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Fuzzy connectedness and fuzzy clustering are two well-known techniques for fuzzy image segmentation. The former considers the
relation of pixels in the spatial space but does not inherently utilize their feature information. On the other hand, the latter does not
consider the spatial relations among pixels. In this paper, a new segmentation algorithm is proposed in which these methods are
combined via a notion called membership connectedness. In this algorithm, two kinds of local spatial attractions are considered
in the functional form of membership connectedness and the required seeds can be selected automatically. The performance of
the proposed method is evaluated using a developed synthetic image dataset and both simulated and real brain magnetic resonance
image (MRI) datasets. The evaluation demonstrates the strength of the proposed algorithm in segmentation of noisy images which
plays an important role especially in medical image applications.

Copyright © 2008 M. Hasanzadeh and S. Kasaei. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1. INTRODUCTION

Image segmentation is one of the most challenging and
critical problems in image analysis. Segmentation processes
aim at partitioning the image plane into “meaningful”
regions (where meaningful typically refers to separation of
image regions into different semantic objects). As image
segmentation is the core of many image analysis problems,
any improvement in segmentation methods can lead to
important impacts on many image processing and computer
vision applications.

Challenges in image segmentation have encouraged
researchers to develop fuzzy segmentation algorithms by
considering image regions as fuzzy subsets (fuzzy objects),
where an image pixel may be partially classified into multiple
potential classes and the boundaries between intensities of
different objects can be well defined. Here, the theory of fuzzy
sets [1] is adopted to effectively model the fuzziness of image
pixels which might be caused by inherent object material
heterogeneity and imaging device artifacts (e.g., blurring,
imposed noise, and background variation).

There are several image segmentation methods based
on fuzzy concept reported in [2—4] among which fuzzy
connectedness [5] and fuzzy clustering [4] are two well-
known techniques for this purpose. Moreover, fuzzy rule-

based methods [2, 6-8], fuzzy thresholding [3, 9-11], fuzzy
markov random field [12-14], and fuzzy region growing [15,
16] are also reported for region-based fuzzy segmentation.

Fuzzy connectedness is a fuzzy topological property [17]
and defines how the image pixels are spatially related in spite
of their gradation of intensities [18]. The classical definition
of fuzzy connectedness was given by Rosenfeld in [19].
A modification to this traditional concept, called intensity
connectedness, was proposed in [20]. Fuzzy connectedness
for image segmentation was developed by Udupa and
Samarasekera in [5] by notion of a fuzzy object in an N-
dimensional space. In defining fuzzy objects in a given image,
the strength of connectedness between every two pairs of
image pixels is considered. This is determined by considering
all possible connecting paths between the pair. In spite of its
high combinatorial complexity, theoretical advances in fuzzy
connectedness have made it possible to delineate objects
via a dynamic programming close to interactive speeds on
modern PCs [5].

The abovementioned works apply fuzzy connectedness
directly on the given image. But, direct utilization dose
not inherently consider feature space information as used
in fuzzy clustering techniques. Consequently, the affinity
function is defined. This definition requires dynamic com-
putation of the weights and automatic computation of
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a threshold which requires an exhaustive search cost. This
issue is very critical in applications such as analysis of mag-
netic resonance (MR) images, where optimal combination
of affinity component weights varies for each slice and
each subject [21] in spite of data being acquired from the
same MR scanner with identical protocol. As such, in [21]
a method based on dynamic weights is introduced. But,
these methods depend on manual selection of object seeds
(which is time consuming and may cause errors especially in
multicomponent objects). As such, a method for automatic
seed selection using fuzzy clustering is introduced in [22],
but it also applies the fuzzy connectedness directly on the
given image.

On the other hand, feature clustering that uses fuzzy
clustering techniques does not take into account any spatial
dependency among image pixels and consequently it is
sensitive to noise. As the noise removal may eliminate some
inherent image information, some methods are recently
proposed for integration of spatial information in fuzzy
clustering for segmentation applications [23-27].

Considering the abovementioned problems, in this paper
we have proposed a new algorithm to combine fuzzy
connectedness and fuzzy clustering methods for image
segmentation purposes. The desired goal is using both spatial
and feature space features in image segmentation. These
methods might be integrated tightly in a single algorithm or
combined (similar to a postprocessing approach). As these
methods utilize the information of dissimilar spaces (feature
or spatial) we have adopted the second possibility in this
paper. The proposed algorithm is based on construction
of fuzzy connectedness relation in membership images,
called membership connectedness. Two kinds of local spatial
attractions are considered in the proposed functional form
of membership connectedness relation.

The construction of membership connectedness requires
an initial reference pixel (seed) in the object. As the manual
selection of object seeds in multicomponent and complicated
objects (such as brain tissues) is very time consuming and
may cause error, an automatic method for seed selection is
also described.

As the seed set for fuzzy object construction can be
selected automatically, if the number of objects in the image
is known, the proposed algorithm can be applied completely
in an unsupervised manner. Moreover, its advantages include
a straightforward utilization for color and multispectral
image segmentation, multiobject segmentation, and multi-
seed utilization abilities. Besides, it does not assume any
specific characteristic for the adopted fuzzy segmentation
method.

The performance of the proposed algorithm is evaluated
using a developed synthetic image dataset which contains
720 images, phantom multispectral MR images from brain-
web dataset [28], and IBSR dataset of real brain MRI [29].

This paper proposes an application domain-independent
segmentation algorithm and evaluates its performance on
brain tissue of MR images; as this application requires accu-
rate and robust segmentation results in many quantitative
studies in medical image analysis. Different characteristics of
the proposed segmentation algorithm are advantageous for

this application. In fact, since MR scans are often confounded
by magnetic field inhomogeneities and partial volume effects
(one pixel may be composed of multiple tissue types),
modeling of tissues by fuzzy objects and applying fuzzy
segmentation are useful in MR image analysis. In addition
to the use of fuzzy connectedness idea (which has been
successfully applied in medical image segmentation [18, 21]),
the proposed algorithm is not based on affinity function and
thus the dynamic computation of its optimal parameters
for each slice and each subject in MR image analysis is
not required. Moreover, its ability in automatic selection
of seed pixels eliminates possible manual selection errors
in multicomponent and complicated brain tissues (such as
peripheral cerebrospinal fluid and multiple sclerosis lesions).

This paper is organized as follows. Section 2 briefly
reviews the concept of fuzzy connectedness in image segmen-
tation. Section 3 introduces the proposed membership con-
nectedness notion and segmentation algorithm. Section 4
describes experimental results, and finally Section 5 con-
cludes the paper.

2. FUZZY CONNECTEDNESS AND
IMAGE SEGMENTATION

Fuzzy treatment of geometric and topological concepts can
be performed in two distinct manners in image segmentation
[18]. The first approach applies a fuzzy image segmentation
to obtain a fuzzy subset wherein every pixel has a fuzzy
object membership assigned to it and then defines the
geometric and topological concepts on this fuzzy subset.
The second approach develops these concepts directly on the
given image, which implies that these concepts have to be
integrated with segmentation process.

Considering the first approach, Rosenfeld introduced
some early work [19, 30] which was followed by Dellepiane
and Fontana [20] in an intensity connectedness-based seg-
mentation method. This approach is adopted in this work.

Introducing the second approach, Udupa and Sama-
rasekera [5], and Udupa and Saha [18] proposed an algo-
rithm for object definition and segmentation from back-
ground, based on fuzzy connectedness which is a topological
construct. Fuzzy connectedness characterizes the way that
image pixels are related to each other (called “hanging
togetherness” in [18]) to form an object.

In the latter algorithm, fuzzy connectedness definition is
based on alocal fuzzy relation called affinity [18]. The affinity
between two image pixels depends on their adjacency as well
as their intensity-based features’ similarity which captures
the local spatial relation of image pixels. The following is
a general functional form of membership function (y,) of
affinity relation (k) as proposed in [5]:

,"‘K(C)d) = [’la(c)d)g(ﬂ(p(‘:)d)»["v/(crd))r (1)

where (c,d) denotes a pair of pixels, y, is the adjacency
function, and g, and y, represent the fuzzy relation of
homogeneity-based and object-feature-based components of
affinity, respectively [5]. The homogeneity-based component
depends on intensity difference of the pair and the maximum
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allowed inhomogeneity in the desired object. The object
feature-based component depends on the closeness of inten-
sity features of the desired pair of pixels to the feature values
expected for the desired object. These components can be
combined by an appropriate g(-) function.

The global fuzzy connectedness between any two image
pixels considers the strength of all possible paths between
them; where the strength of a particular path is the weakest
affinity between the successive pixel pairs along the path.
The fuzzy connectedness relation (K) is defined by the
membership function [18]

px(c,d) = max[min [yk(cil,c,-)]], (2)

pEP | 1<i<l,

where P, is the set of all paths (a path is a sequence of nearby
elements) connecting c to d, I, is the length of p, and ¢; and
ci—1 are two successive pixels in p.

The fuzzy object is then extracted by expanding it from
the initial seed points based on the mentioned global fuzzy
connectedness value. For expansion, the connectedness of
each image pixel to a particular object (which is equal to
the connectedness of the pixel to the initial seed set of the
object) is computed. The connectedness of a pixel to a set of
reference pixels is the maximum of connectedness degrees to
every pixel of set [18], as defined below for set S and arbitrary
pixel ¢, as

frs(e) = rgleaSX[#K(s, o]. (3)

Finally, thresholding or applying relative fuzzy connectedness
[31] will result in a crisp object.

The above-discussed algorithm was further extended
with introduction of object scale, which allowed the size of
neighborhood to be changed in different image parts [32],
and extended in [33] for vectorial images and in [34] for
multiobject segmentation purposes. Another method, called
fuzzy connectedness using dynamic weights, was proposed in
[21] to introduce directional sensitivity to the homogeneity-
based component to dynamically adjust linear weights in the
functional form of fuzzy connectedness.

3. PROPOSED METHOD

As discussed in previous sections, fuzzy connectedness
influences the segmentation result by spatio-topological
consideration of the way that image pixels relate together.
This advantage becomes more obvious when one compares
it with feature-based segmentation algorithms (i.e., fuzzy
clustering), which do not take into account any spatial
dependency among image pixels. But, applying fuzzy con-
nectedness directly on a gray-level image requires parameter
selection and estimation of object features which often
require user interaction (which is time consuming and may
cause error especially in multicomponent objects). In this
section, we describe a new algorithm for applying fuzzy
connectedness on membership scene (defined in Section
3.1, which is resulted by an arbitrary fuzzy segmentation
method) via proposed membership connectedness relation.

By this relation, fuzzy connectedness and fuzzy clustering are
integrated for image segmentation purposes. These methods
may be tightly integrated which result in a single algorithm
or may be combined similar to a postprocessing approach.
As these methods utilize the information of dissimilar spaces
(feature or spatial), we have adopted the second possibility in
this paper.

In this section, we start by briefly reviewing some basis
definitions in Section 3.1, which are required for formulation
of membership connectedness relation in Section 3.2. In this
section, two kinds of local spatial attractions are considered
in the functional form of membership connectedness that
results in two different relations. Then, we discuss the main
proposed segmentation algorithm in detail about seed selec-
tion method and fuzzy object expansion algorithm. Finally,
the advantages of the proposed segmentation algorithm are
introduced.

3.1. Basic definitions

In this subsection, a basic set of definitions are presented to
provide the preliminaries of the membership connectedness
formulation. First, we define the membership scene by
following the terminology used in [18] and then briefly
describe the fuzzy C-means (FCM) clustering method.

Let X be any reference set. A fuzzy subset A of X is a set
of ordered pairs A = {(x,ua(x)) | x € X}, where s : x —
[0, 1] is the membership function of A in X (y is subscripted
by the fuzzy subset under consideration). A fuzzy relation p
in X is a fuzzy subset of X x X and the pair (X, p) is called a
fuzzy space when p is reflexive and symmetric. If X = Z"
(i.e., the set of n-tuples of integers), p is called adjacency
and the pair (Z", p) is called digital fuzzy space. Fuzzy digital
space is a concept that characterizes the underlying digital
grid independent of any image related concept. It is desirable
that y, be a nonincreasing function of the distance in Z". In
a fuzzy digital space, any scalar function f : C — [L,H]
from a finite subset of C of Z" to a finite subset [L, H] of the
integers defines a scene (C, f) over (Z",p). When the scene
intensity represents the fuzzy membership value in [0, 1],
we call it the membership scene. In image processing field,
membership scenes can be obtained by any fuzzy clustering
method.

Fuzzy cluster analysis allows data points to have partial
memberships to different clusters which is measured as
degrees in [0, 1]. This yields to the flexibility that data points
can belong to more than one cluster. As a well-known
method in this field, fuzzy C-means clustering method [35]
minimizes the below objective function

JU V) = X0 > (uie) [l = il

k=1i=1
subject to (4)

Cc

c
ui € (0,11 VkD ug = 1,
i=1

where X = {x1,X3,...,X,} is the given dataset, ¢ is the
number of clusters. The ¢ X n matrix U = (u;;) is called the
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fuzzy partition matrix, where u;; denotes the membership
degree of a datum x; to cluster i, v; is the prototype of the
ith cluster, and m (m > 1) is called the fuzzifier parameter
which is usually chosen 2.

Based on the abovementioned fuzzy cluster notion, we
are now better prepared to handle the ambiguity of cluster
assignments when clusters are unwillingly delineated or
overlapped. When we consider the different objects of an
image as different clusters and the segmentation process as
a clustering problem, the resulted fuzzy clusters correspond
to fuzzy objects of the image and u;; denotes the membership
degree of pixel x; to object i.

3.2, Membership connectedness

In this subsection, two different fuzzy relations are proposed.
These relations can be used as a membership connectedness
relation in the proposed segmentation algorithm (described
in Section 3.3).

3.2.1. Direct membership connectedness relation

Let I € Z? be related to the underlying grid of image and
let M = (I,4,) be any membership scene corresponding
to a desired fuzzy object o resulted by an arbitrary fuzzy
segmentation. In order to consider spatial relations among
image pixels, the membership connectedness fuzzy relation
m in I is defined as

() = max[mm (yo(c»)} )

PEP | 1<isl,

where (¢, d) is a pair of pixels, P is the set of all paths
(a path is a sequence of nearby elements) connecting ¢
to d, I, is the length of p, and ¢; is a pixel in the path
sequence. In this relation, neighborhood characteristics of
pixels are considered. If the membership degree of a noisy
pixel ¢ to an object is higher than the true value (the false
positive (FP) error), it may be corrected using (5) in the
described segmentation algorithm defined in Section 3.3.
In this paper, the defined relation in (5) is called direct
membership connectedness (direct_ MC).

3.2.2. Indirect membership connectedness relation

In definition of membership connectedness relation, if the
local interaction of adjacent pixels is considered as well as
neighborhood characteristics, the membership connected-
ness m can be defined by

tm(c,d) = max[min [/,t,c(c,»l,c,-)]}, (6)

PEP | 1<isl,

where ¢; and ¢;—; are two successive pixels and « is a local
fuzzy relation based on adjacency defined as

(e, d) = palc, d)g(uy(c, d), py(c, d)), (7)

where y, is the adjacency function (the 4-adjacency [36]
function is assumed in this paper) and y, and y, represent

the fuzzy relation of homogeneity-based and object feature-
based components of « similar to affinity definition in (1).
The p, function depends on the difference of membership
degree of the pair and g, component depends on the
average of membership degree of desired pair of pixels. These
components are generally defined by

uple,d) = > wair X L(pole) — po(f)),
eeN,, fEN;

c—e=d— f=diff
poled) = 3w x 3 (Glo(e)) + Glal ),

eeN,, fEN;
c—e=d— f=diff

(8)

and combined by the geometric mean function g(-). In above
relations, N and Ny are the defined neighborhood set for
c and d, e and f are corresponding pixels in N, and Ny,
W is weighting function, and L and G are Laplacian and
mixture of Gaussian distributions, respectively. In this paper,
a simplified version of the above relation which produces
nearly the same result is used in order to reduce the execution
time, as follows:

to(c,d) =1 — |uo(c) — po(d) |,

1 )
ug(c,d) = E(‘”o(c) + pho(d)).

The defined relation in (6) is called indirect membership
connectedness (indirect_MC). Because the interaction of
pixels is considered in this relation, a noisy pixel with higher
or lower membership degree than the true value (FP and
false negative (EN) errors, resp.) may be corrected using
indirect MC in the segmentation algorithm described in
Section 3.3.

3.3. Algorithms

In this section, the main proposed segmentation algorithm
is introduced and the two steps of the algorithm called
automatic selection of seed pixels and fuzzy object expansion
are explained.

3.3.1.  Main algorithm

The main steps of the proposed image segmentation algo-
rithm are shown in Algorithm 1.

In Algorithm 1, the connectedness to an object in Step 3
means the connectedness to its set of reference pixels (using
Um instead of i in relation (3)).

3.3.2. Automatic selection of seed pixels

As the second part of the proposed algorithm applies a
region-based segmentation process, the delineation of an
object (Step 2(b) of the algorithm) requires some initial
seeds for object expansion. These seeds may be provided by
manual selection; but it requires user interaction and might
cause errors in multicomponent and complicated objects. In
this subsection, the utilized method for automatic selection
of seeds in the proposed algorithm is described.
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number of objects in the image).
(2) for each O; do

(1) Apply an arbitrary fuzzy segmentation algorithm (e.g., FCM clustering) which results in fuzzy objects {O;,i = 1,...

(a) Extract initial seed set (S;) automatically (or manually), using described method in Section 3.3.2.

(b) Calculate function f; of membership connectedness scene (I, f;) of O;, using the membership scene (I, y,) of O; and
the initial seed set S;. (by using Algorithm 2 based on direct- MC or indirect_MC relations).
(3) Extract Crisp objects by applying the maximum classifier on {f,i = 1,...
connected object (as done in relative fuzzy connectedness [31]).

s n} (m:

,n}; which assigns each pixel to the most

ALGORITHM 1

(3) While Q is not empty do
(a) Remove a pixel ¢ from Q.

(C) Ifﬁnax > f(C) then
(i) Set f(c) = fiax.

(d) End if
(4) End while
(5) End

(1) Set f(c) to 0, for ¢ € I except for those pixels ¢ € S which are set to p,(c).
(2) Push all pixels ¢ € I such that for some s € S, p,(s,¢) >0 to Q.

(b) Find fmax = MaXges [min(f(d))ﬂx(g d))]

(ii) Push all pixels e such that min[ finax, ge(c, €)] > f(e) to Q.

ALGORITHM 2

The required initial seed set (S in the described algo-
rithm) can be selected by thresholding the function of
membership scene of the desired object (¢,) by

S={clceLulc) =0}, (10)

where [ is the underlying grid of image under consideration,
and 6 is the selected threshold in the range of [0,1]. In
order to avoid the selection of a noisy pixel as a seed, a
directional smoothing filter [37] is applied on the normalized
membership image (resulted by considering the membership
degree as the pixel intensity) before the thresholding step.
For small 6, the spatial space information of the image is
not included as feature space information in segmentation
algorithm and the obtained result is more similar to the
feature clustering result (the first step of the proposed
algorithm). In this case, some noisy pixels might be selected
as seed points. On the other hand, for large 0, there might be
no selected seed in some components of an object and they
might be missed. Both cases lead to segmentation error. Out
conducted experimental results indicated that the 6 equal to
0.9 is an appropriate value.

3.3.3.  Fuzzy object expansion algorithm

We have adopted the kFOEMS algorithm [18] (which is
based on dynamic programming) for fuzzy object expansion
from initial seeds in the proposed segmentation algorithm.
In Algorithm 2, f(c) = maxses[pm(s,c)] is calculated for

all pixels ¢ € I by using the membership scene (I, y,)
and the seed set S. In order to apply Algorithm 2 based on
direct_MC relation, we set p,(c,d) = min[u,(c), uo(d)] if ¢
and d are neighboring pixels and 0 otherwise. For applying
the indirect_MC relation, p, is used as (7).

3.3.4. Advantages

The proposed membership connectedness-based image seg-
mentation method enjoys the following advantages. As
feature space-based segmentation is an appropriate notion
for multispectral (or multiparametric) image segmentation
processes, utilization of the proposed algorithm for multi-
spectral images is a straightforward task. In this algorithm,
objects are indicated by more than one seed, which is often
more natural and easier than a single seed object identifi-
cation. It is also necessary for detection of multicomponent
objects and reduces the execution time. When one uses fuzzy
connectedness relation directly for image segmentation,
the intensity-based information of an object should be
embedded in the affinity function. This information involves
distribution of intensity and its inhomogeneities which are
provided by selection or estimation of a series of parameters
(e.g., in [21] the distributions are assumed to be Gaussian
and their parameters are estimated from a 5 X 5 sample
region of object). In the proposed algorithm, which is
independent from utilized fuzzy segmentation method, the
required information can be provided by an appropriate and
available fuzzy segmentation method in the first step.
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4. EXPERIMENTAL RESULTS

Image segmentation based on fuzzy connectedness has been
successfully applied in medical image segmentation [18, 21].
Following this trend, we evaluated the proposed membership
connectedness-based segmentation algorithm on brain MRI
segmentation (which is a challenging problem in this field).
The properties of utilized brain MR image datasets in this
experiment are described in Section 4.1. But, in evaluating
segmentation algorithms on medical data, the definition of
an absolute ground truth is a main challenge. Consequently,
a synthetic image dataset is developed and used for more
accurate numerical evaluation. Properties and evaluation
remarks of both datasets are described in Section 4.1. In
this section, in order to have a more precise evaluation, a
simulated manual seed selection method is introduced.

In the following experiments, the first step of the
proposed algorithm is performed by FCM and is applied on
the whole 3D volume of simulated brain dataset. In order to
reduce the effect of convergence to local minima of the FCM
algorithm, the given results are the average of three different
executions of FCM.

Because of utilization of FCM in the first step of our
algorithm, the obtained results of the algorithm are first
compared with FCM in Section 4.2. In this comparison,
the ability of the proposed method in improving the
performance of the well-known FCM method (especially
in noisy image segmentation) is evaluated. Moreover, the
results are compared with some recently published MRI
segmentation methods (in Section 4.3) to show the current
status of the MRI segmentation problem and to show the
capability of the proposed algorithm in overcoming this
challenging problem.

4.1. Dataset and evaluation remark

A synthetic image dataset was developed to assess the robust-
ness of the proposed method. Fach image has 200 x 200
pixels and its quality can be described by some parameters
such as contrast, additive noise (bias), and multiplicative
noise (gain). Contrast is the basis for image perception and
plays a vital role in defining image quality. Using image
intensities, it is defined as |SA — SB|/(SA + SB), where
SA and SB denote foreground and background intensities,
respectively [21]. We used 5 different degrees of contrast level
(similar to [21]) where low values demonstrate objects with
small neighboring objects contrasts. Moreover, additive noise
(caused by inaccuracies imposed by the nature of scanners in
imaging systems) is modeled with 4 varying degrees of zero-
mean white Gaussian noise. Finally, considering gradual
changes in intensity gain factor, 9 multiplicative noise levels
were used in creating the database. Each level is modeled, as
4 different gain fields described in [21]. The final database is
created using the image model

I(x) = g(x) X f(x) + b(x), (11)

where I and f are the observed and image intensity functions,
respectively, and ¢ and b are the multiplicative and additive

noise functions, respectively. As such, the generated database
contains 720 = 5 X 4 X 9 X 4 images.

Moreover, two experiments were performed on both
simulated and real brain MRI datasets. The digital brain
phantom was provided by Montreal neurologic institute
(Brainweb) [28]. The “normal” data of TI-weighted, T2-
weighted, and proton density (PD) images with different noise
and intensity inhomogeneities levels with matrix size 181 X
217 x 181 and voxel size 1 mm? were used for quantitative
evaluation. The real brain MR images and corresponding
manually guided expert segmentation results were provided
by the internet brain segmentation repository (IBSR) [29].
The 20 normal T1-weighted MR brain datasets in coronal
view and their manual segmentations were utilized in our
experiments. The inplane voxel size of these datasets was
1.0 mm and the slice thickness was 3.0 mm.

To evaluate the performance of the proposed segmenta-
tion algorithm, its accuracy and efficiency were measured.
Regarding the accuracy, the Dice similarity coefficient [40],
the Tanimoto coefficient [41], and the segmentation accuracy
were measured between the segmented volume indicated by
our algorithm and the ground truth. The Dice similarity
coefficient measured the ratio between intersection and
sum of compared volumes [40]. The Tanimoto coefficient
indicated the ratio between intersection and union of
compared volumes [41] and the segmentation accuracy
showed the percentage of correctly classified voxels. These
measures ranged from 0 (for no correctly segmented pixel)
to 1 (for the totally correct segmentation). To study the
behavior of the segmentation algorithm using segmentation
accuracy, it is measured on the whole region of interest
(ROI) which consists of several classes. Moreover, the true
positive volume fraction (TPVF) and false positive volume
fraction (FPVF) [33] are also measured. TPVF measures
the ratio between intersection of compare volumes and
volume of ground truth. FPVF measures the ratio between
the difference of segmented volume and ground truth, and
volume of ground truth. Also, regarding the efficiency,
the computational time of the proposed algorithm was
measured.

The selection of seeds in the following experiments
was applied using both automatic (described in Section
3.3) and simulated manual methods. The simulated manual
selection was applied in conducted experiments to provide
some optimum and error-free seeds (to show an obtained
segmentation which is not influenced by possible errors
of seed selection step (noisy seeds or missed ones) as a
reference). It was simulated by selection of seeds from the
original (phantom) images as such there was at least one seed
in any connected component of the desired object.

4.2. Evaluation and discussion

In the first experiment, the algorithm was applied on the
synthetic image dataset. Figure 1 shows a typical input image
that contains a multicomponent object with complicated
boundaries and different component sizes. In this figure, a
noisy image of the dataset with high amount of additive
and multiplicative noise along with the segmentation result
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(d)

FIGURE 1: Segmentation result of the algorithm for a typical image of synthetic dataset: (a) original image, (b) modified image with medium
level of contrast, (c) noisy image of (b) with high additive and multiplicative noise, (d) FCM result, (e) and (f) direct-MC and indirect-MC

with automatic seed selection results, respectively.

of both FCM and the proposed algorithms (direct-MC
and indirect-MC) is shown. This figure shows that the
proposed algorithm reduces the sensitivity of FCM to
noise. Moreover, it shows that the indirect- MC relation
outperforms the direct MC relation. As discussed in Section
3.2, the indirect_MC relation has the capability of correcting
both FP and EN errors caused by noisy pixels, but the
direct_MC relation may only correct FP error. The threshold
for selection of reference pixels in these experiments was
0.9.

Figure 2 shows the results of our algorithm versus
different levels of additive noise, gain, and contrast, sepa-
rately. In the depicted diagram, for each factor, the plotted
segmentation accuracy is the average resultant accuracy of
other factors. As shown in this figure, as the additive noise
level (which influences the FCM the most) increases the
improvement of the proposed algorithm increases as well.
It also shows that the gained improvement by the proposed
algorithm in the medium levels of contrast is the most
significant. Moreover, the improvement of the proposed
algorithm versus different gain levels and different gain types
is nearly constant.

In the second experiment, the segmentation of intracra-
nial brain tissues (white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF)) is defined. Assuming 3 clusters
for FCM, the algorithm is applied on the whole slices of brain
volume (containing all of these three kinds of tissues) and
the intracranial brain mask is extracted from the provided
phantom. In this experiment, both Brainweb and IBSR
datasets were used.

The result of applying the proposed algorithm on differ-
ent datasets of brainweb with different noise levels is shown
in Figure 3. In this figure, the segmentation accuracy of
FCM, direct-MC, and indirect-MC algorithms are compared
by using automatically selected and optimum seeds. As
the segmentation accuracy is measured on the whole brain
volume, it can show the behavior of the compared methods
solely. This figure clarifies that the integration of FCM
and fuzzy connectedness by proposed MC algorithm makes
FCM robust in segmentation of noisy images, but at the
same time utilization of spatial information might often
eliminate details of the image. This effect influenced the
detection of small isolated CSF regions (these regions can
be seen as small white regions in Figure 4(d)) in brain MRI
segmentation which might not be connected to any selected
seed pixel. These regions can be better detected using only
feature space information (as used in FCM). In noiseless
images, where FCM performs well in other regions (WM and
GM), the utilization of spatial information is not necessary
so the superiority of proposed algorithm is not obvious
and the discussed effect in CSF segmentation influences the
total segmentation accuracy (as shown in low level noise in
Figure 3(a)).

It is worth mentioning that the proposed segmentation
method is a general purpose method that can be applied to
a variety of multispectral input images. However, in order
to suppress the discussed effect, the proposed algorithm
can be specialized for brain MRI segmentation such that
MC relation does not apply on CSF membership scenes by
skipping Step 2 in main algorithm for CSF region and set
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FIGURE 2: Segmentation accuracy versus: (a) noise variance, (b) contrast level, (c) gain factor, (d) gain type for FCM, direct-MC, and

indirect-MC.

fi = uo. This kind of specialization can be applied in any
other application in which prior knowledge about existence
of such regions is available and they are also detectable after
FCM step (In the discussed application the CSF region is
detectable because it has the least volume in brain.). Applying
this specialization will result in Figure 3(c). Note that in the
indirect MC case, the membership degrees are changed by
the g(-) function in (7) in the generally proposed algorithm.
In order to make the unchanged CSF membership degrees
comparable with changed ones of WM and GM in Step
3 of the algorithm, g(-) should be selected as g(x,y) =
XX y.

In the ideal seed selection case shown in Figure 3(b),
the existence of seeds in any connected component (espe-
cially small regions) is guaranteed. Therefore, the discussed
problem does not influence the result. This implies that the
discussed problem never occurs when error-free seeds are
available. The discussed specialization for CSF segmentation
is applied in evaluations of the brainweb datasets.

Figure 4 shows the segmentation result of our direct-MC
and indirect. MC algorithms using automatic seed selection
on a typical slice of high level noise of the brainweb dataset.
This figure shows that the resulted regions of both direct MC
and indirect MC methods are smoother than those of FCM.



M. Hasanzadeh and S. Kasaei

0.92

Segmentation accuracy

<
e}
T

1 2 3 4 5 6 7 8 9
Noise level
—— FCM

--- Direct MC
Indirect MC

(a)
0.98 ; ; ;

o
)
]

j=3
o
T

Segmentation accuracy

0 1 2 3 4 5 6 7 8 9
Noise level
—— FCM

--- Direct: MC
Indirect MC

(b)

0.96

o
O
=

0.92

I
=)

Segmentation accuracy

0.88

0.86

—+— FCM
--- Direct MC
Indirect MC

4 5 6 7 8 9

Noise level

(c)

FIGURE 3: Segmentation accuracy of brainweb datasets of different noise levels: (a) with automatic seed selection, (b) with simulated manual
seed selection (optimum seeds), (c) with automatic seed selection after specialization of the algorithm for CSF regions.

We would like to mention that brain tissues are complicated
and there are long boundaries between them. Therefore, the
subjective results of MR image segmentation cannot show
the improvement obtained by the proposed algorithm as
clear as it can be shown by synthetic images (Figure 1) or by
objective evaluations.

As shown in Figure 4, most of the remained segmenta-
tion errors are on the border of regions where they cannot be
corrected by fuzzy connectedness-based methods. Thus, the
results of direct_MC and indirect_MC methods are similar in
this application.

For detailed analysis of the algorithm, the TPVF and
FPVF are also measured for default dataset of brainweb

(which contains 3% of noise and 20% of intensity inhomo-
geneity). The {TPVE FPVF} pairs for WM, GM, and CSF are
{98.41, 6.53}, {93.53, 3.57}, and {94.20, 3.89}, respectively.
The proposed algorithm was applied on different sub-
jects of IBSR datasets using both automatic and simulated
manual seed selection method. In automatic case, there
was not any significant improvement on FCM algorithm
but using optimum seeds provided by simulated manual
selection method there was valuable improvement. Also, the
indirect MC method outperformed the direct MC method
for most of the subjects. Since manual tracing of peripheral
CSF is very ill posed, only the ventricular part of CSF was
taken into account in IBSR expert guided segmented images.
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(d)

(g) (h)

FIGURE 4: Segmentation result [WM (dark), GM (intermediate brightness), and CSF (bright)] of the proposed algorithm on a typical image
of brainweb dataset (slice 80 of the dataset produced by 7% of noise). (a), (b), and (c) T1, T2, and PD images, respectively. (d) Phantom
image. (e) FCM result. (f) Direct-MC result. (g) Indirect- MC result. (h) Error image of direct MC method (white intensity shows the place

of error occurrence).

TaBLE 1: Execution time (seconds/image for synthetic and sec-
onds/volume for MR images) of proposed algorithms and FCM.

Dataset FCM Direct MC Indirect MC
Synthetic 0.48 1.77 2.46
Brainweb 71.87 83.67 98.45
IBSR 5.65 8.95 12.48

But, these regions are simply detected by the proposed
automatic method. As such, the results obtained by using
optimum seeds which did not consider any seed in peripheral
CSF regions were much better than those of obtained by
using automatically selected seeds. In order to eliminate the
remained peripheral CSF regions, a postprocessing step was
applied by thresholding the CSF membership scene after
segmentation algorithms in which the adaptive threshold
had been determined using neighborhood pixels of the seeds.
After this step, the final segmentation results reached by both
direct and indirect MC algorithms were nearly the same.
The segmentation results of a typical slice are illustrated
in Figure 5. This figure shows that the provided seeds
(especially for CSF tissue) and the utilized postprocessing
method in the proposed algorithm improve the similarity
between segmentation result and reference image but the
peripheral CSF regions is not removed completely.

FIGURE 5: Segmentation result [WM (bright), GM (intermediate
brightness), and CSF (dark)] of direct-MC algorithm on a typical
slice of IBSR dataset (slice 20 of subject 11_3): (a) T1 image, (b)
reference image, (c) and (d) segmentation result using automatic
seed selection and optimum seeds, respectively.
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TABLE 2: Accuracy results for a dataset of brainweb [co.: coefficient].

Direct MC (optimum seeds)  Direct-MC, (automatic seeds)  Ibrahim etal. [38]  Jimenez-Alaniz et al. [39]
CSF 96.71 96.38 — —
Dice co. WM 96.20 96.04 77.2 —
GM 95.64 95.39 82.8 —
CSF 93.64 93.01 — 87.1
Tanimoto co. WM 92.68 92.38 — 92.4
GM 91.64 91.18 — 90.0

TaBLE 3: Segmentation accuracy (Tanimoto coefficient) and efficiency (average execution time per volume) for IBSR dataset.

Direct MC (optimum seeds) Ibrahim et al. [38]

Jimenez-Alaniz et al. [39] Solomon et al. [42] Rivera et al. [43]

CSF 56.87 — 21.0 — —
Accuracy WM 70.20 66.83 62.8 68.6 74.2

GM 78.50 77.43 59.4 57.5 81.9
Efficiency 8.95s — — — 32h

In these experiments, we have used Matlab software
(except for kFOEMS [18] algorithm that was implemented
in C++) on a 1.8-GHz dual core Intel CPU system with 1-
GB RAM. The execution time of the proposed algorithm is
presented in Table 1 and is compared with FCM runtime.
The reported execution time for brainweb is the average
runtime on different noise level datasets.

4.3. Comparisons

We have also compared the performance of our proposed
algorithm to that of other published reports that have
recently been applied on brain tissue segmentation on
brainweb or IBSR datasets. These include Ibrahim et al. [38],
Jimenez-Alaniz et al. [39], Song et al. [44], Solomon et al.
[42], and Rivera et al. [43]. It should be mentioned that as
the utilized prior information, preprocessing methods, and
postprocessing methods in different reported approaches
were not the same, making a fair and meaningful comparison
and discussion of segmentation algorithm is not an easy
task. Thus, the results given in this section are provided as a
reference and some issues should be mentioned before their
comparisons. The method in [39] has used prior information
in the form of probability maps of voxels and is based
on nonparametric density estimation and the mean shift
algorithm. In this work, the method is applied on part of
the brain volume (131 slices). The methods in [38, 42]
are supervised methods and are based on hidden Markov
models. In [44] a modified probabilistic neural network is
utilized for all head MR image segmentations (both brain
and background) and the misclassification rate of 3.41%
is reported for brainweb dataset. This method is also a
supervised method. In [43] an entropy-controlled quadratic
Markov measure field model is used for segmentation
purposes. The algorithms reported in [39, 44] and ours
segment all intracranial brain tissues but the other methods
do not report the result of CSF segmentation. Tables 2 and

3 list the recent published results on brainweb and IBSR
datasets, respectively.

The methods compared in Table 2 have been run on
images which have 3% of noise and 20% of intensity
inhomogeneity and voxel size of 1 mm?. We intended to
include the previous fuzzy connectedness-based segmenta-
tion methods in this table, but we did not find any published
result for the above-mentioned dataset. In vectorial fuzzy
connectedness segmentation [33], true positive volume
fraction is reported for brainweb dataset of voxel size of
3mm? (92.6, 95.8, and 94.4 for WM, GM, and CSF, resp.).

As can be seen from this table, the proposed system which
does not use any model and training data outperforms the
supervised method described in [38] and the method [39]
which utilizes prior information of probability maps. It is
worth noticing that the achieved results of our proposed
algorithm are based on traditional FCM and thus using
improved versions of FCM may lead to better accuracies.
Moreover, it was seen that the segmentation error of FCM in
the nonnoisy images often occurs in the border of regions.
Moreover, we were interested in comparing the execution
time of our algorithm with that of other methods used for
accuracy comparisons. But, unfortunately their execution
times were not reported in their papers except for [43] which
used a 3-GHz machine.

Table 3 shows the results of recent published methods
which have been applied on the normal T1-weighted dataset
of IBSR. The adopted result of [38] was reported for the case
without sudden intensity correction. As can be seen in this
table, the proposed algorithm (using optimum seeds selected
by simulated manual selection method) outperforms other
methods in terms of accuracy except for the method in [43]
which is computationally very expensive compared to the
proposed method. It also considers the pixels with partial
volume of CSF and GM as GM pixels which might eliminate
the peripheral CSF parts (which is similarly applied by
postprocessing stage in our proposed method).
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5. CONCLUSION

A new image segmentation algorithm was proposed in this
paper which is based on a combination of fuzzy connected-
ness and fuzzy clustering approaches via a new definition of
fuzzy connectedness in membership images. The evaluation
of the proposed method (especially based on the FCM
algorithm) shows that the proposed algorithm can reduce
the sensitivity of fuzzy segmentation algorithms to noise and
decreases the false segmentation results when the noise does
not occur on region boundaries. This improvement plays
an important role especially in medical image applications.
The evaluation of the proposed algorithm on real brain
MR images clarifies that the new algorithm can utilize the
expert knowledge in the form of selected seeds and segments
the images as desired by the expert. Also, the proposed
method can be integrated with any feature-based fuzzy
segmentation method adopted for a specific application.
Furthermore, the extension of the proposed membership
connectedness method using the scale concept may increase
the ability of the algorithm in reducing the sensitivity of
feature-based segmentation algorithms to noise. Moreover,
the integration of the membership connectedness with a
hierarchical fuzzy clustering method that does not require
the number of objects will result in a fully automatic
segmentation algorithm.

ACKNOWLEDGMENT

This research was in part supported by a grant from ITRC.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no.
3, pp. 338-353, 1965.

[2] C.K. Gour, D. Laurence, and S. Mahbubur Rahman, “Review
of fuzzy image segmentation techniques,” in Design and Man-
agement of Multimedia Information Systems: Opportunities and
Challenges, pp. 282-314, IGI Publishing, London, UK, 2001.

[3] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. R. Pal, Fuzzy
Models and Algorithms for Pattern Recognition and Image
Processing (The Handbooks of Fuzzy Sets), Springer, Berlin,
Germany, 2005.

[4] J. V. de Oliveira and W. Pedrycz, Advances in Fuzzy Clustering
and Its Applications, John Wiley & Sons, New York, NY, USA,
2007.

[5] J. K. Udupa and S. Samarasekera, “Fuzzy onnectedness and

object definition: theory, algorithms, and applications in

image segmentation,” Graphical Models and Image Processing,

vol. 58, no. 3, pp. 246261, 1996.

M. Hasanzadeh and S. Kasaei, “Multispectral brain MRI

segmentation using genetic fuzzy systems,” in Proceedings of

the 9th International Symposium on Signal Processing and Its

Applications (ISSPA 07), Sharjah, UAE, February 2007.

[7] G. C. Karmakar and L. S. Dooley, “A generic fuzzy rule based
image segmentation algorithm,” Pattern Recognition Letters,
vol. 23, no. 10, pp. 1215-1227, 2002.

[8] K. S. Sundareswaran, D. H. Frakes, and A. P. Yoganathan,
“Rule-based fuzzy vector median filters for 3D phase contrast
MRI segmentation,” in Computational Imaging VI, vol. 6814
of Proceedings of SPIE, pp. 1-14, San Jose, Calif, USA, January
2008.

E)

[9] C. V. Jawahar, P. K. Biswas, and A. K. Ray, “Analysis of fuzzy
thresholding schemes,” Pattern Recognition, vol. 33, no. 8, pp.
1339-1349, 2000.

[10] S. K. Pal, A. Ghosh, and B. Uma Shankar, “Segmentation of
remotely sensed images with fuzzy thresholding, and quanti-
tative evaluation,” International Journal of Remote Sensing, vol.
21, no. 11, pp. 2269-2300, 2000.

[11] J. Kim, W. Cai, S. Eberl, and D. Feng, “Real-time volume
rendering visualization of dual-modality PET/CT images with
interactive fuzzy thresholding segmentation,” IEEE Transac-
tions on Information Technology in Biomedicine, vol. 11, no. 2,
pp. 161-169, 2007.

[12] J.-H. Xue, S. Ruan, B. Moretti, M. Revenu, D. Bloyet, and
W. Philips, “Fuzzy modeling of knowledge for MRI brain
structure segmentation,” in Proceedings of IEEE International
Conference on Image Processing (ICIP °00), vol. 1, pp. 617-620,
Vancouver, Canada, September 2000.

[13] S. Ruan, B. Moretti, J. Fadili, and D. Bloyet, “Segmentation
of magnetic resonance images using fuzzy Markov random
fields,” in Proceedings of IEEE International Conference on
Image Processing (ICIP 01), vol. 3, pp. 1051-1054, Thessa-
loniki, Greece, October 2001.

[14] L. Xiaodong, Z. Fengqi, and Z. Jun, “Synthetic aperture
radar image segmentation based on improved fuzzy Markov
random field model,” in Proceedings of the Ist International
Symposium on Systems and Control in Aerospace and Astro-
nautics (ISSCAA °06), pp. 1205-1208, Harbin, China, January
2006.

[15] M.-E. Algorri and FE Flores-Mangas, “Classification of
anatomical structures in MR brain images using fuzzy param-
eters,” IEEE Transactions on Biomedical Engineering, vol. 51,
no. 9, pp. 1599-1608, 2004.

[16] Z. Xiang, Z. Dazhi, T. Jinwen, and L. Jian, “A hybrid method
for 3D segmentation of MRI brain images,” in Proceedings
of the 6th International Conference on Signal Processing (ICSP
’02), vol. 1, pp. 608—611, Beijing, China, August 2002.

[17] A. Rosenfeld, “Fuzzy geometry: an updated overview,” Infor-
mation Sciences, vol. 110, no. 3-4, pp. 127-133, 1998.

[18] J. K. Udupa and P. K. Saha, “Fuzzy connectedness and image

segmentation,” Proceedings of the IEEE, vol. 91, no. 10, pp.

1649-1669, 2003.

A. Rosenfeld, “The fuzzy geometry of image subsets,” Pattern

Recognition Letters, vol. 2, no. 5, pp. 311-317, 1984.

[20] S. Dellepiane and E Fontana, “Extraction of intensity connect-
edness for image processing,” Pattern Recognition Letters, vol.
16, no. 3, pp. 313-324, 1995.

[21] A. S. Pednekar and I. A. Kakadiaris, “Image segmentation
based on fuzzy connectedness using dynamic weights,” IEEE
Transactions on Image Processing, vol. 15, no. 6, pp. 1555-1562,
2006.

[22] X. Fan, J. Yang, Y. Zheng, L. Cheng, and Y. Zhu, “A novel
unsupervised segmentation method for MR brain images
based on fuzzy methods,” in Proceedings of the Ist International
Workshop on Computer Vision for Biomedical Image Appli-
cations (CVBIA °05), Y. Liu, T. Jiang, and C. Zhang, Eds.,
vol. 3765 of Lecture Notes in Computer Science, pp. 160169,
Springer, Beijing, China, October 2005.

[23] D. L. Pham and J. L. Prince, “An adaptive fuzzy C-means
algorithm for image segmentation in the presence of intensity
inhomogeneities,” Pattern Recognition Letters, vol. 20, no. 1,
pp. 57-68, 1999.

[24] D. L. Pham, “Spatial models for fuzzy clustering,” Computer
Vision and Image Understanding, vol. 84, no. 2, pp. 285-297,
2002.

=
o



M. Hasanzadeh and S. Kasaei

13

[25] M.N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T.
Moriarty, “A modified fuzzy C-means algorithm for bias field
estimation and segmentation of MRI data,” IEEE Transactions
on Medical Imaging, vol. 21, no. 3, pp. 193199, 2002.

[26] S. Chen and D. Zhang, “Robust image segmentation using
FCM with spatial constraints based on new kernel-induced
distance measure,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B, vol. 34, no. 4, pp. 1907-1916, 2004.

[27] S. Shen, W. Sandham, M. Granat, and A. Sterr, “MRI fuzzy
segmentation of brain tissue using neighborhood attraction
with neural-network optimization,” IEEE Transactions on
Information Technology in Biomedicine, vol. 9, no. 3, pp. 459—
467, 2005.

[28] McConnell Brain Imaging Centre, BrainWeb: Simulated Brain
DataBase, September 2007, http://www.bic.mni.mcgill.ca/
brainweb.

[29] Center for Morphometric Analysis at Massachusetts General
Hospital, July 2007, http://www.cma.mgh.harvard.edu/ibsr.

[30] A. Rosenfeld, “Fuzzy digital topology,” Information and Con-
trol, vol. 40, no. 1, pp. 76-87, 1979.

[31] P. K. Saha and J. K. Udupa, “Relative fuzzy connectedness
among multiple objects: theory, algorithms, and applications
in image segmentation,” Computer Vision and Image Under-
standing, vol. 82, no. 1, pp. 42-56, 2001.

[32] P. K. Saha, J. K. Udupa, and D. Odhner, “Scale-based
fuzzy connected image segmentation: theory, algorithms, and
validation,” Computer Vision and Image Understanding, vol.
77, no. 2, pp. 145-174, 2000.

[33] Y. Zhuge, J. K. Udupa, and P. K. Saha, “Vectorial scale-based
fuzzy-connected image segmentation,” Computer Vision and
Image Understanding, vol. 101, no. 3, pp. 177-193, 2006.

[34] K. C. Ciesielski, J. K. Udupa, P. K. Saha, and Y. Zhuge, “Iter-
ative relative fuzzy connectedness for multiple objects with
multiple seeds,” Computer Vision and Image Understanding,
vol. 107, no. 3, pp. 160-182, 2007.

[35] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, NY, USA, 1981.

[36] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
Prentice Hall, Upper Saddle River, NJ, USA, 2002.

[37] A. K. Jain, Fundamentals of Digital Image Processing, Prentice
Hall, Upper Saddle River, NJ, USA, 1989.

[38] M. Ibrahim, N. John, M. Kabuka, and A. Younis, “Hidden
Markov models-based 3D MRI brain segmentation,” Image
and Vision Computing, vol. 24, no. 10, pp. 1065-1079, 2006.

[39] J. R. Jimenez-Alaniz, V. Medina-Banuelos, and O. Yanez-
Suarez, “Data-driven brain MRI segmentation supported
on edge confidence and a priori tissue information,” IEEE
Transactions on Medical Imaging, vol. 25, no. 1, pp. 74-83,
2006.

[40] V. Grau, A. U. J. Mewes, M. Alcaniz, R. Kikinis, and S. K.
Warfield, “Improved watershed transform for medical image
segmentation using prior information,” IEEE Transactions on
Medical Imaging, vol. 23, no. 4, pp. 447-458, 2004.

[41] R. O. Duda, P. E. Hart, and D. G. Sork, Pattern Classification,
Wiley-Interscience, New York, NY, USA, 2000.

[42] J. Solomon, J. A. Butman, and A. Sood, “Segmentation of
brain tumors in 4D MR images using the hidden Markov
model,” Computer Methods and Programs in Biomedicine, vol.
84, no. 2-3, pp. 76-85, 2006.

[43] M. Rivera, O. Ocegueda, and J. L. Marroquin, “Entropy-
controlled quadratic Markov measure field models for effi-
cient image segmentation,” IEEE Transactions on Image Pro-
cessing, vol. 16, no. 12, pp. 3047-3057, 2007.

[44] T. Song, M. M. Jamshidi, R. R. Lee, and M. Huang, “A
modified probabilistic neural network for partial volume
segmentation in brain MR image,” IEEE Transactions on
Neural Networks, vol. 18, no. 5, pp. 1424-1432, 2007.



	1. INTRODUCTION
	2. FUZZY CONNECTEDNESS AND IMAGE SEGMENTATION
	3. PROPOSED METHOD
	3.1. Basic definitions
	3.2. Membership connectedness
	3.2.1. Direct membership connectedness relation
	3.2.2. Indirect membership connectedness relation

	3.3. Algorithms
	3.3.1. Main algorithm
	3.3.2. Automatic selection of seed pixels
	3.3.3. Fuzzy object expansion algorithm
	3.3.4. Advantages


	4. EXPERIMENTAL RESULTS
	4.1. Dataset and evaluation remark
	4.2. Evaluation and discussion
	4.3. Comparisons

	5. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

