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The goal of interest point detectors is to find, in an unsupervised way, keypoints easy to extract and at the same time robust to
image transformations. We present a novel set of saliency features based on image singularities that takes into account the region
content in terms of intensity and local structure. The region complexity is estimated by means of the entropy of the gray-level
information; shape information is obtained by measuring the entropy of significant orientations. The regions are located in their
representative scale and categorized by their complexity level. Thus, the regions are highly discriminable and less sensitive to
confusion and false alarm than the traditional approaches. We compare the novel complex salient regions with the state-of-the-art
keypoint detectors. The presented interest points show robustness to a wide set of image transformations and high repeatability as
well as allow matching from different camera points of view. Besides, we show the temporal robustness of the novel salient regions
in real video sequences, being potentially useful for matching, image retrieval, and object categorization problems.
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to detect interest image points. Several variants and applica-

Visual saliency [1] is a broad term that refers to the idea
that certain parts of a scene are preattentively distinctive
and create some form of immediate significant visual arousal
within the early stages of the human vision system. The term
“salient feature” has previously been used by many other
researchers [2-5]. Although definitions vary, intuitively,
saliency corresponds to the “rarity” of a feature [6]. In the
framework of keypoint detectors, special attention has been
paid to biologically inspired landmarks. One of the main
models for early vision in humans, attributed to Neisser
[7], is that consisting of preattentive and attentive stages. In
the preattentive stage, only “pop-out” features are detected.
These are the salient local regions of the image which
present some form of discontinuity. In the attentive stages,
relationships between these features are found, and grouping
takes place in order to model object classes.

Interest point detectors have been used in multiple appli-
cations: matching for stereo pairs [8—11], image retrieval
from large databases [12, 13], object retrieval in video [14,
15], shot location [16], and object categorization [17-20] to
mention just a few. One of the most well-known keypoint
detector is the Harris detector [21]. The method is based
on searching for edges that are maintained at different scales

tions based on the Harris point detector have been used in
the literature such as Harris-Laplacian [22], Affine variants
[21], Lowe [23], and so forth. In [9], the authors proposed
a novel region detector based on the homogeneity of the
parts of the image. Moreover, the definition of the detected
regions makes the description of the parts ambiguous when
considered in object recognition frameworks. Schmid and
Mohr [12] proposed the use of corners as interest points
in image retrieval. They compared different corner detectors
and showed that the best results were provided by the Harris
corner detector [22]. In [24], a method for introducing the
cornerness of the Harris detector in the method of [1] is
proposed. However, the robustness of the method is directly
dependent on the cornerness performance. Kadir and Brady
[1] estimate the entropy of the gray levels of a region to mea-
sure its magnitude and scale of saliency. The detected regions
are shown to be highly discriminable, avoiding the expo-
nential temporal cost of analyzing dictionaries when used
in object recognition models, as in [25]. However, using the
gray level information, one can obtain regions with different
complexity and with the same entropy values. Recently, the
authors of [26] proposed the oriented-based SIFT descriptor
such as a stability criterion to obtain stable scales for
multiscale Harris and Laplacian points, with great success.
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In this paper, we propose a model that allows to detect
the most relevant image features based on their complexity.
We use the entropy measure based on the color or gray
level information and shape complexity (defined by means
of a novel normalized pseudohistogram of orientations) to
categorize the saliency levels. Including simple complexity
constraints (the null-orientation concept and the adaptive
threshold of orientations), the novel set of features is highly
invariant to a great variety of image transformations and
leads to a better repeatability and lower false alarm rate than
the state-of-the-art keypoint detectors.

The paper is organized as follows. Section 2 explains our
complex salient regions. In Section 3, we perform a set of
experiments comparing the state-of-the-art region detectors.
The validation is done over public image databases [27] and
video sequences [28, 29] in order to test the repeatability,
false alarm rate, and matching score of the detectors. Finally,
Section 4 concludes the paper.

2. CSR: COMPLEX SALIENT REGIONS

In [1], Kadir and Brady introduce the gray-level saliency
regions. The key principle behind their approach is that
salient image regions exhibit unpredictability in their local
attributes and over spatial scale. This section is divided in
two parts. Firstly, we describe the background formulation,
inspired by [1]. Secondly, we introduce the new metrics to
estimate the saliency complexity.

2.1. Detection of salient regions

The approach to detect the position and scale of the salient
regions uses a saliency estimation defined by the Shannon
entropy at different scales at a given point. In this way, we
obtain the entropy as a function in the space of scales. We
consider significant saliency regions those that correspond
to the maxima of this function, where the maximal entropy
value is used to estimate the complex salient magnitude.
Now, we define the notation and description of the stages of
the process.

Let H be the entropy of a given region, S, the space of
significant scales, and W the relevance factor (weight). In
the continuous case, the saliency measure y is defined as a
function of scale s and position x as follows:

V(S;nx) = WT(Sp’x)H(Sp’x) (1)

for each point x and the set of scales at which entropy
peaks are obtained (S,). Then, the saliency is determined
by weighting the entropy at those scales by W. The
entropy H(s;,x), where s; € S, is defined as H(s,x) =
— | p(I,s,x)log, p(1,s,x)dI, where p(I,s, x) is the probability
density function of the intensity I as a function of scale s and
position x. In the discrete case, for a region R, of n pixels, the
Shannon entropy is defined as follows:

H(Ry) = —> Pg,(i)log,Pg, (i), )

i=1

Hp

Entropy

Scale

F1Gure 1: Local maxima of function Hp in the scale space S.

where Pg (d;) is the probability of taking the value d; in
the local region R,. The set of scales S, is defined by the
maxima of the function H in the space of scales S, = {s :
0H (s,x)/0s = 0, *H(s,x)/9s < 0}.

The entropy as a function of the scale space S is shown
in Figure 1. In the figure, a point x is evaluated in the space
of scales, obtaining two local maxima. These peaks of the
entropy estimation correspond to the representative scales
for the analyzed image point.

The relevance of each position of the saliency at its
representative scales is defined by the interscale saliency
measure W (s,x) = s(9/0s)H (s, x).

Considering each scale s € § that are local maxima
(s € Sp) and pixel x, we estimate W in the discrete case as
a function of the change in magnitude of the entropy over
the scales:

W(s,x) =5 O~ LX) —H(s 0| ;L [H(s+1,)~H(s,%)|

(3)

Using the previous weighting factor, we assume that the
significant salient regions correspond to that locations with
high distortion in terms of the Shannon entropy and its peak
magnitude.

2.2. Traditional gray level and orientation saliency

Kadir and Brady [1] used the gray-level entropy to define
the saliency complexity of a given region. However, this
approach fails in cases where the regions have different
complexities. In Figure 2, one can observe different regions
with the same amount of pixels for each gray level and
different visual complexity. Note that the approach based on
the gray-level entropy proposed by [1] gives the same entropy
value, thus the same “rarity” level for all of them.

A natural and well-founded measure to solve this
pathology is the use of complementary orientation
information. In the same work [1], Kadir and Brady show
preliminary results applying the orientation information
in fingerprint images. However, the use of orientations
as a measure of complexity involves several problems. In
order to exemplify those problems, suppose that we have
the regions (a) and (b) of Figure 3. Both regions have the
same pdf (Figure 3(c)), but they contain different number
of significant orientations (histograms of Figures 3(d) and
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(a) (d)
FiGUrE 2: Regions of different complexity with the same gray-level entropy.
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FIGURe 3: (a), (b) Two circular regions with the same content at different resolutions. (c) Same pdf for the regions (a) and (b). (d)

Orientations histogram for (a), and (e) orientations histogram for (b).

3(e)). In a regular histogram, low magnitude gradient is
mostly due to noise, and it is distributed uniformly over
all bins. However, the pdf obtained in those cases remains
the same because of the histogram normalization. We
take into account these issues and we incorporate a novel
orientations normalization procedure that evaluate properly
the complexity level of each image region.

2.3. Normalized orientation entropy measure

The normalized orientation entropy measure is based on
computing the entropy using a pseudohistogram of ori-
entations. The usual way to estimate the histogram of
orientations of a region is to use a range from 0 to 27w
radians. Considering orientation independent from gradient
magnitude hide the danger to mix signal with noise (usually,
corresponding to low gradient magnitudes). In the limit
case, when the gradient is zero, we have a singularity of
the orientation function. On the other hand, these pixels
normally correspond to homogeneous regions that can be
useful to describe parts of the objects. To overcome this
problem, we propose to introduce an additional bin that
corresponds to the pixels with undetermined orientation that
is called null-orientation bin. In this case, signal is not mixed
with noise and at the same time, homogeneous regions are
taken into account. Our proposed orientation metric consists
of computing the saliency including the null-orientations in
the modified orientation pdf.

First of all, we compute the relevant gradient magnitudes
of an image to obtain the significant orientations. Instead
of using an experimental threshold, we propose an adaptive
orientation threshold for each particular image. For a given
image, our method computes and normalized the gradient
module |V (I)| in the range [0 - - - 1]. Then, we estimate its
histogram, and the Otsu method [30] is applied to obtain
the adaptive threshold for orientations. The significant

orientation locations obtained for two image samples are
shown in Figure 4.

Considering the k < K most significant orientations
using the adaptive threshold, where K is the total number
of locations in a given region, we compute the orientations
histogram h for n orientation bins. In this case, the number
of null-orientation locations is fixed to K — k, and they are
added to the histogram hp as ho(n+1) = K — k.

The position n + 1 of the histogram hgo is the null-
orientation bin, and the modified pdfis obtained by means of

ho(i)
Sitho(j)’

Finally, the pdf PDF is used to estimate the orientation
entropy value of a given region. Note that the null-orientation
bin n + 1 is not included in the entropy evaluation, since its
goal is to normalize the first n bins according to the patch
complexity (Observe that the entropy measure of the null-
orientation bin usually makes the first # bins insignificant.)

PDFo (i) = Vie(l,...,n] (4)

2.4. Combining the saliency

In our particular case, the gray-level histogram is combined
with the pseudohistogram of orientations. We experimen-
tally tested that the performance of both information offers
better performance that only uses the orientations or the
gray-level entropy criterion. In this way, once estimated the
two corresponding pdf, we apply (1), (2), and (3) to each
one in the same way. The final measure is obtained by means
of the simple addition y = y¢ + yo, where ys and yo
are estimated by (1) for the gray and orientation saliency,
and y is the result, which contains the final significant
saliency positions, magnitudes (level of complexity), and
scales. Other strategies, such as the product and logarithmic
combinations of gray-level and orientation complexities,
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FIGURE 4: Relevant orientations estimation.
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FIGURE 5: (a) First maximal complexity region for gray-level entropy, (b) orientations entropy, (c) and combined entropy.

(a)

have also been tested to detect salient regions. However, the
results were not satisfactory since these combinations were
made to discard salient regions if one of the two saliency
values is too small, independently of the dominance of
the other component. This effect is unsatisfactory since the
dominance of one component over the other may produce
enough visual complexity to be considered as a salient region.
On the other hand, a simple addition showed to maintain the
salient regions in the cases, where one of the two measures
is predominant enough. At the same time, it also allows
to consider regions, where both saliency values introduce
moderate complexity. The effect of the combined saliency
measure is shown in the toy problem of Figure 5. Figure 5
has three representative objects of different complexities.
We applied the gray-level entropy, the orientation entropy,
and the combined saliency using simple addition. One can
observe that the combined saliency measure selects the
region with higher visual complexity (Figure 5(c)).

This new saliency measure gives a high complexity value,
when the region contains different gray levels information
(nonhomogeneous region) and the shape complexity is high
(high number of gradient magnitudes at multiple orienta-
tions). The complexity to estimate the regions saliency is
O(nl), where n is the number of image pixels, and [ is the
number of scales searched for each pixel. The complexity of
the second step is O(e), where e is the number of extrema
detected at the previous step. Note that an exhaustive search
is not always required, and not all pixels and possible scales
have to be estimated. However, the exhaustive search is
relatively fast to compute (less than 1 second in an 800 X
640 medium resolution image).

An example of CSR responses for an image sample under
different transformations is shown in Figure 6. Rotation,
white noise addition, and affine distortion transformations
are shown. Observe that the CSR regions are maintained in
the set of transformations.

The mean number of detected regions and the mean
average region size for the traditional gray-level saliency and
the novel salient criterion using the Caltech database samples
[27] of Figure 7 are shown in Figure 8. All images are of
medium resolution (approximately 600 x 600 pixels). The
size of the regions corresponds to the radius of the detected
circular regions in 20 bins between radius of length 5 and 100
pixels. Note that the number of detected regions considerably
increase using the new metric, in particular it is about three
times more. At the same time, the preferred regions for the
novel salient regions are of intermediate complexity sizes,
which typically implies a higher discriminable power [31].

As our orientations strategy normalize the input image it
offers invariance to scalar changes in image contrast. The use
of gradients is also robust to an additive contrast change in
brightness, which makes the technique relatively insensitive
to illumination changes. Invariance to scale is obtained by
the scale search of local maximums, and the use of circular
regions takes into account the global complexity of the inner
of the regions, which also makes the strategy invariant to
rotation.

3. RESULTS

To validate the presented methodology, we should determine
data, measurements for the experiments, state-of-the-art
methods to compare, and applications.

(a) Data. Images are obtained from the public Caltech
repository [27] and the video sequences from [28, 29].

(b) Measurements. To analyze the performance of the
proposed CSR, we perform a set of experiments to show the
robustness to image transformations of the novel regions in
terms of repeatability, false alarm rate, and matching score.
The repeatability and matching score criteria are based on the
evaluation framework of [31]. Besides, we include the false
alarm rate measurement.
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FIGURE 6: Image transformation tests for CSR responses: (a) input image, (b) initial CSR region detection, (c) 60 degree rotation, (d) white
noise, and (e) affine transformation.

F1GUre 7: Caltech database samples.
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FI1GURE 8: Histograms of mean region size and number of detected regions for the samples of Figure 7.
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FIGURE 9: Mean volume image for the most relevant detected landmarks on the set of Caltech motorbike database for gray saliency (a) and

our proposed CSR (b).

(c) State-of-the-art methods. We compare the presented
CSR with the Harris-Laplacian, Hessian-Laplacian, and the
gray-level saliency. The parameters used for the region
detectors are the default parameters given by the authors
[1, 9, 21]. For the salient criteria of [1] and our CSR, we
use 16 bins for the gray-level and orientations histograms.
The number of regions obtained by each method strongly
depends on the image since each one can contain different
type of features.

(d) Applications. To show the wide applicability of the
proposed CSR, we designed a broad set of experiments. First,
we compare the performance of the presented CSR with the
traditional approach of [1]. Second, we show the robustness
to image transformations of the novel regions. Third, we
match the detected regions of images taken from different
camera points of view. And finally, we apply the technique
on video sequences to analyze the temporal behavior by
matching the detected regions in different frames.

3.1. Gray-level saliency versus CSR

We selected a set of 250 random motorbike samples from the
motorbike Caltech database (the motorbike database was
chosen to compare the salient responses of both detectors
in a visual distinctive problem, and do not to try to solve a
difficult problem) [27] and we estimated the highest saliency
responses for each image using the gray-level saliency and the
CSR regions. The mean volume image V of detected regions
is shown in Figure 9. The volume image V is defined as

1 N
V= ;ZIR,., (5)
i=1

where Iy, is the binary image with value 1 at those positions
that fall into the detected circular regions in image I;, and
N is the total number of image samples. One can observe
that the CSR responses recover better the motorbike, and the
probability to detect each object part is higher. In Figure 10,
two examples of detected CSR for the motorbike database
are shown.

FIGURE 10: Detected CSR from Caltech motorbike images.

3.2. Repeatability and false alarm

In order to validate our results, we selected the samples
showed in Figure7 from the public Caltech repository
database [27]. In this set of samples, we applied a set of
transformations: rotation (10 degrees per step up to 100),
white noise addition (0.1 of the variance per step up to 1.0),
scale changes (15% per step up to 150), affine distortions
(5 pixels x-axis distortion per step up to 50), and light
decreasing (—0.05 per step of f down to —0.5, where the
brightness of the new image is raised to the power of y, where
yis 1/(1 +f3)).

Opver the set of transformations, we apply the evaluation
framework of [31] for the repeatability criterion. The
repeatability rate measures how well the detector selects the
same scene region under various image transformations. As
we have a reference image for each sequence of transforma-
tions, we know the homographies from each transformed
image to the reference image. Then, the accuracy is measured
by the amount of overlap between the detected region and
the corresponding region projected from the reference image
with the known homography. Two regions are matched if
they satisfy

R‘ua N RHTHbH

- €0, 6
Ry, O Ruryrt 0 (6)

where R, is the circular region obtained by the detector and
H is the homography between the two images. We set the
maximum overlap error €p to 40%, as in [31]. Then, the



Sergio Escalera et al.

1 0.3 1
0.95 0.25 0.95
> 0.9 > 09
£ £ 02 Z 085
Z 085 = I
4?;; 0.8 20.15 *?: 0.8
53 ) ;g 0.1 2 0.75
& 0.75 = 07
0.7 0.05 0.65
0.65 0 0.6
1 2 3 4 5 6 7 8 9 10 1 2 3 4 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Scale Scale Rotation
(a) (b) (c)
0.4 1 0.6
0.35 0.93 0.5
: .09 . :
= =
£ 03 = 0.85 % 0.4
s § 0.8 o
2025 2 0.75 s 03
= a4 F
0.2 0.7 0.2
0.65
0.15 0.6 0.1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Rotation White noise White noise
(d) (f)
1 0.6 0.9
0.95
0.5 _ 0.85
> 0.9 =
£ g E 08
Z 085 5 04 g
-~ <
3 2 2 075
g 08 Z 03 g
e 0.75 =
0.2 0.7
0.7
0.65 01 0.65
1 2 3 45 6 7 8 910 1 2 3 45 6 7 8 910 123 45 67 8 910
Affine distortion Affine distortion Decreasing light
(g) (i)
0.35
0.3
=
£ 025
<
()
2 02
a5
SRR s e
01 1 2 3 4 5 6 7 8 9 10
Decreasing light
—— Complex salient —— Harris-Laplace
—— Greysaliency —— Hessian-Laplace

FIGURE 11: Repeatability and false alarm rate in the space of transformations: (a), (b) scale, (c), (d) rotation, (e), (f) white noise, (g), (h)

affine invariants, and (i), (j) decreasing light.

repeatability becomes the ratio between the correct matches
and the smaller number of detected regions in the two
images. Besides, to take into account the amount of regions
from the two images that do not produces matches, we
introduce the false alarm rate criterion, defined as the ratio
between the number of regions from the two images that

do not match and the total number of regions from the two
images. This measure is desirable to be as small as possible.
The mean results for all images checking the repeatability
and false alarm ratios for gradually increasing transfor-
mations are shown in Figure 11. It is found that white
noise addition (Figure 11(e)) and affine transformations
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FiGure 12: (a)—(c) Original images and region detection for (d)—(f) complex salient features, (g)—(i) gray-level entropy, (j)—(1) Harris-
Laplacian, and (m)—(o) Hessian-Laplacian for a set of vehicle images from different camera points of view.

(Figure 11(g)) applied to some types of region detectors
increase the amount of detected regions. Then, the general
behavior in those cases is also the increment of repeatability
because of the higher number of overlapping regions. In
the same way, this effect also produces a higher increment
in their corresponding false alarm curves. Observing the
figures, one can see that Harris and Hessian Laplace nor-
mally obtain similar results, and Hessian Laplace tends to
outperform the Harris Laplace detector. Gray-based salient
regions give relatively low repeatability and high false alarm
rate, and it is dramatically improved with the CSR regions,
which obtain better performance than the rest of detectors
in terms of repeatability, obtaining the highest percentage of
correspondences for all types of image distortions. For the
case of false alarm ratio, the CSR and the Hessian Laplace
methods offer the best results, obtaining lower false alarm
rate than the Harris Laplace and gray-level salient detectors.

3.3. Matching under different camera points of view

In this experiment, we considered different points of view of
a camera on the same object. We used a set of 30 real samples
from a vehicle. The set of images has been taken with a digital
camera of 4 mega pixels from different points of views. Some
used samples and the detected regions using the different
region detectors are shown in Figure 12.

The matching evaluation is based on the criterion of
[31]. A region match is deemed correct, if the overlap error
€0 is less than a given threshold. This provides the ground
truth for correct matches. Only a single match is allowed for
each region. The matching score is computed as the ratio
between the number of correct matches and the smaller
number of detected regions in the pair of images. Instead
of fixing the €p value, we compute the matching score for
a set of €p values, from 0.65 up to 0.2 decreasing by 0.05.
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FIGURE 13: Matching percentage of the region detectors for the set
of 30 car samples of different points of views in terms of regions
intersection percentage.

The regions are described using the SIFT descriptor [23] and
compared with the Euclidean distance. The overlap value
is estimated using a warping technique to align manually
the different samples. In Figure 13, the matching score for
the region detectors for different €p thresholds are shown.
One can see the low matching percentage of the Hessian-
Laplace due to the locality of the detected regions. The gray-
level entropy and Hessian-Laplace detectors obtain better
matching results. Finally, the CSR regions obtain the highest
percentage of matching for all overlap errors values.

3.4. Temporal robustness

The next experiment is to apply the CSR regions to video
sequences to show their temporal robustness. The temporal
robustness of the algorithm is determined by a high score
of matching salient features in a sequence of images. This
matching is used in order to approximate the optical flow,
and thus perform the tracking of the object features. We used
the video images from the Ladybug? spherical digital camera
from Point Grey Research group [28]. The car system has six
cameras that enable the system to collect video from more
than 75% of the full sphere [28]. Furthermore, we also tested
the method with road video sequences from the Geovan
mobile mapping process from the Institut Cartografic de
Catalunya [29], that has a stereo pair of calibrated cameras,
which are synchronized with a GPS/INS system.

For both experiments we analyzed 100 frames using the
SIFT descriptor [23] to describe the regions. The matching is
done by similar regions descriptors in terms of the Euclidean
distance in a neighborhood two times the diameter of the
detected CSRs. The smoothed oriented maps from CSR
matchings are shown in Figures 14 and 15. The smoothed
oriented maps are obtained by filtering with a gaussian of
size 5 X 5 and ¢ = 3 over the map of vectors obtained from
the distances of matching each pair of regions. Figure 14(a)
shows the oriented map in the first analyzed frame of [28].
Figure 14(b) focuses on the right region of (a). One can see

FIGURE 14: (a) Smoothed oriented CSR matches, (b) zoomed right
region.

FiGgure 15: (a), (b) Samples, (c) smoothed oriented CSR matches,
and (d) zoomed right region.

that the matched complex regions correspond to singularities
in the video sequence and they approximate roughly the
video movement. From the road experiment of Figure 15, the
oriented map is shown in Figure 15(c). In this video sequence
cars and traffic signs appear (Figures 15(a) and 15(b)). The
amplified right region is shown in Figure 15(d). One can
observe the correct movement trajectory of the road video
sequences.
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4. CONCLUSIONS

We presented a novel set of salient features, the complex
salient regions. These features are based on complex image
regions estimated using an entropy measure. The presented
CSR analyzes the saliency of the regions using the gray-
level and orientations information. We introduced a novel
procedure to consider the anisotropic features of image
pixels that makes the image orientations useful and highly
discriminable in object recognition frameworks. We showed
that simply including proper complexity constraints (the
null-orientation concept and the adaptive threshold of
orientations), the novel set of features is highly invariant to a
great variety of image transformations and leads to a better
repeatability and lower false alarm rate than the state-of-
the-art keypoint detectors. These novel salient regions show
robust temporal behavior on real video sequences and can
be potentially applied to matching under different camera
points of view and image retrieval problems.

We are currently adapting the CSR regions to be invariant
to affine transformations [32] and evaluating the methodol-
ogy to design a multiclass object recognition approach.
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