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1. INTRODUCTION

In the last two decades, subspace-based methods for esti-
mating the directions of arrival (DOA) of far-field sources
impinging on an array of sensors have become very popular.
In particular, the MUSIC algorithm [1] and its derivatives
have received much attention [2]. Most of these methods
make the assumption that the sources are located relatively
far from the array so that the waves emitted by the sources
can be considered as plane waves. With this assumption,
each signal wavefront can be characterized by their DOA.
However, when a source is located close to the array
(i.e., near field), the wavefront must be characterized by
both the azimuth and range. Methods based on the far-
field assumption are no longer applicable to this situation.
The near-field situation can occur, for example, in sonar,
electronic surveillance, and seismic exploration.

Recently, many localization methods for near-field
sources have been proposed, such as maximum likelihood
method in [2, 3], the 2D MUSIC method in [2, 4], the model-
fitting method in [5], the linear prediction method in [6], the
higher-order ESPRIT method in [1, 7], and so forth. Most
of these methods either involve multidimensional spectral
peak search, or contain an additional parameters pairing
procedure, or high-order statistics computation.

In order to reduce the computational complexity in-
volved in most of the above algorithms, more recently, Zhi
and Chia proposed a fast method based on symmetric array
configuration in [8]. By applying Fresnel approximation, the
received signal model in near field is first decomposed into
a far-field part and a near-field part. Far-field-like rotational
invariance property is found thanks to the symmetric struc-
ture of the arrays, which allows the bearing estimation by
a search-based ESPRIT-like method. The range is obtained
by implementing 1D MUSIC method for each estimated
bearing.

In this paper, we first improve the symmetry-based
method proposed in [8] by implementing a rooting proce-
dure [9, 10]. The improved algorithm requires no longer
spectral peak search for the bearing estimation. In the second
part of this paper, we propose a focusing-based source
localization approach for arbitrary ULAs. From the same
received signal model as in [8], the near-field part of the
received signal model is approximately eliminated by using
focusing technique. Consequently, the far-field search-free
DOA algorithms can be employed for the bearing estimation.
The range is estimated by the same way as in [8] with
the estimated bearings. Similar to the focusing technique in
wide-band source localization [11], the focusing matrix is
obtained from a beamforming-based pre-estimation which
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is implemented with a rough 2D search. Therefore, the
algorithm is implemented in four steps: (1) estimate an
approximate location of the closely located sources with
a beamforming-based method; (2) apply focusing to the
covariance matrix of the received signal; (3) estimate the
bearing of the sources with a far-field subspace-based
method; (4) find the ranges of the sources by 1D MUSIC
method with the estimated bearings. This algorithm does not
require high-order statistics computation, parameter pairing
or symmetric array configuration, in addition, it has high-
resolution performance in contrast with other fast near-field
methods.

The rest of this paper is organized as follows. Section 2
addresses the received signal model in near-field situation.
Section 3 presents the bearing estimation methods in near
field including the improvement of the method in [8] and the
proposed focusing-based method. Range estimation is dis-
cussed in Section 4. The simulation results for performance
testing of the proposed approach are shown in Section 5, and
Section 6 concludes the whole paper.

2. NEAR-FIELD SIGNALMODEL

2.1. Received signal model for ULA

Consider a near-field scenario of K uncorrelated narrow-
band signals impinging to a 2M + 1-element ULA as
illustrated in Figure 1. Let the array center be the phase
reference point. The received signal at the mth sensor can be
modeled as

xm(t) =
K∑

k=1

e jτmk sk(t) + nm(t), (1)

where sk(t) is the kth source signal received at the reference
point, nm(t) is an additive complex circular white Gaussian
noise independent of signals, and τmk is the phase shift
associated with propagation time delay between the reference
point and sensor m of the kth source signal, which is a
function of source signal parameters, range rk, angle θk, and
wavelength λ, given by

τmk = 2π
λ

(√
r2
k + (md)2 − 2rkmd sin θk − rk

)
. (2)

The received signal vector x(t) = [x−M(t), . . . , xM(t)]T ,
with the superscript T denoting matrix transposition, can be
written as

x(t) = As(t) + n(t), (3)

where s(t) = [s1(t), . . . , sK (t)]T is the signal vector, n(t) =
[n−M(t), . . . ,nM(t)]T is the noise vector and A is the array
manifold matrix, given by

A = [a(r1, θ1
)
, . . . , a

(
rK , θK

)]
, (4)

with the steering vector a(rk, θk) being expressed as

a
(
rk, θk

) =

⎡
⎢⎢⎢⎣

ak,−M
...

ak,M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

e jτ−Mk

...

e jτMk

⎤
⎥⎥⎥⎦ . (5)

Source k

rk

θk

d

−M −M + 1 0 M

First L sensors Last L sensors

Figure 1: Source localization in near field with ULA.

2.2. Approximatedmodel for symmetric ULA

By using the second-order Taylor expansion to (2), we have

τmk =
(
− 2πd

λ
sin θk

)
m +

(
πd2

λrk
cos2(θk

))
m2 + o

(
d2

r2
k

)
,

(6)

where o(d2 / r2
k ) denotes the terms of order greater than

d2 / r2
k . By omitting the high-order terms approximately, the

signal model can be written as

xm(t) =
K∑

k=1

e j(−(2πd/λ) sin θk)m+ j((πd2/λrk)cos2(θk))m2
sk(t) + nm(t).

(7)

Therefore, the steering vector a(rk, θk) in (4) can be expressed
as

a
(
rk, θk

) =

⎡
⎢⎢⎢⎣

e j(2πd/λ) sin θk)M+ j((πd2/λrk)cos2(θk))M2

...

e− j((2πd/λ) sin θk)M+ j((πd2/λrk)cos2(θk))M2

⎤
⎥⎥⎥⎦ . (8)

Observing that the second terms of the elements in (8)
are symmetric, we divide the ULA into two subarrays as
shown in Figure 1. The first subarray is formed with the first
L sensors (from sensor −M to sensor −M + L − 1), and
the second subarray is formed with the last L sensors (from
sensor M− L+ 1 to sensor M). The received signal vectors of
the two subarrays can be written as

x1(t) = [x−M(t), x−M+1(t), . . . , x−M+(L−1)(t)
]T

,

x2(t) = [xM−(L−1)(t), . . . , xM−1(t), xM(t)
]T

,
(9)

where K < L < 2M + 1. These two subarray vectors have
similar forms as

x1(t) = A1s(t) + n1(t),

x2(t) = A2s(t) + n2(t),
(10)

where n1(t) = [n−M(t), . . . ,n−M+(L−1)(t)]T and n2(t) =
[nM−(L−1)(t), . . . ,nM(t)]T are subarray noise vectors. The
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matrix A1 is the first L rows of A, and A2 is constructed with
the last L rows of A.

The relationship between A, A1, and A2 is

A =
[

A1

last 2M + 1− L rows

]
=
[

first 2M + 1− L rows

A2

]
.

(11)

A1 is defined as

A1 =
[
a1
(
r1, θ1

)
, . . . , a1

(
rK , θK

)]
, (12)

with

a1
(
rk, θk

)

=

⎡
⎢⎢⎢⎣

e j((2πd/λ) sin θk)M+ j((πd2/λrk)cos2(θk))M2

...

e j((2πd/λ) sin θk)(M−L+1)+ j((πd2/λrk)cos2(θk))((2πd/λ) sin θk)(M−L+1)2

⎤
⎥⎥⎥⎦ .

(13)

The symmetric property implied in (8) gives

A2 =
[
D
(
θ1
)(
Ja1
(
r1, θ1

))
, . . . ,D

(
θK
)(
Ja1
(
rK , θK

))]
, (14)

where J is the anti-identity matrix and

D
(
θk
) = diag

[
e j(−(4πd/λ) sin θk)(M−L+1), . . . , e j(−(4πd/λ) sin θk)M].

(15)

2.3. Covariancematrix of the received signal and
eigen decomposition

The covariance matrix of the received signal can be written
as

Rx = E
[
x(t)xH(t)

] = ARsAH + σ2I, (16)

where the superscript H denotes matrix conjugate transpo-
sition, σ2 is the power of noise, and Rs = E[s(t)sH(t)] is
the covariance matrix of the received signal at the reference
point.

The eigen decomposition of the array covariance matrix
yields

Rx = UsΛsUH
s + UnΛnUH

n , (17)

where Us ∈ C(2M+1)×K contains K eigenvectors spanning
the signal subspace of Rx, and the diagonal matrix Λs ∈
CK×K contains the corresponding eigenvalues. Similarly,
Un ∈ C(2M+1)×(2M+1−K) contains 2M + 1 − K eigenvectors
in the noise subspace of Rx, and the diagonal matrix Λn ∈
C(2M+1−K)×(2M+1−K) contains the corresponding eigenvalues.

3. NEAR-FIELD BEARING ESTIMATION

3.1. Improvement on the symmetry-based algorithm

From the symmetric array configuration, Zhi and Chia
proposed in [8] a symmetry-based technique for near-field

bearing estimation. This estimator develops the symmetric
property in the manifold matrix and has found a rank
reduction-based algorithm to estimate the bearing. We note
that the rank reduction-based method is first proposed in
[10, 12] for the estimation of far-field DOAs, whereas the
symmetry-based algorithm [8] develops the rank reduction
property for near-field bearing estimation. In addition, the
subarray overlapping is allowed for the symmetry-based
method in contrast with the estimators in [10, 12].

To avoid the high computational cost due to the spectral
peak search embedded in [8], we propose an improvement
of the approach by using search-free rooting procedure
introduced in [9, 10]. In the following, we begin the
discussion with a brief review of [8].

3.1.1. Spectral peak search-based algorithm

We decompose the signal space Us into Us1 and Us2 by

Us =
[

Us1

last 2M + 1− L rows

]
=
[

first 2M + 1− L rows

Us2

]
.

(18)

From the signal model in (7) and the covariance matrix in
(16) and (17), it is obvious that there exists a K ×K full-rank
matrix G satisfying Us = AG.

Similarly, Us1 and Us2 corresponding to the first and
second subarrays satisfy

Us1 = A1G,

Us2 = A2G.
(19)

According to the generalized ESPRIT method proposed in
[9], we introduce a diagonal matrix

Ψ(θ) = diag
[
e− j(4πd/λ)(M−L+1) sin θ , . . . , e− j(4πd/λ)M sin θ

]
. (20)

And for the matrix Us2 −Ψ(θ)(JUs1)

Us2 −Ψ(θ)
(
JUs1

)

= [ . . . , (D(θk
)−Ψ(θ)

)(
Ja1
(
rk, θk

))
, . . .

]
G,

(21)

the kth column becomes zero when θ = θk, which implies
that the rank of matrix Us2 −Ψ(θ)(JUs1) equals K − 1.

The spectrum function

PE(θ) = 1
det
[
UH

s2Us2 −UH
s2Ψ(θ)

(
JUs1

)] (22)

is employed to estimate the angles [8]. Obviously, peaks of
the spectrum function PE(θ) indicate the estimated angles

θ̂k, k = 1, . . . ,K.
To avoid aliasing phenomenon due to the periodicity of

the exponential function in Ψ(θ), the interelement distance
of the ULA should satisfy d < (λ/4).

3.1.2. Improved search-free algorithm

The bearing estimator (22) involves a high-cost spectral
search over the angle θ. Observing that the diagonal elements



4 EURASIP Journal on Advances in Signal Processing

of the steering diagonal matrix in (20) are proportional to
e− j(4πd/λ) sin θ , we develop a search-free estimator by denoting
z = e− j(4πd/λ) sin θ . We can rewrite (20) as

Ψ(z) = diag
[
z(M−L+1), . . . , zM

]
. (23)

From the above-mentioned property of (21), it is obvious
that

det
[
UH

s2Us2 −UH
s2Ψ(z)

(
JUs1

)] = 0 for z = e− j(4πd/λ) sin θk .
(24)

The determinant in the left side of (24) returns to a
LK -order polynomial with respect to z. The coefficients of
this polynomial can be found mathematically from (24),
however, it is complicated to give the analytical formulations
(not presented here). Obviously, there are totally LK roots of
(24), however, only K roots β1, . . . ,βK of them satisfy

abs
(
βk
) = 1. (25)

These K roots indicate the K estimated directions. In
practice, we choose the K roots closest to the unit circle
for estimating the angles of the K sources. The estimated
bearings are obtained by

θ̂k = arcsin
(
− λ

4πd
arg
(
βk
))

. (26)

We note that the diagonal elements of Ψ(z) are not symmet-
ric. Unlike classical root-MUSIC and root-RARE in [10], the
roots of this polynomial do not appear in pairs.

3.2. Focusing-based algorithm

In this section, we propose a focusing-based technique to
separate the estimation of bearing and that of range.

3.2.1. Focusing technique

We observe that first term of the phase elements in (8) are
proportional to (2πd/λ) sin θk, and in addition, it contains
only the directions of the source. By using focusing technique
[11], the second term can be approximately eliminated,
which allows the application of far-field DOA algorithms
due to the proportional property of the first term. Focusing
technique is developed in [11] for the DOA estimation of far-
field wide-band sources, however, we propose to apply this
technique to solve a near-field localization problem.

We suppose two different cases: the particular case, where
all the sources are closely located; and the general case, where
the sources are well separately located.

Particular case

The K sources are located closely in this case. The phase shift
function (6) can be rewritten as

τmk =
(
− 2πd

λ
sin θk

)
m + g

(
rk, θk,m

)
, (27)

where g(rk, θk,m) consists of the second and higher orders
of the Taylor expansion for τmk . We have approximately the
relation for closely located sources

g
(
r1, θ1,m

)− g
(
rk, θk,m

) ≈ 0 for k = 1, 2, . . . ,K. (28)

We note that the approximation (28) is true when the DOAs
of the sources are small angles. Otherwise, when the angles θk
are big angles, that is, |θk| � 0, g(rk, θk,m) is smaller than
the first order property of the Taylor expansion in (27), so
(28) is an acceptable approximation for the calculation over
τmk.

Then we suppose (re, θe) to be the estimate of these
K closely-located sources obtained from the beamforming-
based pre-estimation. Similarly to (28), there is an quasi-
equality between g(re, θe,m) and g(rk, θk,m) for k =
1, 2, . . . ,K .

We form a diagonal focusing matrix B ∈ C(2M+1)×(2M+1)

by

B = diag
[
e− jg(re ,θe ,−M), . . . , e− jg(re ,θe ,M)], (29)

where the function g(re, θe,m) can be obtained from (2) with
(re, θe).

Applying focusing to the covariance matrix Rx gives

Ry = B
(
ARsAH + σ2I

)
BH = BARsAHBH + σ2I. (30)

We can rewrite (30) as

Ry = CRsCH + σ2I, (31)

with

C = BA = [Ba(r1, θ1
)
, . . . ,Ba

(
rK , θK

)]
. (32)

C is the focused array manifold matrix. From the approxima-
tion (28), we can make the simplification on its kth column

ck = Ba
(
rk, θk

)

=

⎡
⎢⎢⎢⎣

e j((2πd/λ) sin θk)M+ jg(rk ,θk ,−M)− jg(re ,θe ,−M)

...

e j(−(2πd/λ) sin θk)M+ jg(rk ,θk ,M)− jg(re ,θe ,M)

⎤
⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎣

e j((2πd/λ) sin θk)M

...

e j(−(2πd/λ) sin θk)M

⎤
⎥⎥⎥⎦ .

(33)

We observe that the focused covariance matrix Ry has
the same structure as the covariance matrix obtained in
far-field situation. The far-field DOA-finding methods are
consequently applicable for the bearing estimation.

General case

In this case, the K sources may be separately distributed. In
order to employ focusing technique to remove the near-field
terms in (8), we assumen that the K sources are located in
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Figure 2: False estimation rate versus SNR.

Q different subareas with Q < K and the total number of
sources in qth subarea is Pq. Apparently, we have

K =
Q∑

q=1

Pq. (34)

We suppose that (re1, θe1), . . . , (reQ, θeQ) are the Q estimated
sources position obtained from the beamforming-based pre-
estimation. Obviously, all the Pq sources in the qth subarea
are approximately close to one another, that is

g
(
req, θeq,m

)− g
(
rpq , θpq ,m

) ≈ 0 for pq = 1, 2, . . . ,Pq,
(35)

where (rpq , θpq) is the position of the pth source in qth
subarea.

With the assumption (35), we can apply focusing tech-
nique to the Q subareas separately to develop a partially far-
field structure of the focused covariance matrix. We note
that when focusing on the qth subarea, only the Pq estimates
inside the subarea could be taken into account.

3.2.2. ESPRIT for bearing estimation

The eigen decomposition of the focused array covariance
matrix yields

Ry = U′sΛ
′
sU

′H
s + U′nΛ

′
nU

′H
n , (36)
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Figure 3: RMSE of bearing estimation versus SNR.

where U′s ∈ C(2M+1)×K contains K eigenvectors spanning
the signal subspace of Ry , and the diagonal matrix Λ′s ∈
CK×K contains the corresponding eigenvalues. Similarly,
U′n ∈ C(2M+1)×(2M+1−K) contains 2M + 1 − K eigenvectors
in the noise subspace of Ry , and the diagonal matrix Λ′n ∈
C(2M+1−K)×(2M+1−K) contains the corresponding eigenvalues.

From (17), (31), and (36), we have

Ry = B
(
UsΛsUH

s

)
BH + B

(
UnΛnUH

n

)
BH , (37)

which implies

U′s = BUs,

U′n = BUn.
(38)

We divide the ULA into two 2M-element subarrays (from
sensor −M to sensor M − 1 and from sensor −M + 1 to
sensor M). The focused array manifold matrices for the two
subarrays C1 and C2 can be expressed as

C =
[

C1

last row

]
=
[

first row

C2

]
. (39)

U′s is then similarly partitioned as

U′s =
[

U′s1
last row

]
=
[

first row

U′s2

]
. (40)
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Figure 4: RMSE of range estimation versus SNR.

Obviously, there exists a K × K full-rank matrix V satisfying
U′s = CV. Hence, U′s1 and U′s2 corresponding to the first and
second subarray satisfy

U′s1 = C1V,

U′s2 = C2V.
(41)

From (33), we find that the phase elements of ck are
proportional to (2πd/λ) sin θk. Thus, C1 and C2 satisfy

C1 = C2Φ, (42)

with

Φ = diag
[
e j((2πd/λ) sin θ1), . . . , e j((2πd/λ) sin θK )]. (43)

Consequently, we have

U′s1 = U′s2V
−1ΦV = U′s2Ψ. (44)

Obviously, the matrix Φ has the same eigenvalues as the
matrix Ψ and

Ψ = (U′Hs2 U′s2
)−1

U′Hs2 U
′
s1. (45)

Finally, the estimated bearings are obtained by

θ̂k = arcsin
(

λ

2πd
arg(eigenvalues of Ψ)

)
. (46)
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Figure 5: Standard deviation and CRB versus SNR of the bearing
estimation.

4. RANGE ESTIMATION BY 1DMUSICMETHOD

The range estimation is obtained by maximizing the MUSIC
spectrum

r̂k = arg max
[
P(k)

MUSIC(r)
]
, (47)

where the MUSIC spectrum is obtained by

P(k)
MUSIC(r) = 1

aH
(
r, θ̂k

)
UnUH

n a
(
r, θ̂k

) . (48)

To avoid the parameter pairing, we form the MUSIC
spectrum for each estimated bearing.

5. SIMULATION RESULTS

In this section, Monte Carlo simulations are implemented
to test the resolution and the estimation efficiency of the
algorithms.



Hongyang He et al. 7

302520151050−5−10

SNR (dB)

Symmetry-based
Focusing-based
CRB

10−3

10−2

10−1

100

101

St
d

an
d

C
R

B
of

ra
n

ge
(w

av
el

en
gt

h
)

Performance of range estimation for source 1

(a)

302520151050−5−10

SNR (dB)

Symmetry-based
Focusing-based
CRB

10−3

10−2

10−1

100

101

St
d

an
d

C
R

B
of

ra
n

ge
(w

av
el

en
gt

h
)

Performance of range estimation for source 2

(b)

Figure 6: Standard deviation and CRB versus SNR of the range
estimation.

5.1. False estimation rate comparison

To test the resolution performance of these two algorithms,
we introduce the false estimation probability defined by the
following equation:

Pe = Ne

N
= Number of false estimates

Number of estimates
. (49)

We suppose an estimate of the K sources to be [(r̂1, θ̂1),

. . . , (r̂K , θ̂K )]. If the estimates of all the K sources satisfy

∣∣r̂k − rk
∣∣ ≤ εr for k = 1, 2, . . . ,K ,

∣∣θ̂k − θk
∣∣ ≤ εθ for k = 1, 2, . . . ,K ,

(50)

the corresponding estimate is considered to be a good
estimate, otherwise it is a false estimate. εr and εθ in above
equations are the tolerant error for the range estimation and
for bearing estimation, respectively.

We simulate first a simple case in which a symmetric
ULA with M = 4 (i.e., the number of sensors equals 9) and
d = λ/5 is employed to localize two uncorrelated narrow-
band sources located at (r1, θ1) = (4.2λ, 15◦) and (r2, θ2) =
(3.8λ, 25◦). The error tolerance is set as εr = 0.2λ for range
and εθ= 5◦ for bearing. 200 independent trials are performed
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Figure 7: Standard deviation and CRB versus snapshots of the
bearing estimation.

at different SNRs with 1000 snapshots. Figure 2 shows the
false estimation probability of these two methods compared
with that of 2D MUSIC method.

The solid lines marked by stars in the figure indicate
the false estimation probability of 2D MUSIC method. The
lines with x-mark signify the false estimation probability of
the symmetry-based method, and the lines with circle figure
out the false estimation probability of the focusing-based
method. From Figure 2, we find that the focusing-based
method has a better performance compared to the other two
methods. This is because the focusing-based method utilizes
the a priori information from the pre-estimation.

5.2. Rootmean square error comparison

The RMSEs of estimates from the symmetry-based method
and focusing-based method obtained in Section 5.1 have
been presented in this part. Figures 3 and 4 illustrate the
RMSE of estimated parameter from the algorithms.

The lines with x-mark signify the RMSE of the estimated
parameters from the symmetry-based method, and the lines
with circles indicate the RMSE of the estimated parameters
from the focusing-based method. From Figures 3 and 4, we
find that there exists small biases for these two estimators.
This is because the approximations have been used as we
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Figure 8: Standard deviation and CRB versus snapshots of the
range estimation.

have introduced previously. Obviously, the biases from the
symmetry-based method are comparatively greater than
those from the focusing-based method.

5.3. Standard deviation comparison

In this part, the standard deviation of the estimates from
these two methods are compared with the corresponding
Crammer-Rao Bound (CRB) given in [6]. 200 Monte Carlo
simulations are performed at different SNRs (from −10 dB
to 30 dB) and with different numbers of snapshots (from 200
to 6000). 1000 snapshots are used for the comparison versus
SNRs, and SNR is 10 dB in the comparison versus numbers
of snapshots. The other simulation parameters are the same
as we have used in Section 5.1.

Figures 5 and 6 illustrate the standard deviation of the
estimated bearing and range versus SNR, respectively. The
solid lines signed by circles in these figures indicate the
estimated parameters from the focusing-based method, and
the lines with x-mark indicate the estimated parameters from
the symmetry-based method. The dash-dot lines indicate
the square roots of the corresponding CRBs. The lines
with x-mark signify the false estimation probability of the
symmetry-based method, and the lines with circle figure
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Figure 9: Performance of focusing-based method for separated
sources.

out the false estimation probability of the focusing-based
method. Obviously, the focusing-based estimator is more
efficient than the symmetry-based estimator.

Similarly, Figures 7 and 8 display the bearing and range
estimation versus numbers of snapshots, respectively.

5.4. Well-separated sources

To test the focusing-based method in case of well-separated
sources, we simulate another scenario of the localization
of 3 sources located at (r1, θ1) = (4.2λ, 15◦), (r2, θ2) =
(4λ, 25◦), and (r3, θ3) = (3λ,−15◦) with the previous array.
The RMSEs of the 500 independent estimates from focusing-
based algorithm under different SNRs (from −10 dB to
30 dB) are illustrated in Figure 9. 1000 snapshots are used in
this simulation.

We find that the estimator has a better performance on
the source (r3, θ3). This is because when we focus on the
subarea around source (r3, θ3), the interference from source
(r1, θ1) and (r2, θ2) is not significant due to the large spading
between source (r3, θ3) and source (r1, θ1) and (r2, θ2). While
the symmetry-based estimator fails to separate the 3 sources
(the results are not presented here).
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6. CONCLUSION

This paper discusses two fast algorithms with high-
resolution performance for 2D near-field multiple sources
localization. The symmetry-based method is improved and
a focusing-based method is proposed. By applying a search-
free procedure, the symmetry-based algorithm requires no
longer spectral peak search for bearing estimation; while the
focusing technique is employed to the near-field received
signal model in order to obtain a far-field structure which
allows the application of far-field DOA algorithms for bear-
ing estimation. 1D MUSIC method is applied to estimate the
range of each source with the estimated bearing. Unlike other
algorithms for near-field source localization, the algorithms
can localize multiple sources in the near field without
high-cost multidimensional search, high-order statistics or
parameter pairing.
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