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1. INTRODUCTION

Hyperspectral processing technology is a powerful tool for
detecting chemical substances, anomalies, and camouflaged
objects, as well as for visual surveillance. These applications
require low complexity and high throughput. Traditional
hyperspectral image processing uses hundreds of bands
to detect or classify targets, in which the computational
complexity is proportional to the amount of data that needs
to be processed. Thus for real-time execution, the data
reduction and simplified algorithm are very critical. The
computational complexity of the hyperspectral processing
can be reduced by exploiting spectral content redundancy
using a partial number of bands [1-3]. However, the amount
of data to be processed in hyperspectral image processing is
still large compared to that in a typical image processing.
General purpose processors and/or field-programmable
gate arrays (FPGAs) have been used for real-time hyperspec-
tral processing. The COMPASS hyperspectral sensor system
was presented in [4]. The system has the data processing
computer (DPC) and the operator display/control computer.
Thus the high-performance DPC executes real-time calibra-
tion and multiple spectral detection on 13 G4-processors [4].

Principal components transformation (PCT) compresses the
redundant information between hyperspectral bands [5, 6].
The PCT-based real-time compression was implemented in
12 SHARCs [7], where each SHARC has a link port for
efficient data flow. The wavelet-based dimension reduction
algorithm was presented in [8, 9]. Since the wavelet-based
method transforms the spectrum of a pixel to a linear and
weighted combination of pixels, the reduced bands have
the most important features of original spectral bands. The
algorithm was implemented as reconfigurable computers
(RCs) in FPGA. Parallel-independent component analysis
(pICA) algorithm was implemented for hyperspectral images
in FPGA, in which 50 bands were selected from the maxima,
the minima, and the inflection points. The system used three
reconfigurable components to compensate for the perfor-
mance limit of a single FPGA. However, the implemented
system cannot be applied in real-time application [10]. K-
means unsupervised clustering algorithm was implemented
in FPGA. The algorithm was transformed to use alternative
distance measures and truncation of the input data and
cluster centers. The design has a 10 stage pipeline, but does
not incorporate data partitioning which could improve the
processing time [11, 12].
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This paper presents a real-time target detection archi-
tecture as an efficient solution for hyperspectral image
processing. The architecture uses our proposed complexity
reduction algorithm by which the computational complexity
is significantly reduced from the effective band selection and
library refinement [3]. Since the index of effective bands and
refined libraries are dynamically changed, the algorithm has
a benefit for detection. However, the algorithm is sequential
since the detection needs the updated band index and refined
libraries for an image. Thus we propose an efficient pipelined
processing element architecture which minimizes the effect
of the sequential algorithm. We present the processing unit
model based on the data reduction algorithm and then
propose a computing structure that can help to optimize
memory usage and eliminates memory bottleneck. Also we
present a scalable multiple-processing element architecture
by exploiting data partitioning. We propose an inter-
connection topology for the multiple-processing element
architecture to improve the speed. Compared to the general
purpose processor, FPGA implementations particularly suit
for the implementation of hyperspectral processing since the
FPGA permits parallel implementation and proper band-
width [8, 11]. Thus the proposed architecture is designed
and implemented in FPGA to illustrate the relationship
between hardware complexity and execution throughput of
the hyperspectral image processing for the target detection.

The remainder of this paper is organized as follows:
Section 2 describes the overview of hyperspectral image
processing applied to the effective band selection and the
library refinement scheme. The image data structure as
well as the processing data flow is described. We present
an architecture design for real-time hyperspectral image
processing in Section 3 and the architecture is verified in
Section 4. Section 5 concludes the paper.

2., DESIGN OVERVIEW
2.1. Overall processing

While conventional image pictures are represented by 2-
dimensional matrices, the hyperspectral image has one more
dimension for band spectral data as shown in Figure 1.
Collected data by hyperspectral image sensors are kept as one
cube and each pixel which is located at (x, y) has N, bands.
Notations N, and N, are used for indicating the total size
of pixels in accordance with the axis. Since the number of
spectral bands presents high-computational complexity, the
real-time hyperspectral image processing is a big challenge.
The hyperspectral image processing involves three key
stages denoted as preprocessing, processing, and postpro-
cessing [13-16]. The spectrum contents from sensors are
stored in a cube memory structure as raw image data as
shown in Figure 1. The raw image data is calibrated by the
preprocessing [17]. Each cube contains large numbers of
bands which represent the characteristics of a target material.
In the processing, target images are detected by isolating the
portion of data while it is highly correlated with the target
library. The target library contains spectral information
about the object that it is intended to detect. The objective
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y

Figure 1: [llustration of cube data structure.

of the processing is to find out the target image from the
input cubes that correlate with spectral information stored in
the target library. The third step is the postprocessing where
actual detected images are displayed with RGB colors.

The main challenges for the hyperspectral image pro-
cessing are high volume and complexity of the hyperspectral
image data. For the real-time processing, the complexity
should be reduced. The easiest approach is to reduce the
number of bands and the amount of library for processing.
However, such reductions may eliminate the merit of the
hyperspectral image processing. If certain bands have more
characteristics to represent the object, all spectrums of bands
do not need to detect the target. Thus our approach deter-
mines bands that are more effective for the target detection.
The performance of detection depends on the quality of
spectral information stored in the target library. A perfect
target library does not exist since objects exhibit different
spectral characteristics which are sensitive to environmental
factors such as lighting [13-15].

The main operation in the hyperspectral image process-
ing for target detection is to compare input cube images
with the target library, which determines the correlation
coefficient in terms of spectrum contents [3]. Hence the
main operation in hyperspectral image processing is the
calculation of correlation. The correlation coefficient is a
measure of similarity between two spectrum contents which
are stored in the target library and obtained from input
images. High values of the correlation coefficient between
two spectrum contents indicate the high degree of similarity
between the two spectrum contents.

To exploit the correlation, several types of correlation
functions have been introduced such as spectral angle
mapper (SAM), Euclidean minimum distance (EMD), and
the information theoretic approach [1, 18-20]. The distance
metrics such as SAM and EMD provide a unique measure
of distance from two spectrum contents. SAM is invariant
to multiplicative scaling [1, 18]. Since the refined library
represents the luminescent variation of the basic library,
the invariance is particularly important for our proposed
library refinement scheme. Thus the correlation coefficient
is presented as
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where Ny is the number of effective bands, ¢; is the test
spectrum of ith band, and r; is the reference spectrum of ith
band.

Figure 2 illustrates the overall algorithm for detecting
and isolating target images. We apply the effective band
selection scheme to reduce the number of bands applied to
the detection. For the scheme of effective band selection,
we have defined a contribution factor to represent the
isolation effectiveness in terms of the target libraries [3]. To
obtain the contribution factor, we need randomly selected
background samples which represent the spectral property
of background images. Since the correlation represents the
variation of differences between two spectrum contents, the
effective bands are selected to get the maximally separated
contribution value. The algorithm has two processing flows.
The right side is mainly related to the detection which
compares the input image with the library. The left side is
the update which has the library refinement and the effective
band selection.

Each operation is specified by Steps. Step 0, 1, and 2 exist
for the detection and others perform the update. Step 0 loads
the index of effective bands from Step 5 and then chooses
spectrum contents of an input pixel and a library for effective
bands. Step 1 has a loop to get the correlation coefficient (A)
and the loop size is N1jpNg. Step 2(a) is for target detection
and Step 2(b) is for background detection. In Step 2(a), if the
correlation coefficient (A) is over the minimum correlation
coefficient between the library and the input image (A;),
the pixel is detected as a target and the spectrum contents
in the pixel are reserved for the library refinement. On the
other hand, in order to choose background samples, the
correlation coefficient (A) is compared to the maximum
correlation coefficient between input image and background
(Ap) in Step 2(b). Step 3 corrects samples for background and
target. For the representation of the spectrum of background
area, the background samples are randomly selected. The
library is refined in Step 4 and the effective bands are selected
by using the contribution coefficient in Step 5.

There are several floating point operations such as root
and arccosine functions in Step 1. The detection function
in Step 2 also has floating point operations to compare the
correlation coefficient (A) with A; and A,. However, the
output of Step 2 has integer data type. Step 4 and Step 5 have
floating point operations.

As discussed in [3], Step 1 has the highest computational
complexity. However, Step 3, 4, and 5 have less complexity
than Step 1. The complexity is proportional to the number
of effective bands and the number of libraries. However, the
number of target and background samples does not relate to
the overall complexity.

2.2. Design issues and approach

The objectives of design are to assure high-speed operation
for detection and update. Our algorithm has two kinds of
data dependency. First, update and detection are sequential.
The results of the update are the index of effective bands
and refined libraries which is used in the detection. Thus
the detection cannot start until the operation of the previous

cube image is completed. The sequential property prevents
the parallel operation of update and detection. Second,
the update needs target and background samples, but the
type of samples is decided after the detection. Therefore,
update and detection require two different cube images.
Once we construct the pipeline structure, the architecture
is insensitive to these data dependencies and improves the
execution speed. However, the pipeline structure increases
resource usage. We investigate two types of pipeline structure
denoted pixel-based and cube-based pipelines. Thus the
proposed architecture optimizes the memory usage and
eliminates the memory bottleneck.

The correlation function has both fixed and floating
point operations. The computational complexity of floating
point operation is important for high-speed operations. We
investigate the implementation constraints from the timing
relationship between floating and fixed point operations.
Since our target architecture has limited floating point units,
we verify the sharing of floating point units in update and
detection.

To improve the execution time, we use data partition-
ing which exploits a scalable architecture. We present an
interconnection topology and update sharing among the
processing elements.

3. ARCHITECTURAL DESIGN SPACE
3.1. Algorithm characteristics

3.1.1.  Execution dependency

To express the execution dependency of the hyperspectral
image processing, a functional graph is shown in Figure 3.
Step 0 has two functions of load() and init(). The function
load() corrects spectrum contents for effective bands from
the preprocessing and refined library. The function init()
loads the index of effective bands from the get_eb() in Step
5. Thus the function init() operates on each cube, but the
function load() works on each pixel. Step 1 has the function
acc() and the function corr(). The function acc() accumu-
lates the inputs for effective bands, where the accumulator
has two kinds of operations denoted multiplication and
summation in (1). Thus the outputs of the function acc()
are three fixed point numbers for > t7, > r?, and > t;r;. The
function corr() calculates the correlation coefficient A which
is a floating point number. In Step 2, the function detect()
verifies the type of pixel using correlation coefficient A. Thus
the main operations of the function detect() are floating
point operations. In Step 3, once the type of pixel is decided
in the function detect(), the function sample() corrects the
sample in Step 0. The function choose_samples() chooses
target and background samples. In Step 4, the functions
loads(), accs(), corrs(), dets(), and saves() refine the library
from the target samples. These functions are very similar to
load(), acc(), corr(), detect(), and sample(). The functions
diff(), cont(), and get_eb() in Step 5 find the index of the
effective bands using the contribution factor. These functions
require both floating point and fixed point operations.
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Figure 4 shows the overall execution timing flow of our
algorithm. Tioad> Tace> Teorrs Tdetect> and Teample denote the
execution time for the function load() in Step 0, acc() in Step
1, corr() in Step 1, detect() in Step 2, and sample() in Step 3,
respectively. The execution time for a pixel denoted as Tpixel
is represented as (Tload + Tacc + Tcorr + Tdetect + Tsample)NLIB-
Tinit> Tu, Tes, and Ty denote the execution time for the
function init() in Step 1, all functions in Step 4, the function
choose_samples() in Step 3, and all functions in Step 5,
respectively. Note that the execution time for a cube (Teube) is
represented as Tini¢ + Tpixel NxN. y+ Tes+ T + Ty, where NyN,
represents the spatial resolution of the hyperspectral image
cube. Therefore, bigger spatial resolution requires longer
execution time.

The functions in the processing have execution depen-
dencies. The functions acc() and sample() use the same
data from the preprocessing, but the operations of function
samples() cannot be completed before the function detect()

has results. The functions in Step 4 load data from the
function choose_sample(), but the function in Step 5 cannot
start before the operations in Step 4 are done. Therefore, after
the detection is completed, the functions in the update can be
processed.

There are two types of operation denoted by a pixel-
based function and a cube-based function. The functions
load(), acc(), corr(), detect(), and sample() are pixel-
based functions and the functions init(), choose_samples(),
loads(), accs(), corrs(), dets(), saves(), diff(), cont(), and
get_eb() are cube-based. The pixel-based operations execute
NN, times for a cube, but the cube-based functions execute
only once for a cube. Therefore, the pixel-based operations
are more significant than the cube-based operations for high-
speed execution.

The functions have two kinds of operations presented
as fixed and floating point operations. Figure 5 illustrates
the functional partitioning, where fixed point operations
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FiGure 7: Illustration of block diagram of the processing which uses the two-stage pipeline.

and floating point operations are separated with Uy, U; and
U,. U; contains the function corr() and detect() which are
mainly related to the detection. U, contains the functions of
dets(), corrs(), cont(), and get_eb().

3.1.2. Theeffect of cube delay

In Figure 5, the pixel-based functions and the cube-based
functions are separated into Stage A and Stage B. The
update requires NrNyp target samples and Ny number of
background samples. Since the results of the update can
be used from the next cube, the processing flow requires
a two-stage pipeline. However, the two-stage pipeline is
the reason of cube delay (ie., the time corresponding
for transferring one cube image data). The cube delay
decreases the performance of detection since the refined
libraries and the effective bands index may not be available
in the next cube image. However, since consecutive cube
images have similar spectrum properties, if the cube delay
time (TcubeNeube_delay) is faster than the change of spectral
properties (Tspectral)> the cube delay can be allowed. Neype_delay
denotes the number of cube delay. Note that, Tspeciral depends
on the application of hyperspectral image processing. For
example, once the hyperspectral image is used to detect a
person in a surveillance system, the basic properties of the
light source is not abruptly changed. Therefore, the cube
delay is not significant.

In order to remove the cube delay, the predetection
step can be used in the processing. Figure 6 illustrates the

block diagram of the processing without a cube delay,
where all steps use the same cube image. Since the complex
reduction schemes require background and target samples,
the predetection composed of Step 1 and Step 2 is necessary
to verify the randomly selected samples for all bands. Since
Nr number of target samples are required for the library
refinement, the predetection chooses and verifies bigger
number samples than N target samples to get Ny number
of target samples. However, if the number of detected target
pixels in the entire cube image is smaller than N7 target
samples, a cube image is necessary for the predetection.
In this case, the benefit of the effective band selection
disappears. Therefore, we use the two-stage cube-based
pipeline.

3.2. Single-processing execution model
3.2.1. Two-stage pipeline

To remove the data dependency between the update and
detection, we use the two-stage pipeline structure. Figure 7
shows the block diagram of the processing. Pipeline(1)
separates the block diagram of the processing into Stage A
and Stage B.

In the two-stage pipeline structure, the execution time for
a cube (Teype) is represented as

Tcube = max (TA) TB)) (2)
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where T and Ty represent the execution time for Stage A and
Stage B, respectively. T is expressed as TpixetNxN, and Tj is
equal to Tinjp + Tes + Ty + Tge. Once reduced number of bands
are used for the detection, Ty is reduced. Thus T} is getting
shorter, but T is not changed. Therefore, once minimum
number of effective bands is used, the overall execution time
is improved, but the enhanced time is limited by Tp since Tp
is invariant about the number of bands. Figure 8 shows the
timing flow in the two-stage pipeline structure. The effective
bands and refined library from the ith cube can be applied in
(i + 2)th cube. Thus the two-stage execution pipeline has a
two-cube delay.

3.2.2. Pixel-based pipeline

In order to improve the execution time of Stage A, we use
an internal pipeline structure presented by the pixel-based
execution pipeline. The pixel-based execution pipeline does
not have the cube delay, but has a pixel delay between stages.
In the pixel-based execution pipeline, the execution time for
a pixel (Tpixer) is critical for the execution time of Stage A
(Ta). For example, in Figure 9, the pixel-based execution
pipeline structure is used and three accumulators are used.
In this figure, the minimum execution time for a pixel is the
same as the execution time for an accumulator (Tyec).

The objective of the pixel-based execution pipeline is to
minimize the execution time for a pixel (Tpi1). Figure 10
shows the execution time for a pixel (Tpixet). Thus once

the pixel-based execution pipeline structure is used, the
execution time for a pixel is represented as the following:

3T
Tpixel = ( N. )NLIB = (Tcorr + Tdetect)NLIB)

3)

where 1 < N, < 3.

The execution time for floating point operations (Tcorr +
Tgetect) can limit the execution time for a cube (Teupe) as well
as the execution time of the accumulation (T,). Once the
effective band selection algorithm is applied, the execution
time of an accumulator (T,.) can be reduced. Therefore,
the execution time for the floating point operations (Tcorr +
Tdetect) 1s significant in reduced complexity hyperspectral
image processing.

3.2.3.  Floating point unit sharing

In Figure 5, both stages have fixed and floating point
operations. U; and U, are the parts of floating point
operations in Stage A and Stage B, respectively. For example,
if we have two available floating point units (FPUs), then the
FPUs can support the floating point operations of Stage A or
Stage B. Tp; and T, denote the required times of fixed point
operation in Stage A and Stage B. Also, T and Tr, denote
the required times for the floating point operations in Stage
A and Stage B, respectively. Note that, as shown in Figure 10,
Tp, is the same as T,eo, and Ty is the summation of Ty, and
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Tdetect- In the case of two FPUs, Teube is identified to T and
Tpr.

The computational complexity of Stage B is much smaller
than that of Stage A. Besides, our target architecture has
limited FPUs. Thus we consider the sharing of floating point
units. Figure 11 illustrates the execution flow with floating
point units (FPUs), where Figures 11(a) and 11(b) use one
FPU or two, respectively. When one FPU is available, the
execution time for a cube (Tcype) is the same as Ty + Tg.

3.2.4. Input capacity

The input capacity limits the overall execution time. We
define the input capacity NpitFy,, where Ny and F,, denote
the input bitwidth and the maximum input frequency,
respectively. To assure the execution of the processing, the
input capacity (NpicFyn) is bigger than NN, N;N..Ntp,, where
N, represents the resolution of a spectrum content and Ny,
is the throughput, that is, the number of cubes per second.

3.3. Multiple-processing execution model
3.3.1. Data partitioning

The objective of the data partitioning is to reduce the
execution time by using the multiple-processing elements

(PEs). The type of data partitioning depends on the cube
memory structure. Figure 12 shows three kinds of cube data
partitioning which have four numbers of PEs. Figures 12(a)
and 12(b) separate the area of cubes into 4 banks. Since each
PE is connected to a bank memory, the limitation of input
capacity is the same as in the single-processing execution
model. In Figure 12(c), each pixel is allocated to a different
PE. Thus the cube image allocated in a PE is a low-resolution
cube image.

3.3.2. Theeffect of partitioning

The execution time for a cube (Tcype) in the multiple-
processing execution model is represented as

Tcube = max (TA/NPE> TB)' (4)

The data partitioning can improve the execution time.
The increased number of PEs affects Stage A since the
spatial image area of a PE is proportionally reduced to Npg.
Therefore, once Npg is increased, the overall execution time
(Tcube) is finally limited to Tg. Even if the cube is partitioned
into several banks, the data type of each PE is still a cube
as shown in Figure 13. The cube size in Figures 12(a) and
12(c) is (Nx/2)(N,/2)N, and the cube size in Figure 12(b) is
(Nx/4)N,N.
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3.3.3.  Update sharing

Figure 14 shows the block diagram in the multiple-data
partitioning without the update sharing where a PE is
connected with the preprocessing and the postprocessing
through the interconnection networks. Stage A has three
signals, initial, sample, and refined library that send the index
of effective bands and refined libraries and it receives the
samples for the update. Thus the update is independent of
processing elements.

In the multiple-processing execution model, the inter-
connection network is one of the reasons for the speed
bottleneck since the input capacity follows the increased
requirement. The input capacity is related to both the input
frequency and the input bitwidth (Npi). Since the input
frequency is dedicated to the implemented architecture, the
bigger bitwidth increases the speed. However, the bigger
input bitwidth also increases the complexity of interconnec-
tion. Finally, the speed from applying multiple-processing
elements is limited by the interconnection network.

Once the update sharing is necessary, Stage B is shared
as shown in Figure 15. To transfer the index of effective
bands and the refined library from Stage B to all processing
elements, all processing elements need to stop their execution
and then execute Stage B for a cube. T can be improved by

Npg, but Tg is not changed. The execution time of Stage B
limits the speed.

4. ARCHITECTURE EVALUATION

4.1. Single-processing element model

We choose Xilinx FPGA (XC2VP100) device to implement
the architecture. The floating point operations are imple-
mented with a Power PC Core (PPC) in FPGA, where
the PPC has 350 MHz execution speed. The device has a
7,992kB block ram which is big enough to support the
memory requirement of our algorithm.

Figure 16 describes the overall processing in the single-
processing execution model. Most functional blocks of
the block diagram are matched with the introduced step
functions. FUy, FU;, FU3, FUy, and FU5 correspond to Step
0, Step 1, Step 3, Step 4, and Step 5, respectively. PPC, takes
the operation of Step 2 and the floating point operation in
Step 1. Similarly, PPC, takes the floating point operations in
Step 4 and Step 5.

The fixed point operations and floating point operations
are implemented in FPGA logic blocks and the dedicated
PPCs in our target architecture, respectively. Besides, if an
operation is control driven and the computation complexity
of the operation does not highly affect the operation of a
PPC, the operations are implemented in the PPC.

Figure 17 illustrates the timing flow in the single-
processing execution model. T, Tp1, T3, Tra, Tprap, and
Ts are the execution times of FU;, PPCy, FUs, FUy, PPC,,
and FUs, respectively. Since our design is based on the two-
stage pipeline structure, the overall execution time (Tcype)
is the same as Tx. Note that our algorithm is sequential,
but the timing flow of the final architecture shows that the
operations of functional units are parallel.

Figure 18 shows the throughput in terms of the number
of effective bands and libraries, where one PPC or two
are used. In the fastest case, the throughput is 2.1099 or
3.2196. However, when the number of bands and libraries
is increased, the advantage of two PPCs disappears since the
computational complexity of PPC, depends on the number
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FIGURE 14: Block diagram in multiple data partitioning without separated library.

TaBLE 1: Throughput comparison.

Type Resolution Used bands Second/cube
Estlick et al. [11] Wildstar (Vertex 1000) 614 x 512 10 0.41
Moigne et al. [8] SRC-6E (XC2V8000) 217 x 512 192 1.47
Du and Qi [10] Pilchard (Vertex1000E) 614 x 512 50 500
Single PE (Proposed) Xilinx Vertex-II pro 614 x 512 56 0.9
Multiple PE (Proposed) Xilinx Vertex-II pro 614 x 512 56 0.14
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FiGure 15: Block diagram in multiple-data partitioning with shared library.
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FiGure 17: Illustration of timing flow in the single-processing execution model.

of effective bands and libraries, but the complexity of PPC,
is invariant. Note that since our target architecture has the
limited number of PPCs and the computation complexities
of PPC, is much smaller than PPC;, we use one PPC for a
processing element.

4.2. Multiple-processing execution model

To enhance performance, the multiple-processing execution
model is introduced in Figure 19. The incoming image
from a bank is shared between two processing elements.
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FiGure 19: Illustration of the overall diagram.

Each processing element uses one PPC for floating point
operations.

Figure 20 illustrates the throughput in the multiple-
processing execution model.

4.3. Throughput comparison and discussion

To minimize the effect of sequential operation, two kinds
of pipeline structures have been investigated. The functional
units in Stage A can be parallel and the memory usage is
to be optimized. We also implemented the floating point
operation in the dedicated PPCs. To improve the execution

time, the multiple-processing execution model, whose design
is scalable, has been proposed.

Table 1 compares the throughput with other FPGA
designs. To compare our design with other designs, we
chose the case of 56 bands and 4 libraries in the single-
and multiple-processing element. The throughput is 0.9
or 0.14 seconds per cube. Estlick used the Annapolis
Microsystems Wildstar PCI board which has three Xilinx
Virtex 1000 FPGAs and a 500 MHz Pentium III workstation.
However, for processing, one FPGA was used as 50 MHz
clock frequency for 614 x 512 images with 10 channels
[11]. Wavelet-based dimension reduction was implemented
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in SRC-6E, where 217 X 512 resolution and a 192 band
image was used [8]. The SRC-6E architecture has two 1 GHz
Pentium microprocessors and two Xilinx Virtex II-6000-4
[9]. Du presented the parallel ICA algorithm in the Pilchard
board which has Xilinx Virtex VI000E FPGA, where 614 x
512 resolution hyperspectral image and 50 selected bands
were used, in which if the amount of weight vectors is four,
the computational time requires 500 seconds [10].

5. CONCLUSION

A real-time target detection architecture for hyperspectral
image processing is proposed in this paper. The architecture
is based on a reduced complexity algorithm for high
throughput applications. Multilevel pipelining of the archi-
tecture enhances the overall throughput, and the architecture
is scalable so that the execution speed improves with the
number of processing elements. The proposed pipelining
optimizes overall memory usage and eliminates the memory
bottleneck. The proposed architecture has been designed and
implemented in FPGA to verify the relationship between the
hardware complexity and the execution throughput of the
reduced complexity hyperspectral image processing.

ACKNOWLEDGMENTS

This research is supported by Foundation of Ubiquitous
computing and Networking (UCN) Project, the Ministry
of Information and Communication (MIC) 21st Century
Frontier R\&D Program in Korea.

REFERENCES

[1] N. Keshava, “Distance metrics and band selection in hyper-
spectral processing with applications to material identification
and spectral libraries,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 42, no. 7, pp. 1552-1565, 2004.

[2] P. Bajcsy and P. Groves, “Methodology for hyperspectral band
selection,” Photogrammetric Engineering and Remote Sensing,
vol. 70, no. 7, pp. 793-802, 2004.

[3] K.-S. Park, S. Hong, and P. Park, “Spectral contents char-
acterization for efficient image detection algorithm design,”
in Proceedings of the 6th IEEE International Conference on
Computer and Information Technology (CIT *06), p. 137, Seoul,
Korea, September 2006.

[4] W. E. Schaff, A. Copeland, M. Steffen, et al., “Real-time data
processor for the COMPASS hyperspectral sensor system,” in
Imaging Spectrometry IX, vol. 5159 of Proceedings of SPIE, pp.
1-13, San Diego, Calif, USA, August 2003.

[5] X. Liu, W. L. Smith, D. K. Zhou, and A. Larar, “Principal
component-based radiative transfer model for hyperspectral
sensors: theoretical concept,” Applied Optics, vol. 45, no. 1, pp.
201-209, 2006.

[6] M. R. Goupta and N. P. Jacobson, “Wavelet principal
component analysis and its applocation to hyperspectral
images,” in Proceedings of the IEEE International Conference on
Image Processing (ICIP °06), pp. 1585-1588, Atlanta, Ga, USA,
October 2006.

[7] S. Subramanian, N. Gat, A. Ratcliff, and M. Eismann,
“Real-time hyperspectral data compression using principal
component transform,” in Proceedings of the AVIRIS AirBorne
Geosciences Workshop, Pasadena, Calif, USA, February 2000.

[8] J. Le Moigne, P.-S. Yeh, J. Joiner, et al., “Dimension reduction
of hyperspectral data on reconfigurable computers,” in Pro-
ceedings of the 4th Annual Earth Science Technology Conference
(ESTC °04), Palo Alto, Calif, USA, June 2004.

[9] E.El-Araby, T. El-Ghazawi, ]. Le Moigne, and K. Gaj, “Wavelet
spectral dimension reduction of hyperspectral imagery on
a reconfigurable computer,” in Proceedings of the IEEE
International Conference on Field-Programmable Technology
(FPT °04), pp. 399-402, Brisbane, Australia, December 2004.

[10] H. Du and H. Qi, “A reconfigurable FPGA system for
parallel independent component analysis,” EURASIP Journal
on Embedded Systems, vol. 2006, Article ID 23025, 12 pages,
2006.

[11] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski,
“Algorithmic transformations in the implementation of K-
means clustering on reconfigurable hardware,” in Proceedings
of the 9th ACM/SIGDA International Sysmposium on Field Pro-
grammable Gate Arrays (FPGA ’01), pp. 103—110, Monterrey,
Calif, USA, February 2001.

[12] M. Leeser, P. Belanovic, M. Estlick, M. Gokhale, J. J. Szy-
manski, and J. Theiler, “Applying reconfigurable hardware to
the analysis of multispectral and hyperspectral imagery,” in
Imaging Spectrometry VII, vol. 4480 of Proceedings of SPIE, pp.
100-107, San Diego, Calif, USA, August 2001.

[13] G. A. Shaw and H.-H. K. Burke, “Spectral imaging for remote
sensing,” Lincoln Laboratory Journal, vol. 14, no. 1, pp. 3-28,
2003.

[14] M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes,
“Active spectral imaging,” Lincoln Laboratory Journal, vol. 14,
no. 1, pp. 131-144, 2003.

[15] M. K. Griffin and H.-H. K. Burke, “Compensation of
hyperspectral data for atmospheric effect,” Lincoln Laboratory
Journal, vol. 14, no. 1, pp. 29-54, 2003.

[16] T. W. Fry and S. Hauck, “Hyperspectral image compression on
reconfigurable platforms,” in Proceedings of the 10th Annual
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM ’00), pp. 251-260, Napa, Calif, USA, April
2000.



14

EURASIP Journal on Advances in Signal Processing

(17]

(18]

[19]

(20]

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis,
“Atmospheric correction algorithm for hyperspectral remote
sensing of ocean color from space,” Applied Optics, vol. 39, no.
6, pp. 887-896, 2000.

G. Girouard, A. Bannari, A. Harti, and A. Desrochers,
“Validated spectral angle mapper algorithm for geological
mapping: comparative study between quickbird and landsat-
tm,” in Proceedings of the 20th International Society for
Photogrammetry and Remote Sensing Congress (ISPRS °04), pp.
599-605, Istanbul, Turkey, July 2004.

L. M. Bruce and J. Li, “Wavelets for computationally efficient
hyperspectral derivative analysis,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 39, no. 7, pp. 1540-1546, 2001.
C.-I. Chang, “An information-theoretic approach to spectral
variability, similarity, and discrimination for hyperspectral
image analysis,” IEEE Transactions on Information Theory, vol.
46, no. 10, pp. 1927-1932, 2000.



	1. INTRODUCTION
	2. DESIGN OVERVIEW
	2.1. Overall processing
	2.2. Design issues and approach

	3. ARCHITECTURAL DESIGN SPACE
	3.1. Algorithm characteristics
	3.1.1. Execution dependency
	3.1.2. The effect of cube delay

	3.2. Single-processing executionmodel
	3.2.1. Two-stage pipeline
	3.2.2. Pixel-based pipeline
	3.2.3. Floating point unit sharing
	3.2.4. Input capacity

	3.3. Multiple-processing executionmodel
	3.3.1. Data partitioning
	3.3.2. The effect of partitioning
	3.3.3. Update sharing


	4. ARCHITECTURE EVALUATION
	4.1. Single-processing element model
	4.2. Multiple-processing execution model
	4.3. Throughput comparison and discussion

	5. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

