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A new method for image compression based on morphological associative memories (MAMs) is presented. We used the MAM to
implement a new image transform and applied it at the transformation stage of image coding, thereby replacing such traditional
methods as the discrete cosine transform or the discrete wavelet transform. Autoassociative and heteroassociative MAMs can
be considered as a subclass of morphological neural networks. The morphological transform (MT) presented in this paper
generates heteroassociative MAMs derived from image subblocks. The MT is applied to individual blocks of the image using some
transformation matrix as an input pattern. Depending on this matrix, the image takes a morphological representation, which is
used to perform the data compression at the next stages. With respect to traditional methods, the main advantage offered by the
MT is the processing speed, whereas the compression rate and the signal-to-noise ratio are competitive to conventional transforms.
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1. INTRODUCTION

The data transformation stage of image coding facilitates
information compression at the further stages. Its purpose
is twofold: transform the image pixels into a representation
where they are noncorrelated and identify the less important
parts of the image isolating various spatial frequencies of the
image. Although a great variety of existing transformations
can be employed in image compression, only two of them
are actually used to this end: the discrete cosine transform
(DCT) and the discrete wavelet transform (DWT).

The DCT was proposed by Ahmedetal. [1]. Ever
since, diverse algorithms of a DCT implementation have
been developed to achieve the least possible computational
complexity. Chen et al. [2] proposed one of the first algo-
rithms for a fast DCT implementation. This algorithm takes
advantage of the cosine symmetry function thus reducing
the number of operations necessary for DCT calculation.
Arai et al. [3] suggested a more efficient and fast variant of a
fast DCT scheme applied to images. This algorithm uses only
the real part of the discrete Fourier transform [4], and the
coefficients are calculated with the help of the fast Fourier
transform algorithm described by Winograd [5]. Actually,

DCT is used in JPEG image compression and MPEG video
compression standards [6, 7].

DeVore et al. [8] developed a mathematical theory
enabling to use the wavelet transform in image compression.
Daubechies and her collaborators proposed a scheme for
image compression with the help of the DWT. The scheme
employs biorthogonal filters to obtain a set of image
subbands using a pyramidal architecture algorithm. This
decomposition provides the subband images corresponding
to different levels of resolution and orientation [9]. Lewis
and Knowles [10] proposed a scheme for image compression
based on 2D wavelet transform to separate the image by its
spatial elements and spectral coefficients.

Various methods for coding of image wavelet coefficients
are known. The first wavelet image coding algorithm of
embedded zerotree wavelet (EZW) was proposed by Shapiro
[11]. Next, Said and Pearlman [12] proposed a new and
better implementation of the EZW, the algorithm of set
partitioning in hierarchical trees (SPIHTs). It is based on
the use of data sets organized in hierarchical trees. A new
algorithm for image compression known as embedded block
coding with optimized truncation (EBCOT) was proposed
by Taubman in 2000 [13]. In this algorithm, each subband
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is divided into small blocks of wavelet coefficients called
“blocks code,” and then chains of bits separated for each
block code are generated. These chains can be truncated
independently to different lengths. The JPEG2000 image
compression standard is based fundamentally on the DWT
and EBCOT [14].

On the other hand, a new technology for image compres-
sion based on artificial neuronal networks (ANNs) has arisen
as an alternative to traditional methods. Within the novel
approach, new image compression schemes were created and
the existing algorithms were essentially modified.

The selforganizing map (SOM) ANN has been used with
a great deal of success in creating codebooks for vector
quantization (VQ). The SOM is a competitive-learning
network; it was developed by Professor Kohonen in the early
1980s [15, 16]. One of the first works where SOMs were
used for image compression was presented by Bogdan and
Meadows [17]. Their algorithm is based on the use of the
SOMs and fractal coding to find similar features in different
resolution representations of the image. In this process, pat-
terns are mapped onto the two-dimensional array of formal
neurons forming a codebook similar to VQ coding. The
SOM ordering properties allow finding not only the mapping
of the best feature match neuron but also its neighbors in
the network. This modification reduced the computational
load when finding and removing redundancies between scale
representations of the original image. Amerijckx et al. [18]
proposed a lossy compression scheme for digital still images
using Kohonen’s neural network algorithm. They applied
the SOM at both quantification and codification stages
of the image compressor. At the quantification stage, the
SOM algorithm creates a correspondence between the input
space of stimuli, and the output space constituted of the
codebook elements (codewords, or neurons) derived using
the Euclidean distance. After learning the network, these
codebook elements approximate the vectors in the input
space in the best possible way. At the entropy coder stage,
a differential entropy coder uses the topology-preserving
property of the SOMs resulted from the learning process
and the hypothesis that the consecutive blocks in the image
are often similar. In [19], the same authors proposed an
image compression scheme for lossless compression using
SOMs and the same principles. Mokhtari and Boukelif
[20] presented a new algorithm based on Kohonen’s neural
network, which accelerates the fractal image compression.
Kohonen’s network is used in an adaptive algorithm that
searches the best range block for a source block with the
affine transformation and both contrast and brightness
parameters. When the difference between blocks is higher
than a predefined threshold, the source block is subdivided
into four subblocks. This division keeps repeating until
either the difference is lower than the threshold or the
minimal block size is reached. The main disadvantage of
SOM algorithms is that a long training time is required
due to the fact that the network starts with random initial
weights. Panchanathan et al. [21] used the backward error
propagation algorithm (BEP) to rapidly obtain the initial
weights, which are then used to speed up the training time
required by the SOFM algorithm. The proposed approach

(BEP-SOFM) combines the advantages of both techniques
and, hence, achieves a good coding performance in a shorter
training time.

Another type of ANN that has been used widely in image
compression is the feedforward network. It is classified in the
category of signal-transfer network, and its learning process is
defined by the error backpropagation algorithm. Setiono and
Lu [22] described the feedforward neural network algorithm
applied to image compression. The neural network con-
struction algorithm begins with a simple network topology
containing a single unit in the hidden layer. An optimal set
of weights for this network is obtained applying a variant of
the quasi-Newton method for unconstrained optimization.
If this set of weights does not give a network with the desired
accuracy, then one more unit is added to the hidden layer,
and the network is retrained. The process is repeated until
the desired network is obtained. This algorithm has a longer
training time but with each addition of the hidden unit to the
network the signal-to-noise ratio of the compressed image is
increased. In [23], a linear selforganized feedforward neural
network for image compression is presented. The first step in
the coding process is to divide the image into square blocks
of size m X m, each block represents a feature vector of m?
dimension in the feature space. Then, a neural network of the
input dimension of m? and output dimension of m extracts
the principal components of the autocorrelation matrix of
the input image using the generalized Hebbian learning
algorithm (GHA). Training based on GHA for each block
then yields a weight matrix of m X m? size. Its rows are the
eigenvectors of the autocorrelation matrix of the input image
block. Projection of each image block onto the extracted
eigenvectors yields m coefficients for each block. Then image
compression is accomplished quantizing and coding the
coefficients for each block. Royetal. [24] developed the
image compression technique that preserves edges using one
hidden layer feedforward neural network. Its neurons are
determined adaptively based on the image to be compressed.
First, in order to reduce the size considerably, several image
processing steps, namely, edge detection, thresholding, and
thinning, are applied to the image. The main concern of
the second phase is to determine adaptively the structure
of the NN that encodes the image using backpropagation
training method: the processed image block is fed as a
single input pattern while the single output pattern has
been constructed from the original image. Furthermore, this
method proposes the initialization of the weights between
the input layer and the lone hidden layer transforming pixel
coordinates of the input pattern block into its equivalent
one-dimensional representation. This initialization process
exhibits a better rate of convergence of the backpropagation
training algorithm in comparison to the randomization of
the initial weights.

The following examples show a direct relationship
between the ANN methods and the methods based on
DCT and DWT. In [25] Ng and Cheng proposed the
implementation of the DCT with ANN structures. The
structured artificial neural network is placed in four major
subnetworks: one for forward DCT (back propagation NN
of 64 X 16 X 63), one for energy classification (back
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propagation NN of 63 X 32 X 4), one for inverse DCT
(back propagation NN of 63 x 16 X 64) and one for direct
current (DC) adjustment (back propagation NN of 64 X
2 x 1). Each subnetwork is trained and tested individually
and independently except the DC adjustment network. On
the other hand, Burges et al. [26] used a nonlinear predictor,
implemented with ANN, to predict wavelet coefficients for
image compression. The process consists of reducing the
variance of the residual coefficients; then, the nonlinear
predictor can be used to reduce the compressed bitstream
length. In order to implement the neural network predictor,
the authors considered two-layer neural network with the
single output parameterized by the vector of weights. The
output unit is a sigmoid, taking values in [0, 1]. The network
is trained for each subband and each wavelet level, and the
outputs are translated and rescaled, again per each subband
and wavelet level. Similarly, the inputs are rescaled so their
values mostly lie in the interval [—1,1]. The mean-squared
error measure is used to train the net in order to minimize
the variance of the prediction residuals.

Two interesting proposals of ANN application to image
compression must be mentioned. First of them describes
a practical and effective image compression system based
on multilayer neural network [27]. The suggested system
consists of two multilayer neural networks that compress the
image in two stages. The first network compresses the image
itself, and the second one compresses the difference between
the reconstructed and the original images. In the second
proposal, Danchenko et al. [28] developed a program for
compression of color and grayscale images using ANN. This
program was named the neural network image compressor
(NNIC). The NNIC implements two image compression
methods based on multilayer perceptron and Kohonen
neural network architectures. Finally, an algorithm based on
the DCT complements to the NNIC program.

Ritter et al. [29] introduced the concept of a morpho-
logical neural network. They proposed to compute the total
input effect on the ith neuron with the help of the dilation
and erosion operations of mathematical morphology. Then,
in 1996, Ritter and Sussner [30] proposed morphological
associative memories (MAMs) on the base of the morpho-
logical neural networks. Two years after, Ritter etal. [31]
extensively developed the concept of MAMs. In this paper, we
present a new image transform applied to image compression
based on MAMs. For image compression purposes, we
used heteroassociative MAMs of minimum type at the
transformation stage of image coding instead of DCT or
DWT. This way, the morphological transform for image
compression was derived.

We will also mention an interesting work done by Sussner
and Valle [32]. The gist of this paper is that the authors
characterize the fixed points and basins of attraction of
grayscale AMMs in order to derive rigorous mathematical
results on the storage capacity and the noise tolerance of
these memories. Moreover, a modified model with improved
noise tolerance is presented and AMM:s are successfully used
for pattern classification.

The paper is organized as follows. In Section 2, a brief
theoretical background of MAM is given. Section 3 describes
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FIGURE 1: Associative memory scheme.

the proposed MT algorithm. Numerical simulation results
obtained for the conventional image compression techniques
and the MT are provided and discussed in Section 4. Finally,
conclusions are given in Section 5.

2. THEORETICAL BACKGROUND OF
MORPHOLOGICAL ASSOCIATIVE MEMORIES

The modern era of associative memories began in 1982
when Hopfield developed the Hopfield’s associative memory
[33]. Hopfield’s work recovered the investigators’ interest in
such areas as artificial neuronal networks and associative
memories forgotten until that moment.

The associative memory is an element whose funda-
mental intention is to recover patterns even if they contain
dilative, erosive or random noise. The generic associative
memory scheme is shown in Figure 1. The input patterns and
output patters are represented by x and y, respectively; n and
m are integer positive numbers that represent the dimensions
of the input and output patterns.

Let {(xLy"), (x%y?),...,(x%,y%)} be k vector pairs de-
fined as the fundamental set of associations. The fundamental
set of associations is represented by

{(xty*) lu=1,2,...,k}. (1)

The associative memory is represented by a matrix and is
generated from the fundamental set of associations.

2.1. Morphological associative memories

The MAMs base their functioning on the morphological
operations, dilation and erosion [34]. This results that
MAMs use the maximums or minimums of sums [31]. This
feature distinguishes them from the Hopfield’s memories,
which use sums of products.

One can define the operations necessary for the learning
process of MAM and the recovery process when the funda-
mental set is delineated. These operations use the calculation
of the binary operations of maximum VvV and minimum A
[31].

Let d be a column vector of dimension m, and let f be
a row vector of dimension #, then the maximum product is
given by

dvf=C-= [Cij]an) (2)

where ¢;; = (d; + f;).
Generalizing for a fundamental set of associations,

k

Cij = \/(dil+ﬁj)~ (3)

=1
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The minimum product is given by

dAf =C = [C,‘j]an. (4)

For a fundamental set of associations, c;; is defined by

k

cij = N\(da+ fij). (5)

I=1

On the other hand, let D = [dij]mxn be a matrix and
f = [fi], a column vector, the calculation of the maximum
product DV{ results in a column vector ¢ = [¢;],,, where ¢; is

defined by
\i/ (dij + f;)- (6)
For the minimum product ¢ = DA,
/i\ dij + f;). (7)

According to the mode of operation, the MAMs are
classified in two groups:

(i) autoassociative morphological memories,

(ii) heteroassociative morphological memories (HHMs).

From (2) to (7) are used in the MAMs of both heteroasso-
ciative and autoassociative operation modes. Due to certain
characteristics required by image compression application
discussed later, HMMs are of particular interest.

A morphological associative memory is heteroassociative
it 3u € {1,2,...,k} such that x* # y*. There are two types
of morphological heteroassociative memories: HMM max,
symbolized by M, and HMM min, symbolized by W.

2.1.1. Morphological heteroassociative memories min

The HMMs min (W) are those that use the maximum

product (2) and the minimum operator A in their learning

phase and the maximum product in their recovery phase.
Learning phase:

(1) the matrices yF‘V(—x/‘)t are calculated for each
k element of the fundamental set of associations

(x*,y%),

(2) the memory W is obtained applying the minimum
operator A to the matrices resulted from step (1). W
is given by

k
W= /\ YMV _XM - [W’J]mxn’
- (8)

= /\(yﬁ’ - x})
u=1

Recovery phase:

(1) the maximum product WVx®, where w € {1,2,

.,k}, is calculated. Then the column vector y =

[yil,,» which represents the output patterns associ-
ated with x input patterns, is obtained as

y =WVx®,
9)

yi=\/ (wi +X?’)-

—-

1

J

The following theorem and corollary from [31] govern
the conditions that must be satisfied by HMM min to obtain
a perfect recall to output patterns. Here we reproduce them.

Theorem 1 (see [31, Theorem 2]). WVx® = y* for all

w = 1,...,k if and only if for each w and each row index
i = 1,...,m there are column indexes j € {1,...,n} such
that mije = yi — x5 forallw = 1,..., k.

Corollary 1 (see [31, Corollary 2.1]). WVx® = y* for all

w = 1,...,k if and only if for each row index i = 1,...,m and
each y € {1,...,k} there is a column index ],y e {1,...,n}
such that
k
xj’xy = \/(x] —yf) +yl. (10)

On the other hand, the following theorem indicates the
amount of noise permissible in the input patterns to obtain
a perfect recall to output patterns.

Theorem 2 (see [31, Theorem 3]). Fory = 1,...,k, let X” be
a corrupted input pattern of x¥. Then WVXY = y? if and only
if it satisfies that

9 <V A (Vi

yf+xf]> Vi=1,...,n, (11)
i=1 \e#y

and for each row index i € {1,...,m} there is a column index

ji € {1,...,n} such that

xﬂ X V(\/[yiy—yf-i-xji]). (12)

£y

3. MORPHOLOGICAL TRANSFORM USING MAM

The data transformation stage in a system for image codifi-
cation has the aim of facilitating information compression
in the later stages. The MT is proposed as an alternative
to traditional transformation methods. The algorithm of
this model uses the MAMs to generate a morphological
representation of an image. As it was mentioned above,
the MAMs are based on the morphological operations that
calculate the maximums or minimums of sums. This feature
makes MAM to be a model with a high-processing speed, and
the MT inherits this property.

The following features make MT attractive to be used
in the transformation stage within an image compression
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system:

(i) the morphological representation of the image,
generated by the MT, can facilitate information
compression in the following stages;

(ii) the MT is reversible;

(iii) in the image transformation process, the MT has low-
memory requirements (space complexity). It uses a
limited arithmetical precision, and is implemented
with a few basic arithmetical operations (has low-
time complexity).

The MAMs have turned out to be an excellent tool for
recognizing and recovering patterns, even if the patterns
contain dilative, erosive, or random noise [31]. At the inverse
MT stage, this feature allows to suppress some of noise
generated at other image compression stages.

As it was mentioned above, MAM can be autoassociative
or heteroassociative. A morphological associative memory is
autoassociative if x* = y*, y € {1,2,...,k}. This fact discards
the use of autoassociative morphological memories in the
MT algorithm because the image to be compressed would
not be available in the decompression process to perform the
inverse MT process.

A heteroassociative associative memory allows associat-
ing input patterns with different output patterns in content
and dimension. Taking this property into account, HMM
can be used in the MT algorithm, where the image will be
sectioned to form output patterns, and input patterns will be
predefined as a transformation matrix. The transformation
matrix will be available in both compression and decom-
pression processes thus allowing to implement the inverse
morphological transformation (IMT). The HMM used in
the MT can be of min or max type. That is why the MT is
immune to erosive or dilative noise, respectively.

3.1. Preliminary definitions

The proposed MT is applied to individual blocks of
the image. Let the image be represented by a matrix,

A = [aij],,,,» where m is the image height and n is
the image width; and a represents the ijth pixel value: a €
{0,1,2,...,21 — 1}, where L is the number of bits necessary

to represent the value of a pixel.

The MT presented in this paper generates heteroassocia-
tive MAMs derived from image subblocks. Next, we define
the image subblock and image vector terms.

Definition 1 (image subblock (sb)). Let A = [a;;] beanmxn
matrix representing an image, and let sb = [sb;;] bead x d
matrix. The sb matrix is defined as a subblock of the A matrix
if the sb matrix is a subgroup of the A matrix such that

sbij = asz; (13)

where i,j = 1,2,3,...,d,6 = 1,2,3,...,m, 7 = 1,2,3,...,n
and as,,, represents the value of the pixel determined by the
coordinates (8 + i, 7 + j), where (,7) and (6 + d, 7 + d) are
the beginning and the end of the subblock,respectively.

Definition 2 (image vector (vi)). Let sb = [sb;;] be an image
subblock and let vi = [vi;] be a vector of size d. The ith row
of the sb matrix is said to be an image vector vi such that

Vi,‘ = [sz‘l,sb,‘z,...,sbid], (14)
where i = 1,2,3,...,d. From each image subblock, d image
vectors can be obtained:

vi = [sby1,sby,. .., sbul, (15)

where y = 1,2,3,...,d.

The MT uses a transformation matrix, which is formed by
transformation vectors. These two terms are defined below.

Definition 3 (transformation vectors (vt)). Let vt = [vt;] be
a vector of size d. The vt vector is called a transformation
vector when it is used in both processes of MAM learning
and pattern recovery, whose generation is governed by [31,
Theorem 2 and Corollary 2.1].

Definition 4 (transformation matrix (mt)). Let vt = [vt;], be
a transformation vector. The set formed by d transformation
vectors {vt!,vt?,...,vt?} is called transformation matrix
mt = [mt;;] ; ,, where the ith row 0 matrix mt is represented
by vector vt'. Then the ijth component of mt is defined by

mty; =vt, | i,j =1,2,...,d. (16)

3.2. Morphological transform using HMM min

The matrix A is divided into N = (m/d)-(n/d) submatrices,
or image subblocks of d X d size, each of them is divided into
d image vectors of d size: vi* = [vi;]y | p=1,2,...,d.

The MT process generates N MAMs, structured in a
matrix form to represent the morphological transformation

MAM! MAM'? ... MAMY
- MAM?! MAM?* ... MAM?*!

MT = O{MAM"} = ) ) ) ,
MAMM MAM*? ... MAMM

(17)

where i = 1,2,...,A, j = 1,2,...,n, A = m/d, and n =
n/d; in addition, operator O{-} is defined to represent such
an organization where MAMs constitute the transformation
matrix MT. Thus, the MAMY represents the generated
memory when MAM learning process is applied to the ijth
image subblock.

When an HMM min is used in order to transform an
image subblock of d X d size, the MT is defined by the
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following expression:

MTpin = O{MAM,, [ x = 1,2,...,A, y = 1,2,...,7},
d T
MAM; = A\ [vi%V(-vt*)"]
u=1

= [Wi]‘]z;;d | w = 1,2,...,N,

w,jdxd —Vt”|1]—12 ., d,

n>&

(18)

where w indicates to what N image subblock the image
vectors belong; thus, vi** is the uth row of the wth image
subblock.

The vt vectors form transformation matrix mt = [mt;] ;.
It affects the resulted parameters such as the compression
ratio and the signal-to-noise ratio. The transformation
matrix must be known at both image coding and image
decoding stages.

There exist a great variety of values that satisfy the
conditions governing the generation of the transformation
matrix. As an option, one can choose the elements of
transformation vectors under the following conditions:

L |=0 m#n,
vt (19)
>e m =n,

where e is the maximum value that can take an element of
the image A.

As a result of applying the MT to the image, N associative
memories W of size d X d are obtained. This set of memories
forms the transformed image. Figure2 shows the MT
scheme that uses HMMs. The image information remains
concentrated within minimum values. Thus, it is possible to
obtain some advantages of this new image representation at
the next stages of image coding. Figure 3 shows MT results
on byte represented grayscale images of 512 X 512 size.

The inverse process, the inverse morphological transform
(IMT), consists of applying the recovery phase of an HMM
between the transformation vectors and each HMM that
forms the MT.

As a result of the IMT process, N image subblocks are
generated, which altogether represent the original image
transformed by the MT:

sb'! sb'? ... sbl

- sb? sb*? ... sb?
IMT = Ofsbii} = | . . C (20)
sb* sb*? ... gbM
wherei = 1,2,...,A,j = 1,2,...,4,A = m/d, and n = n/d.

The operator O{-} is used because the matrices sb within the
IMT keep the same position that the MAMs used for their
recovery keep within the MT.

The IMT is possible because

(i) the transformed image is an HMM set,

(ii) the transformation matrix is available at the decom-
pression stage.

For an IMT process, two cases can be defined.
Case 1 (when the MT has not been altered by noise). This
is a reversible, lossless process. Nevertheless, the obtained
compression ratio is not significant.

When an HMM min was used in order to transform an
image subblock of d X d size, the IMT is defined by the
following expression:

IMTyin = Of{sb™” | x=1,2,...,4, y =1,2,...,1},
sb*” = vi¥ !‘\‘14—12 d,
Vit = HMM, Vvt = [viy ”“]d, (1)
d
(xy =\ (W] +vt}),

j=1

where xy indicates to what N image subblock the image

vectors belong; thus, Vi)

subblock.

Case 2 (when the MT has been altered by noise). This is
an irreversible process, the recovered image is an altered
version of the original image. Nevertheless, the obtained
compression ratio is significant.

The next stage of image coding is the quantization. This
stage modifies the MT information. MT is a set of HMM,
and the theory of MAMs presented in [31] only considers a
perfect recall to output patterns when the noise appears in
the input patterns and not in the associative memories. If the
modification of the information contained in the obtained
memories W at MT process is considered as noise, then, how
does this noise affect the associative memory in the recovery
of the original output patterns (blocks of the original image)?

In order to answer this question, we formulated a new
theorem in MAM theory [35].

« is the uth row of the xyth image

Theorem 3. Let W denote the distorted version of the associa-
tive memory W:

W=W=+ r,
~ (22)
W,’j = Wij +r,
where r represents the noise associated with W. Then
WVx! =37 = y! =, (23)

Proof. Considering the theorem [31, Theorem 2] and its
respective corollary [31, Corollary 2.1], we have y¥ = WVx?,
bearing in mind the corrupted version of the associative
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FiGURE 2: MT scheme using HMMs.

(c)

FIGURE 3: MT results on (a) Lena, (b) Baboon, (c) Peppers, (d) Man.

memory, then y” = ¢ Vx:

(vay)t = \/(171//,‘]‘ +x]Y),

\%
3
"
x

= Wi+ — NG —x5)

e=1

_ y
Wij, + Y — wij,

y
= Wijx‘ + T+)/l- — ijz

=yl +r

Theorem 3 shows that the noise r associated with the
associative memory directly affects the output patterns and
the property of the image perfect recovery. The noise r
associated with the set of associative memories depends
directly on the used quantification factor.

Considering Theorem 3, expression (3) is rewritten to
define the IMT for Case 2

IMTyn = Of{sb™ | x=1,2,...,4, y = 1,2,...,1},
sb* = vith lu=12,...,d,

Vi = HMMZ, Vv = [vi,” “]d (25)

min i

d
viixy)“ =\ (W] +vt) 7).
j=1

The IMT scheme using HMM is shown in Figure 4. [

3.3. Complexity of MT algorithm

The algorithm complexity is measured by two parameters:
the time complexity, or how many steps it needs, and the
space complexity, or how much memory it requires. In this
subsection, we analyze time and space complexity of the MT
algorithm. For this purpose, we will use pseudocode of the
most significant part of the presented MT algorithm shown
in Algorithm 1.

3.3.1.  Time complexity

In order to measure the MT algorithm time complexity, we
first obtain the run time based on the number of elementary
operations (EOs) that MT realizes to calculate one image
subblock. This calculation is the most representative element
of the MT algorithm.

Considering pseudocode from Algorithm 1, one can
conclude that in the worst case, the condition of line 9 will
always be true. Therefore, line 10 will be executed in all
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FIGURE 4: IMT scheme using HMMs.

01| subroutine P_min()
02| variables

03|  y,x,1, aux: integer
04| begin

05|  forl«— 0tok [operations] =1+ 1] do

06| for y — 0 tod [operations y = y + 1] do
07| for x — 0 to d [operations x = x + 1] do
08| aux = vi[l + y] — vt[I + x]:

09| if (aux < w(x][y]) then

10| wlx][y] = aux;

11] and_if

12| end_for

13| end_for

14| end_for

15| end_subroutine

ArcoriTHM 1: Pseudocode of the algorithm for HMM min com-
putation.

iterations, and then the internal loop realizes the following
number of EO:

d d
(Z(10+3)> +3= 13(21) +3=13d+3.  (26)
x=0 x=0

The next loop will repeat 13(d) + 3 EO at each iteration:

d d
(Z(13d+3)+3>+3= (Zl3d+6)+3

y=0 y=0

=d(13d+6)+3 = 13d*> + 6d + 3.
(27)

The last loop will repeat the same number of EO at each
iteration. Also, this loop will be repeated k times, where k
represents the number of elements of the fundamental set of
associations. Thus, the total number of EO that realizes the
algorithm is

T(n) = k(13d*> +6d +6) + 3. (28)

Based on expression (28), we can conclude that the order
of growth of the proposed algorithm is O(n?).

3.3.2.  Space complexity

The MT algorithm space complexity is determined by the
amount of memory required for its execution.

The transformation process of d X d image subblock
requires two vectors, vt[dxd]vi[dxd], and a matrix w[d][d].
Hence, the number of memory units required for this process
is

(29)

The transformed image needs for its storage the matrix
MT [h_i][w_i], where h_i is the image height and w_i is the
image width. The number of memory units required for this
process is

un_P1 = un_vt + un_vi + un_w.

un_P2 = un_MT. (30)

The total number of memory units required by the MT
algorithm is the sum of the units required by the P1 and P2
processes:

un_P1 + un_P2 = un_vt + un_vi + un_.w + un_MT
= (d)(d) + (d)(d) + (d)(d) + (h_i) (w_i)

= 3d? + (h.i) (w_i).
(31)

The MT algorithm uses only summation, subtraction,
and comparison operations. Therefore, the result is always
an integer number. For grayscale image compression,
8 bits/pixel, the MT requires a variable of more than 8 bits.
Compilers allow declaring variables of type short of 16 bit
integer signed numbers.

Hence, the total number of bytes required by the MT
algorithm is

2(3d? + (h.i) (w.i)). (32)

One can observe that this value depends on the image size
and on the size of the image subblock chosen for the image
transformation process.
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4. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
using MT in an image compression system. First, we
compare the MT performance when a vector quantization
with different sizes from codebook is used. Second, we
compare the performance of MT when various coding
algorithms are used. Finally, we compare the performance to
traditional methods of transformation, DCT and DWT. For
this purpose, a set of five test grayscale 512 X 512 pixel images
represented by 8 bits/pixel: Lena, Peppers, Elaine, Boat, and
Goldhill, was used in simulations.

In our experiments, a lossy image compression scheme
has been used, see Figure 5.

In order to measure the MT performance, we used
a popular objective performance criterion called the peak
signal-to-noise ratio (PSNR), which is defined as

(2" - 1)° )
<3 | (33)
UMS M, (pi - i)’

PSNR = 10log,,, (

where 7 is the number of bits per pixel, M is the number of
pixels in the image, p; is the ith pixel in the original image,
and p; is the ith pixel in the reconstructed image.

The first experiment includes only first two stages of
the system shown in Figure5: the MT and the vector
quantization (VQ). The VQ causes the loss of information
in the image. This experiment has the objective of analyzing
how the IMT process reduces data degradation caused by
the quantization process. The quantization stage uses the VQ
by Linde-Buzo-Gray (LBG) multistage algorithm [36]. The
LBG algorithm determines the first codebook, and then each
image vector of the image data is encoded by the code vector
within the first codebook that best approximates the vector
within the image data.

Table 1 and Figure 6 show the obtained PSNR values of
test images when the vector quantization of MT images with
various codebook sizes was used. Figure 7 shows the visual
results of this process on Lena, Peppers and Boat images.

In the second experiment, the performance of diverse
standard encoding methods applied to the image trans-
formed with MT and VQ was evaluated. These methods
included statistical modeling techniques, such as arithmeti-
cal, Huffman, range, Burrows Wheeler transformation, PPM,
dictionary techniques, LZ77 and LZP. The purpose of the
second experiment is to analyze MT performance in image
compression. To this end, a coder that implements LBG VQ
and diverse entropy encoding techniques was developed. The

PSNR

04 Lu | | | | | | |
64 128 192 256 320 384 448 512

Codevectors in the codebook

—*— Goldhill

—— Boat

-~ Lena
—v— Elaine
—©— Peppers

FIGURE 6: Performance of MT on test images with vector quan-
tization with diverse sizes of codebook.

compression performance of our coder on test images is
expressed in Table 2.

These results show that the entropy encoding technique,
which offers the best results in compression and signal-to-
noise ratio are obtained on the image transformed by MT, is
the PPM coding. The PPM is an adaptive statistical method;
its operation is based on partial equalization of chains, that
is, the PPM coding predicts the value of an element basing
on the sequence of previous elements.

To analyze performance of the image compressor based
on MT, LBG VQ and PPM coding, we plot in Figure 8
the curves of PSNR versus bit rate (bpp) and PSNR
versus compression ratio obtained for test images. In these
experiments, the VQ codebook size was varied to achieve
different bit rates. One can observe that best performance
was achieved for the “Elaine” image.

The transformation stage of an image compressor alone
does not produce any information reduction. Its main
purpose is to facilitate the information compression at the
next stages. Tables 1, 2, and 3 allow comparing the results
obtained with the proposed compression scheme formed
by MT, LBG VQ, and PPM coding, and the same scheme
omitting the transformation stage, MT. As it was expected,
the use of the MT considerably improves the compression
ratio and in some cases improves the signal-to-noise ratio.

In the third experiment, the efficiency of the image coder
based on MT, LBG VQ, and PPM coding was compared to
that of other image compression methods, JPEG [37, 38],
DCT-based embedded coder [37], EZW [11, 38], SPIHT
[12, 38], EBCOT [13]. The obtained results show that the
proposed method is competitive with the known techniques
in the compression ratio and the signal-to-noise ratio.
Table 4 presents the comparative results of our coder (MT,
LBG VQ and PPM) and traditional image compression
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TasLE 1: Performance of MT on test images with vector quantization with diverse sizes of codebook.

Performance of MT (PSNR)

Image VQ LBG multistage

64 codevectors 128 codevectors 256 codevectors 512 codevectors
Lena 27.12 28.20 29.09 29.99
Elaine 28.87 29.67 30.32 30.72
Peppers 26.20 27.13 27.64 28.15
Goldhill 26.19 26.92 27.54 28.00
Boat 2491 25.79 26.33 26.84

(30)

FiGUure 7: MT with VQ on test images: column (a) 64 codevectors, column (b) 128 codevectors, column (c) 256 codevectors, column (d) 512

codevectors.

methods applied to the test image Lena. Figure 9 shows these
results as PSNR versus bit rate plots.

Finally, we analyze the number and type of operations
and the amount of memory used by the MT and the
traditional transformation methods. First, we analyze the
efficient DCT implementation proposed by Araietal. [3].
The number of operations used by this algorithm to
transform an image is

o S
P (2 op) + dopy)) - 220

for d x d block, where h_i is the image height, w_i is the image
width, and op = 29 sums y 5 multiplications.

The space complexity analysis of the DCT algorithm
indicates the memory requirements for this algorithm. In
order to process image divided by d X d blocks, the DCT
needs one matrix a[d][d], two vectors b[d], c[d], one vector

(op) (34

e[d/2], and one matrix DCT[h_i][w_i]. Hence, the total
number of units required by this algorithm is

un_a +un_b + un_c+un_e + un_DCT
=(d)(d)+d+d+d/2+ (hi)(w.i)

5d

=+

(35)

=d+

(h_i) ().

The DCT uses floating point operations. Then, the total
number of bytes required by the DCT is

4(d2 + % + (h_i) (w,i)). (36)

Now, we analyze the DWT when it uses Haar filters, the
simplest wavelet filters. The total number of operations used
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65 where dim = w_ixX h_i and op = 12 sums y 8 multiplications.
The space complexity analysis of the DWT algorithm
257 specifies memory requirements for this algorithm operation.
In order to process an image, the DWT needs two matrices
24 2'0 2'5 3'0 3'5 10 alh_i] [w,i] and DWT/h_i] [.w,i]. Then, the total number of
Compression ratio bytes required by the DWT is
‘-~ Lena —+ Goldhill un_a + un_DWT = (h_i) (w_i) + (h_i) (w_i)
—v— Elaine —— Boat (40)

—©— Peppers

Ficure 8: PSNR versus bit rate plots and PSNR versus compression
ratio plots for test images when image compressor based on MT,
LBG VQ, and PPM coding is used.

by the DWT algorithm in this case for image transformation
is

N1 operations + N2 operations + - - - + Nn operations.

(37)
For the DWT of 3 scales:
hai(wi hi(w.i hi(w_.i
S ()5 (ew) + (5 o)
(38)
dim dim dim
X T(Op) + ?(OP) + H(OP)

= 2(h_i) (w_i).

The DWT normally uses floating point operations. Then,
the total number of bytes required by the DWT is

8(h_i) (w_i). (41)

Finally, the operations number that the MT needs in
order to transform an image depends on the image size and
the image subblock size:

P ka(dop))) ) - (hi x wi)B(op),  (42)

where d is the image vector size, k is the number of elements
of the fundamental set of associations, and op = 1 sum and
1 comparison.

The space complexity analysis of the MT algorithm is
expressed by (32).

Based on the previous analysis, we can generate a
comparative table of the operations and memory required by
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TABLE 2: Performance comparison of several entropy encoding technique on the information obtained from MT on test images.

Codevectors (VQ LBG multistage)

Image Entropy encoding technique
8 by 8 d 64 128 256
PPM Compression ratio 34.17:1 27.11:1 21.26: 1
Bit rate 0.23 bpp 0.29 bpp 0.37 bpp
Burrows W. Compression ratio 33.11:1 26.33:1 20.56: 1
Bit rate 0.24 bpp 0.30 bpp 0.38 bpp
Lena LZP Compr.essmn ratio 30.98:1 25.56: 1 20.35:1
Bit rate 0.25bpp 0.31 0.39 bpp
L777 Compression ratio 30.23:1 24.21:1 19.21:1
Bit rate 0.26 bpp 0.33 bpp 0.41 bpp
Compression ratio 23.86: 1 20.24: 1 17.27 : 1
Range .
Bit rate 0.33bpp 0.39 bpp 0.46 bpp
PPM Compression ratio 32.85:1 25.17: 1 20.12:1
Bit rate 0.24 bpp 0.31 bpp 0.39 bpp
Compression ratio 32.40:1 25.05:1 19.88 : 1
Burrows W. )
Bit rate 0.24bpp 0.32bpp 0.40 bpp
Boat LZp Compr.essmn ratio 30.56: 1 23.95:1 19.32:1
Bit rate 0.26 bpp 0.33 bpp 0.41 bpp
LZ77 Compression ratio 30.06:1 2381:1 19.46 : 1
Bit rate 0.26 bpp 0.33 bpp 0.41 bpp
Compression ratio 27.15:1 22.19:1 18.72: 1
Range .
Bit rate 0.29 bpp 0.36 bpp 0.42 bpp
PPM Compression ratio 39.55:1 30.83:1 2390:1
Bit rate 0.20 bpp 0.25 bpp 0.33 bpp
Burrows W. Compr.esswn ratio 36.70: 1 28.84:1 22.74: 1
Bit rate 0.21 bpp 0.27 bpp 0.35bpp
Elaine L7P Compr.essmn ratio 3490:1 28.04:1 22.32:1
Bit rate 0.22bpp 0.28 bpp 0.35bpp
L777 Compression ratio 33.00:1 2649 : 1 21.04:1
Bit rate 0.24 bpp 0.30 bpp 0.38 bpp
Compression ratio 27.65:1 23.16: 1 19.45: 1
Range .
Bit rate 0.28 bpp 0.34 bpp 0.41 bpp
PPM Compression ratio 34.05:1 26.54:1 20.86: 1
Bit rate 0.23 bpp 0.30 bpp 0.38 bpp
Compression ratio 33.22:1 26.19:1 20.62:1
Burrows W.
Bit rate 0.24 bpp 0.30 bpp 0.38 bpp
Goldhill LZP Compr.essmn ratio 31.31:1 25.08: 1 20.02:1
Bit rate 0.25bpp 0.31 bpp 0.39 bpp
LZ77 Compression ratio 30.87:1 24.88:1 20.12: 1
Bit rate 0.25bpp 0.32bpp 0.39 bpp
Compression ratio 26.42:1 2248 :1 19.11:1
Range )
Bit rate 0.30 bpp 0.35bpp 0.41 bpp
PPM Compression ratio 35.72:1 28.83:1 22.62:1
Bit rate 0.22 bpp 0.27 bpp 0.35bpp
Burrows W. Compr.essmn ratio 34.33:1 27.76 : 1 21.79:1
Bit rate 0.23 bpp 0.28 bpp 0.36 bpp
Peppers L7P Compr.essmn ratio 32.12:1 26.63:1 21.39:1
Bit rate 0.24 bpp 0.30 bpp 0.37 bpp
1777 Compression ratio 31.19:1 25.70: 1 20.35:1
Bit rate 0.25bpp 0.31bpp 0.39 bpp
Compression ratio 25.20:1 21.78 : 1 18.53: 1
Range

Bit rate 0.31 bpp 0.36 bpp 0.43 bpp
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TasLE 3: Compression ratio and PSNR obtained by the image compression scheme without MT.
Codevectors (VQ LBG multistage)
Image Entropy encoding technique 64 128 256
(PSNR 26.66) (PSNR 27.28) (PSNR 27.57)
PPM Compression ratio 14.23:1 11.50:1 9.43:1
Bit rate 0.56 bpp 0.69 bpp 0.84 bpp
Lena Burrows W. Compr.essmn ratio 13.79: 1 11.27: 1 8.94:1
Bit rate 0.58 bpp 0.71 bpp 0.89 bpp
Compression ratio 11.98:1 10.08 : 1 8.61:1
Range .
Bit rate 0.66 bpp 0.79 bpp 0.92 bpp
Codevectors (VQ LBG multistage)
64 128 256
(PSNR 28.95) (PSNR 29.61) (PSNR 30.10)
PPM Compression ratio 14.23:1 11.40: 1 9.35:1
Bit rate 0.56 bpp 0.70 bpp 0.85bpp
Goldhill Burrows W. Compr.essmn ratio 13.76 : 1 11.29:1 8.96:1
Bit rate 0.58 bpp 0.70 bpp 0.89 bpp
Compression ratio 12.34: 1 1046 : 1 8.90:1
Range .
Bit rate 0.64 bpp 0.76 bpp 0.89 bpp
Codevectors (VQ LBG multistage)
64 128 256
(PSNR 25.81) (PSNR 27.64) (PSNR 27.75)
PPM Compression ratio 15.06: 1 12.12:1 9.82:1
Bit rate 0.53 bpp 0.65 bpp 0.81 bpp
Peppers Burrows W. Compr.essmn ratio 14.52:1 11.83:1 9.62:1
Bit rate 0.55bpp 0.67 bpp 0.83 bpp
Compression ratio 1243 : 1 10.56 : 1 8.97:1
Range .
Bit rate 0.64 bpp 0.75 bpp 0.89 bpp

TaBLE 4: Comparison between image compression based on MT,
VQ LBG, and a PPM coding and traditional methods on test image

Lena.

Test image Lena: 512 x 512 pixels, 8 bits/pixel

Bit rate PSNR
. 0.25 31.6
Baseline JPEG [37, 38]
0.50 34.9
DCT-based embedded coder [37] 0.25 3225
0.50 36.0
2 1
EZW [11, 38] 0.25 33.17
0.50 36.28
0.25 34.1
SPIHT [12, 38]
0.50 37.2
EBCOT [13] 0.25 34.40
0.50 37.49
0.23 27.12
Morphological transform (MT)
0.52 31.14

the MT, DCT y WDT in order to transform a grayscale image

of size 512 X 512 pixels, 8 bits/pixel (see Table 5).

In order to draw conclusions based on these results, it is

necessary to consider the following aspects:

(i) at least an operator of the multiplications must be of
a real number,

(ii) the Haar filters are the simplest wavelet filters. Nor-
mally, the standard schemes of image compression
use wavelet filters of greater complexity; a significant
example is the JPEG 2000, the filters bank of this
standard is formed by a 9-tap low-pass FIR filter and
a 7-tap high-pass FIR filter [39] derived from the
Daubechies wavelet [40],

(iii) operations used by MT are simpler than those
required by DCT and DWT,

(iv) all variables used in operations for the MT calculation
are of the integer type.

(v) The memory required during the MT calculation is
smaller to the memory needed by DCT or DWT.

On the ground of these considerations and the obtained

results, with respect to the processing speed and the memory
requirements, it can be concluded that the MT proves to be a
more efficient algorithm than the traditional methods.
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TaBLE 5: Operations and memory required by MT, DCT y DWT in order to transform a grayscale image of 512 x 512 pixels: 8 bits/pixel.

Transform Input data type Output data type Required memory (bytes) Number and type of operations
DCT Integer Float 1,048,912 1,900,544. su.ms,.

Blocks of 8 X 8 327,680 multiplications
DWT Tnteger Float 2,097,152 1,032,192. su.ms,.

Haar filters, 3 scales 688,128 multiplications
MT Integer Integer 524,672 2,097,152 sums,

Blocks of 8 X 8

2,097,152 comparisons

5. CONCLUSIONS

The use of morphological associative memories at the trans-
formation stage of an image compressor has demonstrated
a high competitiveness in its efficiency in comparison to
traditional methods based on DCT (JPEG) or DWT (EZW,
SPIHT, and EBCOT). Moreover, MT has low-computational
complexity since its operation is based on maximums or
minimums of sums, that is, MAM uses only operations
of sums and comparisons. This fact results in the high-
processing speed and low demand of resources (system
memory). Indeed, to calculate a morphological associative
memory for an image block of 8 x 8 pixels, 512 sums and
512 comparisons are required.

The quantification process introduces random noise in
the transformed image, so the MT uses the HMM min or
HMM max. And the MAMs do not perform well when
the patterns contain erosive and dilative noise at the same
time, thus limiting the MT ability to attenuate the noise
induced by the quantifier. To resolve this problem and obtain
a better response in the signal-to-noise ratio, it is possible
to use alternative schemes of associative memories robust to
random noise in the input patterns. This aspect is the subject
of future work.
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