τ

2
, τ = 0. (A.4)

The IAF has the same duration as the duration of the box
function:

KΠ(t, τ)|τ=0 = 1, when 0 ≤ t ≤ Tb,

= 0, elsewhere.
(A.5)

From (A.3), when the box function is shifted by τ = Tb/2,
the box function is shifted such that it lags by Tb/4 while its
copy lags by Tb/4. Thus, they overlap each other whenTb/2 ≤
t ≤ 3Tb/2. As the shift gets bigger, the overlap between the
box function and its copy gets smaller. The same scenario is
seen when the box function is shifted by τ ≤ 0. The summary
of the IAF of the box function is given in Table 5. The IAF has
zero value elsewhere. From Table 5, it is observed that the IAF
has a rhombic shape of the same duration as the box function
0 ≤ t ≤ Tb and is centered at the origin of lag axis, where it
has values for −Tb ≤ τ ≤ Tb.

An arbitrary digital communication signal can be seen as
a sum of N short-duration complex exponential signal given
in (1). The bilinear product of this signal can be seen as a
combination of N-delayed IAF, which is located along the
time axis and centered at the origin of lag axis.

However, the interaction between symbols of different
frequency introduces additional bilinear product known as
cross-terms, which is located away from the time axis at|τ| ≥
0 [9]. These additional terms are not a representation of the
actual signal and thus, if they are not removed, they will cause
misinterpretation in the TFR. To illustrate this, we evaluate
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an FSK signal of symbol sequence “1101” with the amplitude,
A = 1. This signal is given as

z(t) =
4∑

k=1

Ak exp
(
j2π fk(t − (k − 1)Tb)

)
Π(t − (k − 1)Tb)

= exp( j2π f1t)Π(t) + exp
(
j2π f1(t − Tb)

)
Π(t − Tb)

+ exp
(
j2π f0(t − 2Tb)

)
Π(t − 2Tb)

+ exp
(
j2π f1(t − 3Tb)

)
Π(t − 3Tb).

(A.6)

From (5), the bilinear product is given in (A.5)

Kz(t, τ) = z
(
t +

τ

2

)
z∗
(
t − τ

2

)

=
4∑

k=1

Ak exp
(
j2π fk

(
t +

τ

2
− (k − 1)Tb

))

×Π
(
t +

τ

2
− (k − 1)Tb

)

×
4∑

l=1

A∗l exp
(
− j2π fl

(
t − τ

2
− (l − 1)Tb

))

×Π∗
(
t − τ

2
− (l − 1)Tb

)
,

Kz(t, τ) =
4∑

k=1

4∑

l=1

exp( j2π( fk − fl)t) exp
(
j2π( fk + fl)

τ

2

)

× exp
(
j2π((l − 1) fl − (k − 1) fk)Tb

)

×Π
(
t +

τ

2
− (k − 1)Tb

)
Π∗
(
t − τ

2
− (l − 1)Tb

)
,

Kz(t, τ) =
4∑

k=1

4∑

l=1

exp
(
j2π( fk − fl)t

)
exp

(
j2π( fk + fl)

τ

2

)

× exp
(
j2π((l − 1) fl − (k − 1) fk)Tb

)

× KΠ

(
t − (k + l − 1)Tb

2
, τ − (k − l)Tb

)
,

Kz(t, τ) =
4∑

k=1

|Ak|2 exp( j2π fkτ)KΠ

(
t −

(
(2k − 1)Tb

2

)
, τ
)

+
4∑

k=1,
k /= l

4∑

l=1

AkA
∗
l · exp

(
j2π((k − 1) fk − (l − 1) fl)Tb

)

× exp
(
j2π
(

( fk + fl)
2

)
τ
)

exp
(
j2π( fl − fk)t

)

× KΠ

(
t −

(
(k + l − 1)Tb

2

)
, τ − (k − l)Tb

)

= Kz,auto(t, τ) + Kz,cross(t, τ).
(A.7)

This bilinear product of the box function has a rhombic
shape and centered at t = (k + l)Tb and τ = (k − l)Tb. The
bilinear product of this signal has both autoterms and cross-
terms.

A. AUTOTERMS

The autoterms are bilinear products of signals with the same
symbol. For example, the IAF of symbol sequence 1 is given
as follows:

Kz,1,1(t, τ) = e j2π f1(t+τ/2)Π
(
t +

τ

2

)
·e− j2π f1(t−τ/2)Π

(
t − τ

2

)

= e j2π f1τKΠ

(
t − Tb

2
, τ
)
.

(A.8)

For an arbitrary kth symbol, the IAF is

Kz,k,k

(
t − (2k − 1)Tb

2
, τ
)

= e j2π fk(t+τ/2−(k−1)Tb)Π
(
t +

τ

2
− (k − 1)Tb

)

× e− j2π fk(t−τ/2−(k−1)Tb)Π
(
t − τ

2
− (k − 1)Tb

)

= e j2π fkτKΠ

(
t − (2k − 1)Tb

2
, τ
)
.

(A.9)

From (A.8)-(A.9), it is deduced that the general equation
of the autoterms is given as

Kz,auto(t, τ) =
N∑

k=1

Kz,k,k

(
t −

(
(2k − 1)Tb

2

)
, τ
)

, (A.10)

where

Kz,k,k

(
t −

(
(2k − 1)Tb

2

)
, τ
)

= Po exp( j2π fkτ)KΠ

(
t −

(
(2k − 1)Tb

2

)
, τ
)
.

(A.11)

The power of the signal is Po = |Ak|2 and the rhombic-
shaped IAF is centered at t = (2k−1)Tb and τ = 0. From this,
it is observed that the autoterms are located along the time
axis, centered at lag τ = 0, and have no Doppler frequency,
υ components. Choosing the lag-window with the size of
−Tb ≤ τ ≤ Tb will preserve all these terms.

B. CROSS-TERMS

The cross-terms are bilinear products between kth and lth
symbols, where k /= l. These are the instantaneous cross-
correlation functions (ICFs) of symbols 1, 2, 3, and 4. The
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bilinear product between the 1st and the 2nd symbols, where
fk = fl = f1 are given as

Kz,1,2(t − Tb, τ + Tb)

= e j2π f1(t+τ/2)Π
(
t +

τ

2

)

× e− j2π f1(t−τ/2−Tb)Π
(
t − τ

2
− Tb

)

= e j2π f1(τ−Tb)KΠ(t − Tb, τ + Tb),

Kz,2,1(t − Tb, τ − Tb)

= e j2π f1(t+τ/2−Tb)Π
(
t +

τ

2
− Tb

)

× e− j2π f1(t−τ/2)Π
(
t − τ

2

)

= e j2π f1(τ−Tb)KΠ(t − Tb, τ − Tb).

(B.1)

For an arbitrary kth and lth symbols, where fk = fl, the
bilinear product is given as

Kz,k,l

(
t − (k + l − 1)Tb

2
, τ
)

= e j2π fk(t+τ/2−(k−1)Tb)Π
(
t +

τ

2
− (k − 1)Tb

)

× e− j2π fk(t−τ/2−(l−1)Tb)Π
(
t − τ

2
− (l − 1)Tb

)

= e j2π fkτe j2π((l−k) fk)Tb

× KΠ

(
t − (k + l − 1)Tb

2
, τ − (k − l)Tb

)
.

(B.2)

It is observed that these cross-terms have delayed lag
components and are located at τ > 0. These terms do not
have time component.

On the other hand, the bilinear products between kth
and lth symbols, where fk /= fl have both time and lag
components. The bilinear products are given as

Kz,1,3

(
t − 3Tb

2
, τ − 2Tb

)

= e j2π f1(t+τ/2)Π
(
t +

τ

2

)

× e− j2π f0(t−τ/2−2Tb)Π
(
t − τ

2
− 2Tb

)

= e j2π( f1− f0)te j2π( f1+ f0)τ/2e j2π f0(2Tb)

× KΠ

(
t − 3Tb

2
, τ − 2Tb

)
,

Kz,2,3(t − Tb, τ + Tb)

= e j2π f1(t+τ/2−Tb)Π
(
t +

τ

2
− Tb

)

× e− j2π f0(t−τ/2−2Tb)Π
(
t − τ

2
− 2Tb

)

= e j2π( f1− f0)te j2π( f1+ f0)τ/2e j2π(2 f0− f1)Tb

× KΠ(t − 2Tb, τ + Tb).

(B.3)

It is observed that these cross-terms have both time and
lag components and are located away from the time axis. For
any kth and lth symbol, where fk /= fl, the ICF is

Kz,k,l

(
t − (k + l − 1)Tb

2
, τ
)

= e j2π fk(t+τ/2−(k−1)Tb)Π
(
t +

τ

2
− (k − 1)Tb

)

× e− j2π fl(t−τ/2−(l−1)Tb)Π
(
t − τ

2
− (l − 1)Tb

)

= e j2π( fk− fl)te j2π( f1+ f0)τ/2e j2π((l−1) fl−(k−1) fk)Tb

× KΠ

(
t − (k + l − 1)Tb

2
, τ − (k − l)Tb

)
.

(B.4)

From (B.1)–(B.4), the general equation of the cross-
terms can be deduced as

Kz,cross(t, τ)=
N−1∑

k=0,
k /= l

N−1∑

l=0

Kz,k,l

(
t− (k + l − 1)

2
Tb, τ − (k − l)Tb

)
,

(B.5)

where

Kz,k,l

(
t −

(
(k + l − 1)Tb

2

)
, τ − (k − l)Tb

)

= Po exp
(
j2π((k − 1) fk − (l − 1) fl)Tb

)

× exp
(
j2π
(

( fk + fl)
2

)
τ
)

× exp
(
j2π( fl − fk)t

)

× KΠ

(
t −

(
(k + l − 1)Tb

2

)
, τ − (k − l)Tb

)
.

(B.6)

This rhombic-shaped ICF which has the power of Po =
AkA

∗
l is centered at t = (k + l − 1)Tb and τ = (k − l)Tb.

This shows that the cross-terms are located away from the
time axis and the Doppler-frequency axis. In general, the
cross-terms have both time and lag components. However,
the cross-terms between symbols with the same subcarrier
frequency do not have any time components. To remove
these cross-terms, low-pass filters with suitable cutoff in lag
domain and Doppler-frequency domain must be used.
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