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1. INTRODUCTION

Delta-sigma modulators (ΔΣMs) in general are used to con-
vert analog waveforms to high-frequency, but low-resolution
data sequences (sometimes designated “ΔΣ-sequences”)
[1, 2]. ΔΣMs inherently perform so-called noise shaping,
whereby most of the quantization noise is shifted out of
the base band toward higher frequencies, and thus the base
band of the ΔΣ-spectrum contains the spectrum of the input
signal plus some residual quantization noise. The quality of
signal representation is characterized by the signal-to-noise
ratio (SNR), which is the ratio of the signal power to the
power of the residual base band noise. Assuming that the
power of the residual noise in the base band is approximately
constant and independent of the input amplitude, the SNR
is directly proportional to the power of the input signal
itself. Thus the SNR is decreasing for decreasing input
amplitudes. The basic idea of adaptive ΔΣMs is to adapt
the amplitude of the ΔΣ-sequence to the amplitude of the
input signal such that the SNR roughly remains constant—
at least within a specified range of input amplitudes. Various
different types of adaptive ΔΣMs can be found in literature,
for example, [3–9]. Adaptation algorithms based on “syllabic
adaptation” [3, 4, 6, 7] are controlled by short time proper-

ties, for example, by the peak amplitude, within so-called
“stationary periods” (typically between 10–30 milliseconds
for speech, and about 5 milliseconds for music [4]) of the
input. Adaptation algorithms based on the instantaneous
signal amplitude (“instantaneous adaptation” [5]) have the
advantages that they do not require a priori assumptions
on the stochastic properties of the input, and that there is
no delay in the adaptation response. Besides, less circuitry is
necessary for implementation.

The input power in adaptive ΔΣM can be estimated
directly from the input signal itself (“forward estimation”
[6]), or from the modulator output (“backward estimation”
[3–5, 7]).

The adaptive ΔΣM presented here is a single-bit system
and uses instantaneous adaptation and backward estimation.
The adaptation algorithm is based on an exponential law
which ensures that the adaptation properties are indepen-
dent of the average input power level over a particular
input amplitude range. The feedback signal is generated
by a digital-to-analog converter (DAC). Possible levels of
the feedback signal are chosen from a finite set, which
ensures a reproducible reconstruction of the input signal
from the binary data sequence. The proposed adaptive
modulator shows an improved peak SNR as compared to
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Figure 1: First order ΔΣM.

the nonadaptive version of the system. This is due to the
instantaneous adaptation algorithm as presented here. In
systems with syllabic adaptation, this effect does not occur,
that is, the same peak SNRs are obtained for adaptive and
nonadaptive versions [6, 7].

The system in [5] also describes an instantaneous
adaptation algorithm and a DAC for feedback generation.
However, this algorithm is based on a linear, instead of
an exponential law, which limits the maximum adaptation
speed. As compared to the proposed system, a clearly inferior
performance is obtained in cases of “adaptation overload,”
that is, when the slope of the input signal is steeper than the
maximum adaptation speed. Adaptation overload occurs, for
example, when the input signal shows a sudden increase of
signal power.

The adaptive ΔΣM [8] describes a step size adaptation
algorithm which uses both sign and magnitude of the signal
at the quantizer input. The current step size is increased,
if the magnitude of the current quantizer input signal is
larger than the previous step size, and decreased otherwise.
While this algorithm yields a slightly improved peak SNR as
compared to the system presented here (typically, between 3-
4 dB), two bits are necessary for digital signal representation
instead of only one bit for the system as presented.

Another adaptive ΔΣM is presented in [9]. However,
the adaptation algorithm described here is primarily used
to suppress tones close to half the sampling frequency, and
not to enhance the input dynamic range. The SNR curve
increases with increasing input amplitude level. As compared
to the nonadaptive version of the ΔΣM, the dynamic range is
extended by 2 dB toward higher input levels, and the peak
SNR is improved by 5 dB.

2. ADAPTIVE ΔΣMODULATION—ANALYSIS

2.1. Basic concept

The simplest ΔΣM, a nonadaptive modulator of 1st order,
is depicted in Figure 1. An input signal x(n) within the
range of [−c, +c] is converted to the binary output sequence
y0(n) ∈ ±1. Sequence y0(n) is converted to the “physical”
feedback signal y(n) ∈ ±c by means of a 1-bit digital-to-
analog converter (DAC). Here and in the following, physical
and numeric representations of signals are distinguished by
labeling numeric one or multibit signals with the subscript
“0.”

A ΔΣM of 1st order can generally be regarded as a linear
(nonadaptive) delta-modulator, whose input is

∑
nx(n), that

is, the accumulated input x(n). If the input is within the
range of [−c < x(n) < +c], the magnitude of the maximum
slope of the accumulated sequence x(n) is smaller than c/T
(with T as sampling period). Thus, the delta modulator
can theoretically always track its input, and the so-called
“slope-overload conditions” cannot occur. In this model,
parameter “c” represents the step size of the prediction signal∑

ny(n) = c
∑

ny0(n), which tracks the accumulated input∑
nx(n). Condition |x(n)| < c is necessary and sufficient for

the elimination of slope-overload situations.
In an adaptive ΔΣM with instantaneous adaptation, step

size c is not fixed, but adapted to the local magnitude of the
input, c→c(n). To avoid slope-overload, condition

∣
∣x(n)

∣
∣ < c(n) (1)

has to be fulfilled at any time.
A block diagram of the adaptive ΔΣM as proposed here is

shown in Figure 2. It contains the subtract-and-accumulate
stage typical for 1st order ΔΣ modulation, and a 1-bit
quantizer. In the adaptation stage, the quantizer output y0(n)
is used to generate a multibit step size amplitude c0(n).
The numeric output of the system is the signal z0(n) =
y0(n)c0(n). The physical signal z(n) = ±c(n), which is used
as feedback signal, is generated by a DAC. If cmax is the
maximum (physical) step size, the range of the input signal
is given by [−cmax < x(n) < cmax].

The output v(n) of the accumulator is multiplied by
a factor d(n), which is derived from c0(n) in a stage “Q-
Switching.” However, since the quantizer detects only the
sign of v(n), this multiplication plays a role only if the
practical implementation of the system is regarded (cf.
section “Q-Switching”).

Step size c0(n) at a particular time instant is controlled
by a set of code words [y0(n), y0(n − 1), y0(n − 2), . . .],
which are the instantaneous and a particular number of
previous code words. The way the adaptation stage works
is intuitively clear. Amplitude c(n) needs to be increased, if
the set [y0(n), y0(n− 1), y0(n− 2), . . .] is composed of equal
code words. In this case, |x(n)| tends to exceed c(n), which
would violate condition (1). On the other hand, c(n) should
be decreased, if the set [y0(n), y0(n− 1), y0(n− 2), . . .] shows
an alternating pattern of code words.

The step size adaptation algorithm presented here is
based on an exponential law. If the input signal shows an
abrupt transition from high to low amplitudes, then step
size sequence c0(n) is decaying roughly exponentially, where
neighboring step sizes differ by about a factor α < 1, that is,

c(n) ≈ αc(n− 1). (2)

The decay is not perfectly exponential, since step sizes
c(n) are generated by a DAC, and thus c(n) is subjected
to a rounding procedure. To determine the size of α it
is assumed that the step size decay is approximating the
impulse response of a low-pass filter of 1st order, where the
cutoff frequency is equal to the base band limit W . A short
calculation shows that α can be expressed as a function of the
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Figure 2: Adaptive ΔΣM of first order.

oversampling ratio OSR = 1/(2WT) (with ΔΣ clock period
T)

α = exp
(

− π

OSR

)

. (3)

The step sizes are generated by a DAC comprising B
magnitude bits and one sign bit, and thus the numeric step
sizes c0(k) have to be represented by a finite set of integer
numbers within the range [2B − 1 ≥ c0(k) ≥ 1]. Assuming
index k within the range [0 ≤ k ≤ kmax], step sizes c0(k)
are obtained by rounding the continuous-valued numbers of
function (2B − 1)αk to the next integers, that is,

c0(k) = round
((

2B − 1
)
αk
)
. (4)

The maximum step size at k = 0 is c0(0) = 2B − 1. Since the
minimum step size is 1, sequence c0(k) is truncated at index
kmax. The condition for truncation is

(
2B − 1

)
αkmax >

1
2

, (5)

resulting in

kmax = floor
(

− ln
(
2
(
2B − 1

))

ln(α)

)

. (6)

Indices k > kmax would yield step sizes equal to zero, which
does not make sense in the present application. The set
of step sizes c0(k) comprises an overall number of kmax +
1 numbers which approximate an exponentially decaying
function if k is increased from k = 0 to k = kmax. In
the present system, all step sizes are stored in a look-up-
table RAM at addresses from k = 0 to k = kmax. In a
running modulator, changing of step sizes is achieved by
simply shifting the instantaneous RAM-address to higher
addresses for step size decrease, and to lower addresses for
step size increase.

An example of an adaptation algorithm has been deter-
mined empirically for best SNR performance, assuming a 9-
bit DAC (B = 8) and an oversampling ratio of OSR = 50.
The numeric signals z0(n) and c0(n) are composed of 9 bits
and 8 bits, respectively. With (3), the exponential base is

α = 0.9391, and with (6), kmax = 99, that is, 100 step sizes
are stored in the RAM. The exact integer values of c0(n)
are defined by (4). As shown in Table 1, the step size is
decreased by about a factor α1 (i.e., RAM address increased
by 1 position) if four consecutive code words have alternating
signs, and increased by approximately a factor α−3 (i.e., RAM
address decreased by 3 positions) if five consecutive code
words are equal. The increase of c(n) occurs considerably
faster than the decrease, since violation of condition (1) has
to be avoided by all means. Empirically, a factor α−3 has
proven to be sufficient.

Sample waveforms for an adaptive ΔΣM implementing
the adaptation algorithm described in Table 1 are shown
in Figures 3 and 4. The first trace in Figure 3 depicts an
example of an input signal x(n). The second trace shows
the full wave rectified version |x(n)| together with the
magnitude c(n) = |z(n)| of the DAC-output signal. The
third trace illustrates the full DAC-output signal z(n). In
Figure 4, signal x(n) is attenuated by 40 dB as compared to
Figure 3. As expected, the quantization of signals c(n) and
z(n) appears more pronounced. The examples in Figures 3
and 4 demonstrate that the step size adaptation algorithm
works instantaneously, that is, the feedback amplitude c(n)
tracks the individual maxima and minima of |x(n)|.

Figure 5 depicts the SNRs of various types of analog-to-
digital converters as a function of the input signal power.
The input x(n) within the range of [−1, +1] is a periodic,
zero-mean noise sequence composed of N = 4000 samples.
Within a bandwidth W = 10 kHz, amplitudes and phases
of the spectral lines are randomized. Different signal power
levels are obtained by scaling this signal. The input power
is referred to the power level of a dc-signal with amplitude
+1. The sampling rate for all simulations is 1/T = 1 MHz
(OSR = 50), and the SNRs are computed within base band
W .

Curve (1) depicts the SNR of an ideal adaptive ΔΣM,
where the adaptation algorithm of Table 1 and a 9-bit DAC
(B = 8 magnitude bits, one sign bit) are used (cmax = 1).
The SNR is about 50 dB and remains quite constant between
the maximum input power down to about−50 dB. For lower
input power levels, the SNR decreases. Curve (2) shows
the SNR of an ideal nonadaptive ΔΣM of 1st order with
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Table 1: Adaptation algorithm.

Code Step size multiplier (α < 1) [0 ≤ k(n) ≤ kmax]

y0(n) = y0(n− 1) = y0(n− 2) = y0(n− 3) = y0(n− 4) c0(n) = round((2B − 1)αk(n−1)−3)

y0(n) = −y0(n− 1) = y0(n− 2) = −y0(n− 3) c0(n) = round((2B − 1)αk(n−1)+1)

Other combinations c0(n) = c0(n− 1) = round((2B − 1)αk(n−1))
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Figure 3: Example waveforms derived from an adaptive ΔΣM
modulator of first order. First trace: input signal x(n). Second trace:
rectified input signal |x(n)| and feedback amplitude c(n) (note:
c(n) > |x(n)|). Third trace: output signal z(n).

c(n) = cmax = 1. Obviously, the segment of curve (2) at
low input levels is very similar to curve (1), shifted to the
left by 48 dB. In this region, the adaptive ΔΣM operates
equal to a nonadaptive ΔΣM with the minimum step size
c(n) = cmin = 1/255. Note that compared to the nonadaptive
ΔΣM, the input dynamic range of the adaptive ΔΣM is
expanded by approximately 48 dB, corresponding to 6 dB per
magnitude bit in the feedback DAC signal. In addition, the
peak SNR is improved by about 6 dB. This improvement of
peak SNR is due to the instantaneous adaptation algorithm,
where the amount of quantization noise introduced into the
system is adaptively controlled by the local magnitude of
|x(n)|. Hence, less noise power is introduced as compared
to the cases with constant (i.e., no adaptation) or very slowly
varying (i.e., syllabic adaptation) feedback amplitude. Curve
(3) depicts the SNR of a 2nd order ΔΣM. While the SNR peak
of curve (3) is better than the one of curve (1), for input levels
below about −30 dB, the adaptive ΔΣM clearly outperforms
the 2nd order system. Curves (4) and (5) depict the SNRs
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Figure 4: Waveforms as shown in Figure 3, but input signal x(n)
attenuated by 40 dB.

of pulse code modulation (PCM) systems with 13- and 14-
bit resolution. Whereas the 14-bit PCM system is superior to
the adaptive ΔΣM for all input levels, the 13-bit PCM system
is inferior at least at low-level input signals.

Simulations have also been carried out with pure sinu-
soidal input signals, and different frequencies have been
examined. However, the results are not depicted, since they
are qualitatively very similar to the results shown in Figure 5.

2.2. Influence of DAC imperfections

A nonideal DAC can be regarded as an ideal DAC plus a noise
source. Unfortunately, the noise contributes directly to the
noise energy in the base band of the ΔΣM output, because
no noise shaping effects take place. Thus, the properties of
the DAC have critical influence on the performance of the
adaptive ΔΣM.

In Switched-Capacitor (SC) technology, DAC accuracy
depends primarily on capacitor matching. In state-of-the-art
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Figure 5: SNR for different ideal analog-to-digital converters. Input
signals are band limited zero-mean noise signals with B = 10 kHz
(N = 4000). Curve (1): adaptive ΔΣM (9-bit DAC). Curve (2):
nonadaptive ΔΣM of first order. Curve (3): nonadaptive ΔΣM of
second order. Curve (4): 13-bit PCM. Curve (5): 14-bit PCM.

CMOS processes, capacitor matching is dominated by oxide
variations resulting in

σ
(
ΔC

C

)

= AC√
area

, (7)

where σ is the standard deviation of the relative error ΔC/C,
and AC is a process-dependent constant [10]. Simulations
have been carried out to estimate the influence of capacitor
mismatch, taking the technology parameters of a typical
0.35 μm CMOS process. A 9-bit DAC with 1 sign bit y0(n)
and 8 magnitude bits c0(n) is assumed, where the magnitude
bits are represented by 8 binary weighted capacitors. The
LSB capacitor with 25 fF requires an area of 29 μm2. Taking
a typical value AC = 0.45% μm, (7) yields σLSB = 0.08%.
The MSB capacitor which is 128 times larger requires an
area of 3712 μm2 and yields a considerably smaller standard
deviation σMSB = 0.007%. Note that the relative error
is decreased, although the absolute error is increased. The
simulations show that for σLSB < 0.3% there is only negligible
influence on the SNR performance as depicted in curve (1)
in Figure 5. The performance starts to decrease for σLSB >
0.3%, and first signs of degradation appear in the region
around the “SNR knee” for an input signal in the range of
[−60 dB,−40 dB].

2.3. Q-switching

The adaptive ΔΣM concept described herein imposes addi-
tional requirements on the specifications of the comparator,
that is, the 1-bit quantizer. In practical implementations
of comparators, the response time usually increases with
decreasing input voltage difference. In ΔΣMs, too small
comparator input differences might cause comparator fail-
ures resulting in bit errors in the data stream. If those
failures appear sporadically (single bit errors), they cause

Table 2: Adaptation scheme for Q-switching.

Step size c0(n)
in binary
representation

Overall
capacitance
CACC,TOT(n)/CACC

Factor d(n)

[1 x x x x x x x] 128 1/128

[0 1 x x x x x x] 64 1/64

[0 0 1 x x x x x] 32 1/32

[0 0 0 1 x x x x] 16 1/16

[0 0 0 0 1 x x x] 8 1/8

[0 0 0 0 0 1 x x] 4 1/4

[0 0 0 0 0 0 1 x] 2 1/2

[0 0 0 0 0 0 0 1] 1 1

“x” denotes “don’t care”

only negligible SNR degradation, and the ΔΣ concept in
general is known to be robust against such errors. However,
the density of failures must not exceed a particular limit.

In an adaptive ΔΣM, the probability for comparator
failures is dramatically increased for low power input signals.
Here, the feedback amplitude c(n) is small (cf. Figure 4), and
thus the mean signal amplitude at the comparator input is
also small. “Q-Switching” as described in the following is an
approach to relax this problem.

The practical SC-realization of an adaptive ΔΣM
as shown in Figure 2 usually involves a subtract-and-
accumulate circuit consisting of an operational amplifier
(opamp) with an integration capacitor, and capacitors for
sampling the input signal (input capacitor) and the feedback
signal (DAC-capacitors) (examples, e.g., in [1]). In the
Q-Switching approach, the single integration capacitor is
replaced by a variable capacitance. The basic idea is to
adapt the integration capacitance to the instantaneous input
signal power. For example, in Figure 6 an overall integration
capacitance CACC,TOT(n) can be configured by means of an
array of capacitors C00,C0,C1, . . . ,C6. An example for an
adaptation algorithm is summarized in Table 2. CACC,TOT(n)
is derived from the position of the first logical “1” in the
bit pattern of feedback magnitude c0(n), while bits at less
significant positions (labeled “X”) are ignored. This method
provides a rough estimate of the input signal amplitude
and can easily be implemented. Capacitance CACC,TOT(n)
decreases with decreasing input signal amplitude. Factor
d(n) is proportional to the inverse of CACC,TOT(n) (cf.
Figure 2).

Each ΔΣ clock period consists of a “sampling section”
and an “accumulation section.” During the sampling section,
the input capacitor and the DAC-capacitors are disconnected
from the opamp and charged up by Qin(n) (proportional
to the input signal x(n)) and QDAC(n) (proportional to the
(negative) feedback signal −z(n)). During the accumulation
section, the sum of the charges is forced to flow into the
integration capacitance, that is, its charge changes to Qin(n)+
QDAC(n). The sign of the new potential at the output of the
operational amplifier referred to a reference potential Vref is
detected by the comparator, and clocked into a flip-flop at the
end of the accumulation section. Charge accumulation and
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sign detection have to be finished within the accumulation
section, and therefore the response time of the comparator
has to be shorter than 50% of one ΔΣ clock period.

The integration capacitance is adapted during the sam-
pling section of a ΔΣ clock period, that is, the preparation
of charges Qin(n) in the input sampling capacitor, and
QDAC(n) in the DAC are not affected. Two cases have to be
distinguished, (i) an uncharged capacitor is added to, and (ii)
a capacitor removed from the instantaneous configuration.
One port of each capacitor of the array is permanently
connected to the inverting input of the amplifier.

(i) An uncharged capacitor can simply be added to the
array CACC,TOT by connecting its switched port to
the amplifier output. This causes a redistribution
of the charges and thus a change in the voltage
UACC. For example, if capacitor C1 = 2CACC is
added to the active array, voltage UACC changes from
QACC/CACC,TOT to QACC/(CACC,TOT + 2CACC), where
QACC is the charge in the active array in the sampling
section. The magnitude of UACC is decreased in this
case, since the overall capacitance has been increased
at a constant charge.

(ii) Removing a capacitor from the active array is
achieved by connecting its switched port to the
reference voltage Vref. Since this potential is equal
to the virtual potential of the inverting input of the
amplifier, the amplifier forces the output to change
its potential. For example, if capacitor C2 = 4CACC is
removed, voltage UACC changes from QACC/CACC,TOT

to QACC/(CACC,TOT − 4CACC). As above, QACC is the
charge in the active array in the sampling section. The
magnitude of UACC is increased in this case, since the
overall capacitance has been decreased at a constant
charge.

Note that for system performance, the exact value of
CACC,TOT is not critically important. The two essential
requirements for the adaptation algorithm are that first,
on average, the magnitude of voltage UACC is maximized
without exceeding specified limits, and second, switching
between different configurations of CACC,TOT has to be
performed without any loss of charge (thus, the name Q-
Switching). Any loss of charge in CACC,TOT would result in
accumulation errors and thus degrade system performance.

3. SUMMARY

The essential properties of the proposed adaptive single-bit
ΔΣMs may be summarized as follows.

(1) The adaptation is “instantaneous” and controlled by
a very small number of single bit code words (five
for increase, and four for decrease of step sizes, cf.
Table 1). There is no need for computing short time
power estimates or envelopes of the input as typically
required in “syllabic” adaptation algorithms.

(2) The adaptation scheme is based on an exponential
law, and for implementation, a DAC comprising B

C6 = 64CACC

... ...
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Qin(n)
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QDAC(n)
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−
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Figure 6: Charge accumulation with variable integration capaci-
tance (“Q-Switching”).

magnitude bits and one sign bit is used. Compared
to a nonadaptive ΔΣM of 1st order, the overall gain
in input dynamic range is about 6B dB.

(3) In addition to the enhanced input dynamic range,
an improvement of the peak SNR of about 6 dB is
obtained. This improvement is due to the instan-
taneous adaptation. Since the feedback amplitude
c(n) tracks the individual maxima and minima of
magnitude |x(n)|, on average less quantization noise
is introduced as compared to systems based on
syllabic adaptation.

(4) It is recognized that an increased input dynamic
range imposes special requirements to the 1-bit
quantizer. In SC-technology, Q-switching provides a
means to relax this problem.

(5) The system can be implemented using standard
SC-technology. Simulations show that state-of-the-
art accuracy for the implementation of the DAC is
sufficient to achieve the theoretically predicted SNR.

As a practical example, the proposed adaptive ΔΣM
is successfully implemented in a cochlear implant system
manufactured by Medical Electronics (MED-EL) in Inns-
bruck, Austria. A 9-bit modulator has been integrated in
SC-technology for analog-to-digital conversion of the audio
signal. The modulator is part of the so-called “speech
processor,” that is, the nonimplanted part of a cochlear
implant system, which is used to operate the implanted
stimulator [11]. The SNR curve (1) in Figure 5 perfectly
meets the requirements in this medical application for
hearing impaired subjects. The dynamic range of the audio
signal is about 80 dB, and a peak SNR of about 50 dB within
a frequency range of W = 10 kHz is sufficient for subsequent
implementation of various stimulation strategies. At present,



Clemens M. Zierhofer 7

about 7500 speech processors utilizing the proposed adaptive
ΔΣM are in practical use.
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