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Subspace methods have been successfully applied to face recognition tasks. In this study we propose a face recognition algorithm
based on a linear subspace projection. The subspace is found via utilizing a variant of the neighbourhood component analysis
(NCA) algorithm which is a supervised dimensionality reduction method that has been recently introduced. Unlike previously
suggested supervised subspace methods, the algorithm explicitly utilizes the classification performance criterion to obtain the op-
timal linear projection. In addition to its feature extraction capabilities, the algorithm also finds the optimal distance-metric that
should be used for face-image retrieval in the transformed space. The proposed face-recognition technique significantly outper-
forms traditional subspace-based approaches particulary in very low-dimensional representations. The method performance is
demonstrated across a range of standard face databases.
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1. INTRODUCTION

In recent years, automatic face recognition has become one
of the most active research fields in computer vision and a
large number of different recognition algorithms have been
developed. Face recognition algorithms can be categorized
into feature-based, holistic-based and hybrid-matching al-
gorithms. In feature-based methods, local features such as
the eyes, nose, and mouth are first extracted and their lo-
cations and local description are fed into the recognition sys-
tem (e.g., [1, 2]). Hybrid-matching methods use a combi-
nation of global and local features for face recognition (e.g.,
[3, 4]). In another aspect, face recognition algorithms can be
categorized into 2D, 3D and multimodal algorithms [5]. A
comprehensive survey of face-recognition algorithms is given
by Zhao et al. [6]. The most successful approaches, however,
seem to be those appearance-based methods that operate di-
rectly on the face images. An image is considered as a high-
dimensional vector, that is, a point in a high-dimensional
vector space and the set of all faces is assumed to form a low-
dimensional manifold. Following this paradigm, face image
matching can be viewed as a two-step process of subspace
projection followed by classification in the low-dimensional
space (see [7] for a recent survey on face recognition in sub-
spaces). In a simple yet successful approach, face recogni-

tion is implemented as a linear subspace projection followed
by a nearest-neighbour classifier. In particular, the eigen-
faces method which is based on principal component anal-
ysis (PCA) [8] and the Fisherfaces method based on the
Fisher linear discriminant analysis (LDA) [9] have been ap-
plied to face recognition with impressive results. PCA-based
algorithms select a subspace with maximum variation and
they are optimal for object reconstruction. While PCA min-
imizes sample covariance (second-order dependency), inde-
pendent component analysis (ICA) minimizes higher-order
dependencies as well. The ICA selects a linear projection that
maximizes the degree of statistical independence of output
variables based on various contrast functions (see [10] for an
application of ICA to face recognition). It was experimentally
found that face recognition algorithms based on ICA do not
offer much improvement over PCA [7]. When a substantial
variability in illumination and expression is present, similar-
ity in the transformed space is not necessarily determined by
the face identity. Both PCA and ICA construct the reduced
face space without using the available face identity informa-
tion. LDA-based algorithms take the class structure into ac-
count and focus on the most discriminant feature extraction.
The performance of LDA, however, is often degraded by the
fact that its separability criterion is not directly related to the
classification accuracy in the transformed space. Instead, the
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LDA optimization is based on the assumption that the intra-
class distributions are all Gaussian with a common variance.
In other words, the LDA assumes, aside from the linearity
of the image subspace, a linear separation between classes in
the low-dimensional space. (There are many generalizations
of the LDA optimization principle but they all impose para-
metric models on the within-class distributions). The kernel
trick can be utilized to form classification algorithms that are
based on nonlinear subspaces (e.g., kernel-PCA and kernel-
LDA [11]). The basic methodology is to (implicitly) apply
a nonlinear mapping on the input images and then apply
linear methods on the resulting feature space. Although ker-
nel methods such as SVM achieve state-of-the-art results, in
the case of kernel-PCA and kernel-LDA the performance im-
provement in face recognition tasks over linear methods was
not found to be significant.

The LDA approach is based on two assumptions of lin-
earity. It assumes that the face subspace is linear and that
there is a linear separation between classes. Kernel methods
are based on relaxation of the first assumption. In this paper,
we take a different approach. While keeping the linear sub-
space assumption, we assume no parametric model for the
class distributions or the boundaries between them. In this
paper, we apply a recently proposed linear subspace method,
the neighbourhood component analysis (NCA) [12], to the
task of face recognition. The NCA algorithm explicitly uti-
lizes the classification performance criterion to obtain the
optimal linear projection. In the original NCA paper [12],
the method was applied to standard databases from the UCI
repository. In this study, we systematically analyze the bene-
fits of utilizing several variants of the NCA method for face
recognition tasks. Unlike other classification problems, these
tasks are generally characterized by small sample size on one
hand and large sample dimensionality on the other hand.
We show experimentally that the NCA approach yields a sig-
nificant improvement in face-recognition tasks compared to
currently used subspace methods.

There is yet another major advantage to the linear sub-
space method presented here. The fact that the optimization
criterion of current subspace methods is not explicitly related
to the classification target results in a need for an additional
learning procedure that should find a suitable distance func-
tion in the transformed subspace [13–15] (e.g., the best re-
sults for ICA are obtained using the cosine distance [10]).
In the proposed method, the distance measure, that should
be used in the transformed subspace, is explicitly stated in
the optimization cost function. The optimal transformation
is selected such that using the Euclidean distance in the trans-
formed space yields optimal classification results.

We start by presenting several variants of the NCA al-
gorithm in Section 2. Comparative face-recognition exper-
iments on several standard face databases are presented in
Sections 3 and 4 contains concluding remarks.

2. LEARNING A LINEAR PROJECTION

In this section, we review the NCA algorithm [12] and fo-
cus on a variant that was found to be suitable for face-
recognition tasks which often have problems of small sample

size and high-dimensional samples. We begin with a labelled
dataset consisting of n real-valued input vectors x1, . . . , xn in
RD and corresponding class labels c1, ..., cn. In the case of face
recognition, the vectors are the face images and the labels are
the face identities. We want to find a low-dimensional lin-
ear transformation A : RD → Rd that maximizes the per-
formance of nearest neighbour classification in the reduced
space. Ideally, we would like to optimize performance on fu-
ture test data, but as we do not know the true data distri-
bution we instead attempt to optimize leave-one-out (LOO)
performance on the training data. Given a finite set of linear
transformations to choose from, we can easily select the best
one, namely the one that minimizes the number of classifica-
tion errors. The nearest-neighbour classification error, how-
ever, is quite a discontinuous function of the transformation
A, given that an infinitesimal change in A may change the
neighbour graph and thus affect LOO classification perfor-
mance by a finite amount. Hence, we can not use this opti-
mization criterion in our case where there is a continuously
parameterized family of linear transformations which must
be searched. Instead, we adopt a more well-behaved measure
of nearest-neighbour performance, by introducing a differ-
entiable cost function based on stochastic (“soft”) neighbour
assignments in the transformed space. In particular, each
point i selects another point j as its neighbour with some
probability pi j , and inherits its class label from the point it
selects. We define the pi j using a softmax over Euclidean dis-
tances in the transformed space:

pi j(A) = exp
(− (1/2)

∥
∥Axi − Axj

∥
∥2)

∑
k /=i exp

(− (1/2)
∥∥Axi − Axk

∥∥2) , pii = 0.

(1)

Note that the norm of matrix A controls the softness of the
neighbour assignments. Replacing A with αA, it can easily be
shown that as α tends to infinity, the probabilistic assignment
is reduced to deterministic nearest-neighbour assignment in
the same transformed space. Denote the set of points in the
same class as i by Ci = { j | ci = cj}. Under the stochastic
selection rule (1), we can compute the probability pi that a
point i will be correctly classified:

pi =
∑

j∈Ci

pi j . (2)

The objective function we maximize is the following:

C(A) =
∑

i

log

⎛

⎝
∑

j∈Ci

pi j

⎞

⎠ =
∑

i

log
(
pi
)
. (3)

Maximizing this objective would correspond to maximizing
the probability of obtaining a perfect (error-free) classification
of the entire training set. Maximizing the objective function
C(A) is also equivalent to minimizing the Kullback-Leibler
divergence between the true class distribution (having prob-
ability one on the true class) and the stochastic class distri-

bution induced by pi j via A. Note that since
∥
∥Axi − Axj

∥
∥2 =

(
xi − xj

)�
A�A

(
xi − xj

)
, the optimization criterion depends
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Training:
Input: a set of n labeled face images: {xi ∈ RD , ci} and the reduced dimension d.
Output: a linear projection Ad×D : RD → Rd that maximizes the objective:

C(A)
∑

i
log

(
∑

j∈Ci
pi j

)

with pi j(A) = exp
(− (1/2)

∥
∥Axi − Axj

∥
∥2)

∑
k /=i exp

(− (1/2)
∥
∥Axi − Axk

∥
∥2)

Method:
(i) set initial value for A (e.g., using the LDA or RCA methods).

(ii) apply a Conjugate-Gradient optimization to find the maximum of C(A)− λ‖A‖
s.t.

∂
(
C(A)− λ‖A‖)

∂A
=
∑

i,k

pikΔik −
∑

i

∑
j∈Ci pi jΔi j
∑

j∈Ci pi j
− 2λA

(iii) store A and the projected training set {Axi, ci}.
Testing:
predict the label at query input face image x.

(i) find the nearest neighbour i = arg min j‖Ax − Axj‖ and set the label of x to be ci.

Figure 1: The proposed face recognition method based on a linear subspace-projection learning algorithm.

only on A�A. Hence, every orthogonal matrix Rd×d yields a
solution R · A that is completely equivalent to A. To keep
the representation parsimonious we can use the Choleski de-
composition representation by forcing the entries of A below
the main diagonal to be zero and the entries on the diago-
nal to be nonnegative. This makes the representation of A
unique.

Differentiating C with respect to the transformation ma-
trix A yields a gradient rule which we can use for learning.
Observing that

∂pi j(A)

∂A
= pi j

(
∑

k

pikΔik − Δi j

)

, (4)

where Δi j = A
(
xi − xj

)(
xi − xj

)�
, it can be verified that

∂C(A)
∂A

=
∑

i

(
∑

k

pikΔik −
∑

j∈Ci
pi jΔi j

∑
j∈Ci

pi j

)

. (5)

Expression (5) can be viewed as the difference between
the overall variability and the intraclass variability defined
by the probabilistic model (1) induced from A. The learn-
ing algorithm therefore is to maximize the above objective
(3) using a gradient-based optimizer such as delta-bar-delta
or conjugate gradients. Of course, as the cost function above
is not convex, some care must be taken to avoid local max-
ima during training. We have experimentally observed that
the linear transformation obtained by the Fisherfaces (LDA)
method can serve as a good starting point for the conjugate
gradient algorithm. The linear-transformation learning algo-
rithm is summarized in Figure 1.

In face recognition tasks we often observe the problem
of small sample size where the number of the images in the
training set (denoted by n) is significantly smaller than the
dimensionality of the samples (D). Utilizing the NCA, the
small sample size can cause another degeneracy. Assume that
n · d < D where d is the dimensionality of the transformed
space. In that case, we can easily find a transformation A that
sends all the face images with the same label l to the same

(prespecified) point yl ∈ Rd. We need to solve the linear sys-
tem

Axi = yl, i = 1, . . . ,n (6)

such that l is the label of xi. Since nd < D, there are more
variables than equations and solutions exist (except for de-
generate cases) and can be easily found. Suppose A solves the
linear system (6), then multiplying all the points yl by a large
constant λ, we can obtain a solution λA such that pi j = 0
whenever the labels of xi and xj are different. Thus, we can
find a transformation that yields a perfect (error-free) classi-
fication of the entire training set. To prevent this degeneracy,
which can reduce the generalization capabilities of the learn-
ing algorithm, we can penalize large-norm transformations
A by adding a regularization term −λ‖A‖2 to the cost func-
tion we are maximizing such that λ is a prespecified positive
constant that can be set in a cross validation step. The deriva-
tive for the regularized cost function is

∑

i,k

pikΔik −
∑

i

∑
j∈Ci

pi jΔi j
∑

j∈Ci
pi j

− 2λA. (7)

Other objective functions based on classification perfor-
mance can be also considered [12], for example, we can
search for a linear transformation that maximizes the ex-
pected number of points that are correctly classified. In other
words, we can maximize the cost function

∑
i pi. In Section 3,

we provide face-recognition results for the two variants of the
cost function (for other variants of NCA see [16, 17]).

3. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method we have
conducted a comparative recognition experiments on sev-
eral standard face databases. It is beneficial to use different
kinds of databases because some properties of classification
methods, for example, their generalization abilities change
depending on the number of classes under consideration and
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(a)

(b)

(c)

Figure 2: Example of a retrieval query from the Yale database. (a) The query image. Five nearest-neighbour retrieval results obtained using
the (b) NCA-based transformation and (c) the Fisherfaces (LDA) method.

the number of training images within each class. For ex-
ample, Martinez and Kak [18] have shown that when the
training is based on a small and nonrepresentative dataset,
nondiscriminant methods may outperform to discriminant
ones. The datasets we used are the Yale [19], Weizmann [20],
and FERET [21]. The Yale University Face Image Database
consists of 165 images of 15 different classes (11 images per
class). The Weizmann data-base consists of 1916 images of
28 different classes. In the case of the FERET database, many
classes consist of exactly two images. Having just one train-
ing image is useless for LOO-based training algorithms. We
have used two subsets of FERET. The first subset consists of
persons with more than 4 images, and the second subset of
FERET consists of persons with more than 10 images. The
preprocessing included scaling the size of images to be 32×27
in the case of Yale and Weizmann. The FERET images were
first scaled to 150 × 130 and then the first 256 PCA coeffi-
cients were taken. For each class, (person identity) half of the
images were randomly selected for training and the rest of
the images were used for recognition. Each experiment was
repeated 10 times.

The goal of our experiments is to asses the relative per-
formance of NCA as a (supervised) method in a face-
recognition task. The face-recognition methods we com-
pared are Eigenfaces (PCA) [8], Gaussian RBF Kernel-PCA
[11], and Fisherfaces (LDA) [9]. All these subspace projec-
tion methods are followed by a whitening step in the trans-
formed space, which is equivalent to utilizing the Maha-
lanobis distance in the transformed space. Another recently
suggested distance metric to be used in the transformed space
is the relevant component analysis (RCA) method [13] where
only the within-class variability is used for whitening. It was
shown in [13] that utilizing the RCA distance metric can
enhance the performance of LDA. We also show recogni-
tion results for the LDA followed by RCA. We have im-
plemented two variants of the NCA. The first (denoted by
NCA1) is based on the cost function

∑
i log(pi) and the sec-

ond variant (denoted by NCA2) is based on the cost func-
tion

∑
i pi where pi is the probability of correct classifica-

tion.

The recognition task in the following experiments is to
classify face images with respect to the identity of the person.
We consider the retrieval paradigm reminiscent of nearest-
neighbour classifier in which a query image leads to the re-
trieval of its nearest neighbour in the training data set. The
distance measure we used in the transformed space (after
whitening) is the Euclidean distance. Note that when using
the NCA to obtain a subspace, there is no need for a whiten-
ing process as the distance learning is combined with the
linear-subspace searching. An example of a face-recognition
retrieval query from the Yale database is presented in Figure 2
where 5 nearest-neighbour retrieval results, based on LDA
and NCA1, are shown.

The recognition results are presented in Figure 3. It can
be verified that both variants of the NCA algorithm sig-
nificantly outperform previously suggested subspace meth-
ods across all the databases that were used. The competitive
advantage of the NCA method is even more significant in
the case of projection into very low-dimensional space (e.g.,
when d = 5 or d = 10). Aside from improved performance,
this fact can yield a better recognition-system in terms of
computational complexity and memory size. Following the
results of Bar-Hillel et al. [13] we have found that in some
cases using the RCA distance metric can improve the per-
formance of recognition systems based on LDA. The RCA
is useful in cases where there are many face-image exam-
ples from each subject and we can obtain a good estimation
of the within-class variability. In such cases (e.g., Yale and
Weizmann) using RCA and NCA, we obtained similar classi-
fication results when the dimensionality of the reduced rep-
resentation was relatively high. In very low dimensions the
NCA was found to be significantly better. In the case of the
FERET database the RCA has no advantage over LDA with
Mahalanobis distance (FERET-10) and it can even be worse
(FERET-4).

To further exemplify the significant improved perfor-
mance gained from the NCA in very low dimensions, we
show an example of linear projection into the 2-dimensional
plane. The database used comprised the first five subjects of
the Weizmann face database. For each subject there are 66
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Figure 3: Face-recognition performance of several subspace methods, as a function of the representation dimensionality, on standard face
databases. Standard errors of the means are shown on curves. The databases are (a) Yale, (b) Weizmann. (c) A subset of FERET consisting of
persons with more than 4 images. (d) A subset of FERET consisting of persons with more than 10 images.

face images, half of which are used to find the subspace and
the other half is used for testing. Figure 4 shows the low-
dimensional representation obtained from LDA and NCA.
The LDA transformation was also used as a starting point for
the iterative conjugate-gradient algorithm that was applied to
find the optimal NCA transformation. The nearest-neighbor
recognition results (percentage of correct classification) for
the database presented in Figure 4 are PCA-47, LDA-67, and
NCA-93.

The NCA was found to be better than all the other meth-
ods discussed in this paper in terms of performance. In real
world applications the training is done once and the test

phase running time is important. The computational com-
plexity of a single-face recognition is the same for all the
methods. They are all based on a nearest-neighbor classi-
fier in the projected space. The only difference between the
methods is the linear transformation selected at the train-
ing phase, which has no implications on the complexity. The
NCA training time is larger since the optimization is done
iteratively. The training running time based on 200 training
images 27×32, 40 classes, and reduced dimensionality 5 (us-
ing Pentium(R) 4 CPU 3.2 GHz, 1 GB of RAM) was 0.5 sec-
onds for PCA, 5 seconds for LDA and RCA, and 68 seconds
for NCA.
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(a) NCA, train (b) NCA, test

(c) LDA, train (d) LDA, test

Figure 4: A two-dimensional linear representation of the first 5 subjects from the Weizmann face database. Images of the same person have
the same color. The top and bottom rows show the results for NCA and LDA, respectively.

4. CONCLUSION

We have presented a linear subspace algorithm implicitly
combined with a distance-learning method in the transform
subspace for face-recognition tasks. We have shown that
this method performs well across a range of standard face
databases and a range of projection dimensions. It consis-
tently outperforms existing subspace methods for face recog-
nition particulary in the case of very low dimensions. There
is a trend in recent years that linear subspace methods may be
too limited for difficult classification tasks. A popular nonlin-
ear alternative is based on kernelizing linear methods (e.g.,
kernel PCA and kernel LDA). The face manifold is definitely
nonlinear. However, we have shown in this study that lin-
ear subspace can be a good approximation of this nonlin-
ear manifold. We have shown that the space of linear trans-
formations is still large enough to contain good classifiers.
When using an appropriate target function, linear subspace
methods can yield excellent face recognition results. It should
be noted that the proposed method can be easily “kernel-
ized.” Instead of defining a projection A xi in RD, we can
firstly project the subject in a Hilbert space F using a func-
tion φ and then using the projection Aφ(xi).

This paper is focused on batch learning of the projection
transformation. There are also online algorithms for learning
a linear projection (e.g., [22]). A future research direction is
developing an online version of the NCA algorithm that can
be incrementally updated. As a final remark we note that the
focus used in this paper is in evaluating a face-recognition
approach by means of the performance achieved on a col-
lection of datasets, dividing them into training and test sets.
Under this focus, the results are provided as a general rate
without taking into consideration if all the identities are sim-
ilarly recognized or there are variations among them, this can
be not good enough in real situations, that is, unrestricted
imagery or video [23, 24].
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