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thermore, we consider multiple sensors collaborating to estimate a deterministic parameter in noise. Similarly, optimum energy
allocation and optimum number of quantization bits are derived and tested with simulated examples. Finally, we study the effect
of channel coding on the reconstruction performance under strict energy constraints and jointly optimize the number of quanti-
zation levels as well as the number of channel uses.
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1. INTRODUCTION

Wireless sensor networks (WSN) are gaining increasing re-
search interest for their emerging potential in both consumer
and national security applications. Sensor networks are envi-
sioned to be used for surveillance, identification, and track-
ing of targets. They can also serve as the first line of detection
for various types of biological hazards such as toxic gas at-
tacks. In civilian applications, WSN can be used to monitor
the environment and measure quantities such as temperature
and pollution levels.

In most application scenarios, WSN nodes are powered
by small batteries, which are practically nonrechargeable, ei-
ther due to cost limitations or because they are deployed
in hostile environments with high temperature, high pol-
lution levels, or high nuclear radiation levels. These con-
siderations motivate well energy-saving and energy-efficient
WSN designs. One approach to prolong battery lifetime is
the use of energy-harvesting radios as the ones in [1] with
power dissipation levels below 100 μW. A lot of research has
been carried out to devise energy efficient algorithms in each
layer of WSN [2]. Optimal modulation with minimum en-

ergy requirements to transmit a given number of bits with a
prescribed bit error rate (BER) bound is considered in [3].
Energy efficient medium access control (MAC) and routing
protocols are studied in [4, 5], respectively.

In this paper, we consider a WSN with a fusion center
which collects data from sensor nodes and performs the fi-
nal information extraction task. A common goal in most
WSN applications is to reconstruct the underlying physical
phenomenon (e.g., temperature) based on sensor measure-
ments. Energy as well as bandwidth limitations prevent sen-
sor nodes from transmitting real valued (analog-amplitude)
data to the fusion center. This motivates the goal of this pa-
per which is to derive optimal quantization schemes at sen-
sor nodes under strict energy constraints. Optimality here is
in the sense of minimizing a bound on the mean-absolute
reconstruction error at the fusion center. The problem setup
originates from the following considerations. Suppose we de-
ploy a WSN powered by nonrechargeable batteries and ex-
pect it to operate a given number of times, which bounds the
energy allowed per time of operation. One operation could
be, for example, one time transmitting a burst of tempera-
ture measurements to the fusion center with bounded energy
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allowed per burst. The problem of designing quantizers to
optimize pertinent reconstruction performance metrics un-
der a given energy budget emerges naturally.

Most of the prior works on optimal quantization deal
with optimization of the quantization rules for detecting
a signal in dependent or independent noise [6–9]. Other
related works include [10–15]. Assuming error-free trans-
mission, [10, 11] focus on the impact of bandwidth/rate
constraints in WSN on the distributed estimation perfor-
mance. Optimal quantization thresholds, given the number
of quantization levels and channel coding for binary sym-
metric channels (BSC), are jointly designed in [13] to mini-
mize the mean-square error of reconstruction. In [14], scal-
ing of the reconstruction error with the number of quanti-
zation bits per Nyquist-period is studied. The rate-distortion
region, when taking into account the possible failure of com-
munication links and sensor nodes, is presented in [12].
Possibly the most closely related to our present work, [15]
minimizes the total transmission energy for a given target
estimation error performance. Different from these works,
our objective is to optimize the quantization per node (in-
cluding the number of quantization bits and the transmis-
sion energy allocation across bits) under a fixed total en-
ergy per measurement in order to minimize the reconstruc-
tion error at the fusion center. We account for both trans-
mission energy as well as circuit energy consumption, while
we (i) incorporate the noisy channel between each sensor
and the fusion center by modeling it as a BSC with cross-
over probability controlled by the transmitted bit energy, and
(ii) allow different quantization bits to be allocated differ-
ent energy and, thus, effect different cross-over probabili-
ties.

The rest of the paper is organized as follows. In
Section 2, we consider optimal quantization in a point-to-
point (single-hop) link to recover a single sensor’s measure-
ment with uncoded transmission schemes. In Section 3, op-
timal quantization is addressed in a multisensor (star topol-
ogy) setting. The role of channel coding is then examined in
Section 4. Section 5 provides some illustrative numerical re-
sults and Section 6 concludes the paper.

2. POINT-TO-POINT LINK

Let us consider the system depicted in Figure 1, where a sin-
gle sensor acquires a local measurement A, which is prop-
erly scaled so that A ∈ [0, 1], and wishes to transmit it to
the fusion center. For digital transmission, the sensor first
quantizes the real valued measurement A to AQ. Letting
A := ∑∞

i=1bi2
−i, throughout this paper, we consider N-bit

uniform quantization so that

AQ =
N∑

i=1

bi2−i. (1)

The quantization bits {bi}Ni=1 are transmitted through the
wireless channel to the fusion center, and are demodulated as

Observation

A

Sensor

AQ

1 BSC

0

1

0

ε

Wireless channel

b1, b2, . . .
Fusion
center

b̂1, b̂2, . . .
Â

Figure 1: System model of a single sensor’s quantized measurement
received through a BSC at the fusion center.

{b̂i}Ni=1. At the fusion center, the sensor’s local measurement
is reconstructed as

Â =
N∑

i=1

b̂i2−i. (2)

Here, for simplicity, we consider only uncoded transmis-
sions. The underlying channel is assumed to be memoryless
with different raw bits experiencing independent detection
errors. Under this condition, we can model the wireless air
interface between the sensor and the fusion center as a binary
symmetric channel (BSC) with cross-over probability ε. In
fact, the BSC model can be used to characterize a more gen-
eral class of channels including multipath fading and mul-
tiaccess ones. Even for a channel with memory, BSC is still
applicable provided that a suitable equalizer is incorporated,

and {b̂i} denote the bits at the output of the slicer that follows
the equalizer.

Because one of the key issues in optimizing the design of
sensor networks is the energy constraint, we are interested in
the following problem.

If the allowable energy each time we transmit a measure-
ment is fixed to E , what is the optimal number of quantization
bits and how can the energy per bit be allocated optimally in
order to minimize the reconstruction error at the fusion center?

In the following subsections, we will first address this
question under the assumption that the total energy budget
used for RF transmission of the measurement A is fixed and
equal to E . The energy consumed by the circuit electronics
will be taken into account afterwards.

2.1. Optimizing the number of quantization bits

Let us consider a simple scenario where all quantization bits
are allocated equal energy. We wish to find the optimal value
of N in (1) which minimizes a meaningful metric of the re-
construction error. When using an N-bit quantizer, with the
total transmission energy of all bits fixed to E , the energy
per bit depends clearly on N , since Eb = E /N . Noticing that
the BSC model’s cross-over probability ε will generally be a
function of the bit energy-to-noise ratio, and letting N0 de-
note the channel noise level, we can write ε as ε(Eb/N0) to
make this functional relationship explicit. With Eb = E /N ,
we find that the cross-over probability is actually a function
of N with ε = ε(E /(NN0)).
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The reconstruction error, which is defined to be A − Â,
can be expressed as

A− Â = A− AQ + AQ − Â

=
∞∑

i=N+1

bi2−i +
N∑

i=1

(
bi − b̂i

)
2−i.

(3)

Using the triangle inequality, we can readily bound the abso-
lute value of the reconstruction error as

|A− Â| ≤
∞∑

i=N+1

2−i +
N∑

i=1

∣
∣bi − b̂i

∣
∣2−i. (4)

Taking expectation on both sides of (4), we have

E
[|A− Â|] ≤ 2−N +

N∑

i=1

E
[∣
∣bi − b̂i

∣
∣
]
2−i

= 2−N + ε
(

E
NN0

) N∑

i=1

2−i

= 2−N +
(
1− 2−N

)
ε
(

E
NN0

)

:= f (N),

(5)

where in deriving the first equality we used the fact that

|bi − b̂i| is a {0, 1} Bernoulli random variable with mean
ε(E /(NN0)).

In order to minimize the mean-absolute reconstruction
error, it suffices to minimize the bound f (N) in (5) with re-
spect to N , which corresponds to optimizing the worst-case
performance. Under this criterion, the optimal number of
quantization bits will be chosen as follows:

Nopt = arg min
N

f (N)

= arg min
N

[

2−N +
(
1− 2−N

)
ε
(

E
NN0

)]

.
(6)

Clearly, the first summand in f (N), namely, 2−N , decreases
as N becomes larger. With ε(·) being a monotonically de-
creasing function of its argument, the second summand,
(1 − 2−N )ε(E /(NN0)), will be an increasing function of N .
Intuition suggests that there should exist an optimal N such
that f (N), that is, the sum of the two terms, will reach a min-
imum. If the latter is unique, a simple one-dimensional nu-
merical search will reveal Nopt, as long as ε(·) is specified. In
Section 5, we will give examples of the optimal number of
quantization bits when ε(γ) is specified for different modu-
lations and receiver formats, with γ := Eb/N0 denoting the
bit energy-to-noise ratio.

2.2. Optimizing the energy allocation per bit

In the previous subsection, we assumed that each bit is al-
located identical energy. However, observing that each bit in
(4) has a different weight suggests that there is room to op-
timize the energy per bit. This motivates us to look for an
optimal energy allocation scheme when the total number of
bits N is fixed. Let us suppose that bit i is allocated a fraction

xi of the total energy E for i = 1, . . . ,N . Then, following the
derivation of (5), we have

E
[|A− Â|] ≤ 2−N +

N∑

i=1

E
[∣
∣bi − b̂i

∣
∣
]
2−i

= 2−N +
N∑

i=1

ε
(
Exi
N0

)

2−i.

(7)

In order to account for the mean-absolute reconstruction er-
ror with respect to x := [x1, . . . , xN ]T , we can formulate the
following optimization problem:

minimizex f0(x;N) := 2−N +
N∑

i=1

ε
(
Exi
N0

)

2−i

subject to fi(x) := −xi ≤ 0, i = 1, . . . ,N ,

h(x) :=
N∑

i=1

xi = 1.

(8)

It is easily seen that the optimal solution and the minimum
value of f0(x;N) are actually functions of N . To make this
functional relationship explicit, we denote the optimal solu-
tion by x∗N := [x∗1 , x∗2 , . . . , x∗N ]T , and accordingly, the min-
imum of the objective function f0(x∗N ;N). Interestingly, as
long as N > Ñ , we find f0(x∗N ;N) < f0(x∗

Ñ
; Ñ), see the ap-

pendix for details.
With x∗N := [x∗1 , x∗2 , . . . , x∗N ]T denoting the optimal so-

lution, the well-known Karush-Kuhn-Tucker (KKT) condi-
tions [16, page 243] dictate that there must exist {λ∗i }

N
i=1 and

ν∗ such that

x∗i ≥ 0, λ∗i ≥ 0, λ∗i x
∗
i = 0, i = 1, 2, . . . ,N , (9)

N∑

i=1

x∗i = 1, (10)

∇ f0
(
x∗N ;N

)
+

N∑

i=1

λ∗i ∇ fi
(
x∗N

)
+ ν∗∇h(x∗N

) = 0, (11)

where ∇ denotes the gradient. It follows from (11) that the
{x∗i }Ni=1 must satisfy

2−i
E

N0

dε(γ)
dγ

∣
∣
∣
∣
γ=(E /N0)x∗i

− λ∗i + ν∗ = 0, i = 1, . . . ,N.

(12)

In order to gain further insight from (12), let us take a
closer look at the optimal energy allocation in two special
cases.

2.2.1. BPSK over AWGN channel

The cross-over probability ε expressed in terms of bit energy-
to-noise ratio γ is given in this case by [17, page 255]

ε(γ) = Q
(√

2γ
)

:=
∫ +∞
√

2γ

1√
2π

e−t
2/2dt. (13)
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The derivative of ε(γ) with respect to γ is then calculated as
follows:

dε(γ)
dγ

= − 1√
2π

e−γ
√

2γ
:= −φ(γ). (14)

Substituting (14) into (12), we can express the optimal en-
ergy allocation in the following form:

x∗i = φ−1
(
(
ν∗ − λ∗i

)
2
i N0

E

)
N0

E
, i = 1, . . . ,N. (15)

Noticing that the domain of φ(γ) defined in (14) is (0, +∞),
from the complementary slackness conditions in (9), we de-
duce that λ∗i = 0, for all i, and finally, we obtain

x∗i = φ−1
(

ν∗2i
N0

E

)
N0

E
, i = 1, . . . ,N , (16)

where ν∗ is a constant chosen to enforce the constraint∑ N
i=1x

∗
i = 1.

Equation (16) is intuitively appealing, because the mono-
tonicity of φ(γ) ensures that each bit is allocated energy ac-
cording to its significance: the smaller the i is, the more sig-
nificant bit i is, and the more energy is allocated to bit i.

2.2.2. Binary orthogonal signaling with envelope detection

It is well known that binary orthogonal signals such as binary
frequency-shift keying (FSK) or pulse-position modulation
(PPM) can be demodulated using noncoherent envelope de-
tection [17, pages 307–310]. In this case, the cross-over prob-
ability expressed in terms of the bit energy-to-noise ratio is
given by

ε(γ) = 1
2
e−γ/2. (17)

The derivative is then

dε(γ)
dγ

= −1
4
e−γ/2 := −ϕ(γ). (18)

Substituting (18) into (12), we obtain

x∗i = ϕ−1
(
(
ν∗ − λ∗i

)
2
i N0

E

)
N0

E
. (19)

Noticing that the function ϕ(γ) has domain [0, +∞) and
range (0,ϕ(0) = 1/4], and supposing that λ∗i = 0, for all
i, we must have ν∗2NN0/E ≤ 1/4. Furthermore, the condi-
tion

∑ N
i=1x

∗
i = 1 is not guaranteed to be satisfied when ν∗ is

bounded. Based on (9), we can simplify (19) as follows:

x∗i = ϕ−1
(

min
{

1
4

, ν∗2i
N0

E

})
N0

E

= 2
N0

E
ln
(

1
4
(
min

{
1/4, ν∗2i

(
N0/E

)})

)

.

(20)

Equation (20) implies that it is possible to have x∗i = 0 for
some large i’s. In fact, when ε(γ) = (1/2)e−γ/2, the problem in
(8) can be readily shown to be convex which not only implies

that the optimal solution is guaranteed to exist and is unique,
but also can be found using a numerically efficient search.

The optimal energy allocation for a special case will be
examined in Section 5, where we will confirm that a certain
number of less significant bits should not be allocated any
energy.

2.3. Circuit energy consumption

Till now, we have neglected the fact that the circuit itself will
also consume a certain amount of energy when transmitting
the quantization bits bi. Optimization in (8) implies that if
we ignore circuit energy consumption and optimally allo-
cate the transmission energy among bits, then the achieved
reconstruction error bound will decrease as we increase the
number of quantization bits N . However, this will not be true
when the circuit energy consumption is taken into account.
The reason is that the energy consumed by the circuit will
also increase as the number of bits grows larger. To quantify
this tradeoff, we adopt the model in [3], where the power of
the circuit electronics (excluding the RF transmission power)
is assumed to be Pon when the sensor is transmitting each
quantization bit. The energy consumption of the circuit elec-
tronics during the sleep and transition modes is assumed to
be very small and can be neglected. Letting T0 denote the bit
period, when N quantization bits are transmitted, we can ex-
press the circuit energy consumption as Ec = NT0Pon. With
the total energy budget per measurement transmission being
E , the remaining energy for RF transmission of theN bits will
be Er = E − Ec = E − NT0Pon. In order to have Er > 0, we
obviously need to make sure that N < E /(T0Pon). Now, with
the circuit energy consumption considered, let us revisit the
issue of optimizing the number of quantization bits, which
we have examined in the previous subsections.

2.3.1. Optimal number of quantization bits with equal
energy allocation

Let us first assume that the residual energy Er is equally allo-
cated among the N quantization bits. Similar to (5), we can
upper bound the mean-absolute reconstruction error as

E|A− Â| ≤ 2−N +
(
1− 2−N

)
ε
(

Er
NN0

)

= 2−N +
(
1− 2−N

)
ε
(
E −NT0Pon

NN0

)

:= fc(N)

(21)

from which the optimal value of N can be obtained as

Popt = arg min
N

fc(N). (22)

Comparing the latter with (6), we recognize that similar
comments apply regarding the existence, uniqueness and nu-
merical evaluation of the optimal N when circuit energy is
accounted for.
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2.3.2. Optimal number of quantization bits with
optimal energy allocation

When the measurement A is quantized to N bits, the optimal
strategy of allocating the residual energy Er = E −NT0Pon is
the solution of the following optimization problem:

minimizex f0(x;N) := 2−N +
N∑

i=1

ε
(
Erxi
N0

)

2−i

subject to fi(x) := −xi ≤ 0, i = 1, . . . ,N ,

h(x) :=
N∑

i=1

xi = 1.

(23)

Denoting the optimal solution by x∗N , we can obtain the op-
timal number of quantization bits as

Nopt = arg min
N

f0
(
x∗N ;N

)
. (24)

In Section 5, we will findNopt for specific system setups in
the case of equal energy allocation and optimal energy allo-
cation when energy consumption of the underlying circuitry
is taken into account.

3. MULTISENSOR COOPERATION IN
ESTIMATING A PARAMETER

Let us now consider the multisensor setup depicted in
Figure 2, where each sensor k has available local bounded
noisy observation Xk = A + nk, and nk is zero mean with
variance σ2

k and independent of nl for l /= k. After normaliza-
tion, we have Xk ∈ [0, 1]. Sensor k quantizes its local obser-
vation Xk to the Nk most significant bits, that is, with Xk =
∑∞

i=1b
(k)
i 2−i, we have (Xk)Q =

∑ Nk
i=1b

(k)
i 2−i. Bits {b(k)

i }Nk
i=1 are

then transmitted through the wireless channel, which is again
modeled as a BSC with cross-over probability εk. The fusion

center reconstructs Xk with the demodulated bits {b̂(k)
i }Nk

i=1 to
obtain

X̂k =
Nk∑

i=1

b̂(k)
i 2−i. (25)

When we have available unquantized real valued observa-
tions Xk = A + nk, k = 1, 2, . . . ,K , the best linear unbiased
estimator (BLUE) of A is known to be [18]

ÂBLUE =
( K∑

k=1

1
σ2
k

)−1 K∑

k=1

Xk

σ2
k

. (26)

This motivates us to form the following estimator for the pa-
rameter A when the noise variances are known at the fusion
center, where we have only available X̂k, k = 1, 2, . . . ,K :

Â =
( K∑

k=1

1
σ2
k

)−1 K∑

k=1

X̂k

σ2
k

. (27)

The problem we are interested in can be formulated as fol-
lows.

A + n1 = X1

A + n2 = X2

A + nK = XK

S-1

S-2

S-K

(X1)Q

(X2)Q

(Xk)Q

ε1

ε2

εK
Fusion
center

Â

Figure 2: Multisensor cooperation in estimating a scalar parameter
with quantized observations.

For a fixed number of quantization bits (Nk) per sensor,
what is the optimal scheme for allocating the total energy ET
prescribed to all sensors so that the mean-square estimation er-
ror E|Â− A|2 is minimized? Furthermore, what is the optimal
number of quantization bits per sensor so that this energy allo-
cation scheme achieves the minimum possible estimation error?

In this section, we will neglect the circuit energy con-
sumption. Generalization to the case where the energy con-
sumption by the circuit electronics is nonnegligible is rather
straightforward using the model described in Section 2.3.
Furthermore, we assume that the energy allocated per sen-
sor will be equally distributed among the quantization bits.
Now, let us take a look at the estimation error

Â− A =
( K∑

k=1

1
σ2
k

)−1 K∑

k=1

X̂k − A

σ2
k

=
( K∑

k=1

1
σ2
k

)−1 K∑

k=1

X̂k − Xk + nk
σ2
k

.

(28)

Upon defining the reconstruction error X̃k := X̂k − Xk, we
have

E|Â− A|2

=
( K∑

k=1

1
σ2
k

)−2

E

∣
∣
∣
∣
∣

K∑

k=1

X̃k + nk
σ2
k

∣
∣
∣
∣
∣

2

= E
∣
∣∑ K

k=1

(
X̃k/σ

2
k

)∣
∣2

(∑ K
k=1

(
1/σ2

k

))2

+
E
[(∑ K

k=1

(
X̃k/σ

2
k

))(∑ K
k=1

(
nk/σ

2
k

))]
+
∑ K

k=1

(
1/σ2

k

)

(∑ K
k=1

(
1/σ2

k

))2 .

(29)

Since X̂k−(Xk)Q =
∑ Nk

i=1(b̂(k)
i −b(k)

i )2−i, it follows that X̂k

− (Xk)Q and nk are uncorrelated. Furthermore, as shown
in [19], when the characteristic function of nk is ban-
dlimited to 2π/Δ, where Δ = 2−Nk is the quantization
step size, the quantization error (Xk)Q − Xk is uncorre-
lated with the input Xk = A + nk. (In a uniform quantizer
with step size Δ, the correlation between input X and the
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quantization error ε is given by [19] E[Xε]/
√
E[X2]E[ε2] =

[
√

3/(π
√
E[X2])]

∑
k /=0[(−1)k/k]φ̇(2πk/Δ), where φ(ω) :=

E[e jωX] and φ̇(ω) := dφ(ω)/dω. Therefore, as long as the
φ(ω) energy is concentrated in the interval [−2π/Δ, 2π/Δ],
one can safely consider X and ε as uncorrelated.) Hence
practically, as long as the quantization step Δ = 2−Nk is
sufficiently small relative to σk, one can safely assume the
reconstruction error X̃k = X̂k − Xk = X̂k − (Xk)Q +
(Xk)Q − Xk is statistically uncorrelated with the observa-
tion noise nk. Thus, the second summand in the numer-
ator disappears. Hence, minimizing E|A − Â|2 reduces to

minimizing E|∑ K
k=1(X̃k/σ

2
k)|2. Because for any bounded

random variable Z ∈ [−U ,U] with pdf p(z), we have

E|Z|2 = ∫U
−U |z|2p(z)dz ≤ ∫U

−U U|z|p(z)dz = UE|Z|, notic-
ing that

∑ K
k=1(X̃k/σ

2
k) is bounded, we can instead minimize

E|∑ K
k=1(X̃k/σ

2
k)|, which we upper bound as

E

∣
∣
∣
∣
∣

K∑

k=1

X̃k

σ2
k

∣
∣
∣
∣
∣
≤

K∑

k=1

E
∣
∣X̃k

∣
∣

σ2
k

≤
K∑

k=1

2−Nk +
(
1− 2−Nk

)
εk

σ2
k

,

(30)

where εk is the cross-over probability of the BSC between
sensor k and the fusion center.

3.1. Identical number of bits per sensor

For clarity in exposition, we first consider here a simple sit-
uation where each sensor transmits the same fixed number
of bits N (i.e., Nk = N , for all k). With xk denoting the
fraction of the total energy ET allocated to sensor k, we can
express εk as εk(ETxk/(NN0)), where N0 is the noise level
at the receiver of the fusion center which is assumed com-
mon to all channels. The optimal energy allocation scheme
will be the solution of the following optimization problem
(x := [x1, . . . , xK ]T):

minimizex f0(x;N) :=
K∑

k=1

1
σ2
k

[
1

2N
+
(

1− 1
2N

)

εk
(
ETxk
NN0

)]

subject to fk(x) := −xk ≤ 0, k = 1, . . . ,K ,

h(x) :=
K∑

k=1

xk = 1.

(31)

As in Section 2, we can write down the KKT conditions for
the optimal solution x∗ := [x∗1 , . . . , x∗K ]T as follows:

x∗k ≥ 0, λ∗k ≥ 0, λ∗k x
∗
k = 0, k = 1, 2, . . . ,K , (32)

K∑

k=1

x∗k = 1, (33)

∇ f0
(
x∗;N

)
+

K∑

k=1

λ∗k∇ fk
(
x∗

)
+ ν∗∇h(x∗) = 0. (34)

From (34), we have

1
σ2
k

ET
NN0

dεk(γ)
dγ

∣
∣
∣
∣
γ=(ET /NN0)xk

− λ∗k + ν∗ = 0, k = 1, . . . ,K.

(35)

To delve further into (35), we consider a particular system
setup. Letting κ denote the path loss exponent [20] of the
wireless channel (dk is the distance between sensor k and the
fusion center), and supposing BPSK modulation, we can ex-
press the cross-over probability in the presence of AWGN as

εk(γ) = Q(
√

2γC/dκk) with C being a constant. Under these
operating conditions, (35) and (32) yield

x∗k = φ−1
k

(

ν∗σ2
k

NN0

ET

)
NN0

ET
,

φk(γ) := 1√
2π

e−γ(C/dκk )
√

2γ

√
C

dκk
,

(36)

where ν∗ is chosen such that
∑ K

k=1x
∗
k = 1. In Section 5, we

will examine a specific system and find the corresponding
optimal energy allocation to gain further insight into these
closed-form expressions.

In fact, when εk(γ), for all k, is convex in γ, the problem
in (31) turns out to be convex, which implies that the global
optimum exists and can be easily found numerically. In most
cases, convexity is guaranteed, for example, when εk(γ) is ex-
pressible in terms of Q(

√
2γ) or (1/2)e−γ/2.

Subsequently, the optimal number of quantization bits
Nopt can be easily found using one-dimensional numerical
search to solve the optimization problem

Nopt = arg min
N

f0
(
x∗;N

)
, (37)

where f0(x∗;N) is the optimal value of the objective function
in (31) when the number of quantization bits per sensor is
N . In Section 5, we will show an example of the functional
relationship between f0(x∗;N) and N , from which Nopt can
be readily determined.

3.2. Different number of bits per sensor

Now, let us consider the case where sensor k transmits Nk

quantization bits, k = 1, . . . ,K . From (30), we can see that
the optimal energy allocation scheme which minimizes the
estimation error is the solution of the following optimization
problem:

minimizex f0
(
x;Nk, k = 1, . . . ,K

)

:=
K∑

k=1

1
σ2
k

[
1

2Nk
+
(

1− 1
2Nk

)

εk
(
ETxk
NkN0

)]

subject to fk(x) := −xk ≤ 0, k = 1, . . . ,K ,

h(x) :=
K∑

k=1

xk = 1.

(38)
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(i) At lth step, with Nk = N (l)
k , k = 1, . . . ,K , find

x(l) = [x(l)
1 , . . . , x(l)

K ]T as the optimal solution of (38).
(ii) Update N (l)

k to N (l+1)
k based on the iteration

N (l+1)
k = arg min

Nk

[
1

2Nk
+
(

1− 1
2Nk

)

εk

(
ETx

(l)
k

NkN0

)]

.

(39)

(iii) Go to (l + 1)st step.

Algorithm 1

Given the set of Nk , k = 1, . . . ,K , the solution to (38) is sim-
ilar to (35). The problem we are interested in is the mini-
mization of f0(x;Nk, k = 1, . . . ,K) with respect to Nk, k =
1, . . . ,K and xk, k = 1, . . . ,K . In order to find optimal
Nk, k = 1, . . . ,K and xk, k = 1, . . . ,K jointly, we advocate
Algorithm 1.

When εk(γ) is convex and {Nk}Kk=1 are fixed, the prob-
lem in (38) is clearly convex, which implies that the opti-
mal energy allocation vector x∗ can be found using standard
numerically efficient search schemes [16]. Hence, step (i) of
Algorithm 1 is easily carried out. It is also easy to prove that
the objective function is always decreasing from one iteration
to another. The argument is as follows:

f0
(
x(l+1);N (l+1)

k , k = 1, . . . ,K
)

≤ f0
(
x(l);N (l+1)

k , k = 1, . . . ,K
)

≤ f0
(
x(l);N (l)

k , k = 1, . . . ,K
)
.

(40)

Our experience with simulations is that Algorithm 1 typically
converges after 3-4 iterations. In Section 5, we will utilize this
approach to jointly optimize Nk and xk, k = 1, . . . ,K , for a
specific wireless sensor network.

Remark 1. In this section, we have dealt with energy and
quantization optimization for multiple sensors that are co-
operating in the estimation of a common parameter. The op-
timum scheme will be first derived in a centralized manner
and then released to each individual senor, which may create
a lot of scheduling overhead. However, in practice, we will
not need to update the optimum scheme frequently unless
there is a major change in the configuration of the sensor
network.

4. EFFECTS OF CHANNEL CODING

In the preceding sections, we have limited our consideration
to uncoded transmissions. In this section, we will examine
the performance limit of our reconstruction problem when
error control codes are adopted before the quantized bits en-
ter the BSC. The total energy budget for RF transmission of
A ∈ [0, 1] is again constrained to be E . The energy consump-
tion of the circuit electronics will be neglected here for clarity
in exposition.

4.1. Singlemeasurement transmission

Suppose now that A is quantized to NQ bits as in (1), AQ =
∑ NQ

i=1bi2
−i, and that a (2NQ ,N) channel code is constructed

to transmit the NQ bits over the BSC by using the channel

N times. Letting P(N)
e denote the average error probability

of maximum likelihood (ML) decoding and Â := ∑ NQ

i=1b̂i2
−i

denote the reconstruction of A at the fusion center, we have
the following upper bound for the reconstruction error |A−
Â| at the fusion center:

E
[|A− Â|] = (

1− P(N)
e

)
E
[|A− Â| | correct decoding

]

+ P(N)
e E

[|A− Â| | decoding error
]

≤ (
1− P(N)

e

)
E
[∣
∣A− AQ

∣
∣
]

+ P(N)
e ·1

≤ 2−NQ + P(N)
e ,

(41)

where in deriving (41) we have used the fact that A and Â
both lie in [0, 1].

In order to proceed, we need the following result from
[21, Chapter 5].

Theorem 1 (Random coding theorem). For a discrete mem-
oryless channel (X, p(x | y),Y), there exists a (eNR,N) block
channel code with average error probability ofML decoding sat-
isfying

P(N)
e ≤ e−NEr (R), (42)

where Er(R) is the random coding exponent which is defined as

Er(R)= max
ρ∈[0,1]

max
p(x)

[

−ln
∑

y∈Y

[
∑

x∈X
p(x)p(y | x)1/(1+ρ)

]1+ρ

−ρR
]

.

(43)

The random coding exponent for a BSC with cross-over
probability ε < 1/2 is [21]

Er(R, ε) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tε(δ)−H(δ),

R = ln 2−H(δ), ρ ∈ [0, 1],

ln 2− 2 ln (
√
ε +

√
1− ε)− R,

R < ln 2−H
( √

ε√
ε +

√
1− ε

)

,

(44)

where δ := ε1/(1+ρ)/[ε1/(1+ρ) + (1− ε)1/(1+ρ)], H(δ) :=
−δ ln δ−(1−δ) ln (1−δ), andTε(δ) := −δ ln ε−(1−δ) ln (1−
ε).

In our case, since we use the channel N times, the bit
energy per transmission will be effectively reduced to E /N ,
and thus, the equivalent BSC’s cross-over probability will
become ε(E /(NN0)). For our (2NQ ,N) channel code, the
rate in nats/channel use will be (NQ/N) ln 2. Thus, applying
Theorem 1 with an appropriate channel code, we can use
(42) to bound (41) as

E
[|A− Â|] ≤ 2−NQ + e−NEr ((NQ/N) ln 2,ε(E /NN0))

:= fcode
(
NQ,N

)
.

(45)
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Clearly, NQ and N can be optimally selected to minimize
fcode(NQ,N) and thus the reconstruction error. In Section 5,
we will compare this upper bound with the bound achieved
with the uncoded transmission schemes we developed in
Section 2.

4.2. Multiple simultaneously transmitted
measurements

The exponentially decreasing behavior of the decoding er-
ror probability described by the random coding theorem fa-
vors large block sizes. However, in the single measurement
transmission case, when the block size N becomes large, the
capacity of the underlying BSC goes to zero. To resolve this
tradeoff, we can transmit multiple measurements together.
In practice, for some application scenarios, it may not be
necessary for the remote sensor to transmit its measurement
back to the fusion center immediately, that is, one can wait
until L > 1 measurements {A1,A2, . . . ,AL} ∈ [0, 1]L are ac-
quired, and then transmit them jointly to the destination.
The critical difference here is that the energy budget increases
to LE . We assume no probabilistic model for the source and,
again, employ the universal uniform quantizer to quantize
each measurement to NQ bits. As a result, the total number
of bits to be transmitted is LNQ. Adopting an appropriate

(2LNQ ,LN) channel code with error probability P(LN)
e , as in

(41) and (45), we thus obtain

1
L

L∑

l=1

E
[∣
∣Al − Âl

∣
∣
] ≤ 2−NQ + P(LN)

e

≤ 2−NQ + e−LNEr ((NQ/N) ln 2,ε(LE /(LNN0)))

:= f̃code
(
NQ,N

)
.

(46)

Comparing the bound for a single measurement trans-
mission, fcode(NQ,N) in (45), with the bound for multiple

simultaneously transmitted measurements, f̃code(NQ,N) in
(46), we can see

fcode
(
NQ,N

)
> f̃code

(
NQ,N

)
,

when Er

(
NQ

N
ln 2, ε

(
E

NN0

))

> 0, ∀L > 1.

(47)

Equation (47) shows clearly that it is preferable to transmit
multiple measurements simultaneously in energy-limited
communication settings. However, when we directly trans-
mit uncoded quantization bits, there is no preference be-
tween transmitting a single or multiple measurements.

Certainly, judicious selection of NQ or/and N should

minimize the f̃code(NQ,N) bound to ensure reliable perfor-
mance in reconstruction. To this end, let us explore further

the characteristics of f̃code(NQ,N) with large L. As long as

R < ln 2 − H(ε), we know that Er(R, ε) > 0, see (44). Thus,
as L→∞, we have

lim
L→∞

{

arg min
NQ

2−NQ + e−LNEr ((NQ/N) ln 2,ε(LE /(LNN0)))
}

= N
(

1− H
(
ε
(
E /NN0

))

ln 2

)

:= N∗
Q (N);

(48)

lim
L→∞

{

min
NQ

2−NQ + e−LNEr ((NQ/N) ln 2,ε(LE /(LNN0)))
}

= 2−N
∗
Q (N).

(49)

Equation (49) implies that the number of channel uses to
transmit one measurement can be optimally chosen to be

N∗ = arg max
N

N
(

1− H
(
ε
(
E /
(
NN0

)))

ln 2

)

. (50)

Accordingly, the optimal number of quantization bits is
N∗

Q (N∗) given by (48).
In Section 5, we will study how L, the number of simul-

taneously transmitted measurements, affects the achievable
distortion in source reconstruction with numerical exam-
ples.

5. NUMERICAL EXAMPLES

In this section, we provide numerical examples to corrobo-
rate the analytical results we derived in the previous sections.

5.1. Optimal number of quantization bits

As discussed in Sections 2.1 and 2.3.1, when the total en-
ergy budget is uniformly allocated among quantization bits,
there is an optimal value of N which minimizes the mean-
absolute reconstruction error upper bound both when the
circuit energy is neglected and also when circuit energy con-
sumption is accounted for. Here, we first consider the chan-
nel to be AWGN and use BPSK modulation. The BSC cross-
over probability as a function of the bit energy-to-noise ratio
is ε(γ) = Q(

√
2γ). Figure 3 depicts the bound f (N) in (5) to-

gether with the simulated actual mean-absolute reconstruc-
tion error E|A−Â|, and the bound fc(N) in (21) with E /N0 =
20 and T0Pon/N0 = 1. It can be seen that the bound f (N) is
pretty tight and numerical minimization yields Nopt = 7 in
the first case and Nopt = 6 in the second case. In Figure 3, we
also plot f (N) and fc(N) when ε(γ) = (1/2)e−γ/2, which is
the BER when binary orthogonal modulation is used along
with envelope detection; Nopt here turns out to be 5 and 4,
respectively.

5.2. Optimal bit energy allocation

In Section 2.2, we derived an optimal energy allocation
scheme per bit to minimize the reconstruction error. Con-
sidering envelope detection of binary orthogonal signals as
in Section 2.2.2, with E /N0 = 20 and N = 10, we can find the
optimal energy allocation by solving the convex optimization
problem in (8) using the interior-point method outlined in
[16, Chapter 11]; Figure 4 depicts the result.
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Figure 3: The bound of E|A− Â| whose minimum yields the opti-
mum number of quantization bits.

For the same ε(γ) = (1/2)e−γ/2, Figure 5 compares the
reconstruction error between the optimal energy allocation
scheme in (8) and the equal energy distribution scheme in
(5) with a different number of quantization bits N . We ob-
serve that the reconstruction error decreases to a floor as
N increases with optimal energy allocation, which is differ-
ent from the equal energy allocation scheme. The intuitive
explanation for this behavior is that as N increases, equal
energy allocation increases the cross-over probability for all
transmitted bits; on the other hand, optimal energy alloca-
tion does not experience this problem. As already noticed in
Figure 4, when N is large enough, the optimal scheme just
assigns no (or very little) energy to less significant bits.

In Figure 5, we also plot the reconstruction error as a
function of N when circuit energy consumption is taken into
account with optimal allocation of the residual energy to the
quantization bits as in (23); here we take T0Pon/N0 = 1. The
optimal number of quantization bits in (24) is easily seen to
be Nopt = 6.

5.3. Optimal energy allocation among sensors

Suppose that K = 10 sensors are deployed with local
observation noise variances denoted by σ2

1, σ2
2, . . . , σ2

10, the
path loss exponent of the wireless channel is κ = 2 (free
space), and accordingly, the cross-over probability is given

by εk(γ) = Q(
√

2γC/d2
k), where dk is the distance between

sensor k and the fusion center. Parameter C is set to be 1
here. In the following, we set the total energy budget to be
ET/N0 = 200.

5.3.1. IdenticalNk = N , k = 1, . . . ,K

Using the aforementioned parameters, Figure 6 compares the
normalized value of the objective function in (31) between
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Bit index: i

0
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Figure 4: Optimal energy allocation over a fixed number of quan-
tization bits (N = 10).
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Figure 5: (a) Reconstruction error with optimal energy allocation
among bits as in (8). (b) Reconstruction error with equal energy
allocation as in (5). (c) Reconstruction error in (23) taking into ac-
count the energy consumption of circuit electronics.

the equal energy allocation and the optimal energy allocation
scheme for a variable number of bits N while choosing a spe-

cific set of values for {dk}10
k=1 and {σ2

k}
10
k=1. For this particular

setup, the optimal value of N in (37) turns out to be Nopt = 6.

With different sets of values for {dk}10
k=1 and {σ2

k}
10
k=1, when

N is accordingly chosen to be optimal, the corresponding op-
timal energy allocation schemes, that is, the numerical solu-
tions of the convex problem in (31), are depicted in Figure 8.
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Figure 6: With σ2
k = 0.01× k, k = 1, 2, . . . , 10, and {d1,d2, . . . ,d10}

= {1, 5, 1, 5, 1, 1, 5, 5, 1, 5}. (a) Normalized value of the objective
function in (31) with optimal energy allocation among sensors. (b)
Normalized value of the objective function in (31) with equal en-
ergy allocation among sensors. (c) Normalized value of the objec-
tive function in (38) with joint optimization.

5.3.2. Jointly optimized {Nk, xk}Kk=1

As explained in Section 3.2, we can find the optimal Nk and
xk, k = 1, . . . ,K , jointly by utilizing Algorithm 1. The result-
ing optimal energy allocation scheme and the optimal num-
ber of quantization bits per sensor are depicted in Figures
8 and 9, respectively. Through joint optimization, the nor-
malized minimum value of the objective function in (38) is
plotted in Figure 6. The gain over the case where each sensor
transmits the same number of quantization bits is clear. Fur-
thermore, we have also plotted the simulated mean-square
estimation error of different schemes in Figure 7, which again
demonstrates the benefits of energy and quantization opti-
mization.

5.4. Effects of channel coding

5.4.1. Single measurement transmission

With envelope detection of binary orthogonal signals, the
underlying BSC’s cross-over probability is ε(γ) = (1/2)e−γ/2,
where γ denotes the bit energy-to-noise ratio. Assuming a
total energy budget E /N0 = 100, the reconstruction error
upper bound in (41) is depicted in Figure 10, where we also
plot the optimal bounds achieved with uncoded transmis-
sion schemes (cf. (5) and (8)). From these plots, it is evident
that the bound fcode(NQ,N) derived for randomly coded
transmission is not tight and is easily achieved with uncoded
transmissions.
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Figure 7: With σ2
k = 0.01× k, k = 1, 2, . . . , 10, and {d1,d2, . . . ,d10}

= {1, 5, 1, 5, 1, 1, 5, 5, 1, 5}. (a) Simulated mean-square estimation
error with equal energy allocation among sensors. (b) Simulated
mean square estimation error with joint optimization of energy al-
location and a number of quantization bits per sensor. (c) Simulated
MSE of the unquantized BLUE.
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Figure 8: Optimal energy allocation scheme for Nk = Nopt, for all
k, and jointly optimized Nk , k = 1, . . . ,K . Case I: dk = k/4, σ2

k =
0.01, for all k, Nopt = 6. Case II: dk = 1, σ2

k = 0.01 × k, for all k,
Nopt = 8. Case III: {d1,d2, . . . ,d10} = {1, 5, 1, 5, 1, 1, 5, 5, 1, 5} and,
σ2
k = 0.01× k, for all k, Nopt = 6.
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Figure 10: Single measurement transmission.

5.4.2. Multiple measurements transmitted together

Keeping the same set of parameters, the bound provided in
(46) is plotted in Figure 11 for different values of L. We ob-
serve that with optimal choices of NQ and N , the uncoded
performance bound is easily achieved by transmitting mul-
tiple source samples together with appropriate channel cod-
ing. The performance gap between uncoded and coded cases
can be large. In this particular example, the reconstruction
error with coding can be less than 1% of the one without
coding.

6. CONCLUSIONS

Motivated by stringent energy requirements that are preva-
lent in wireless sensor networks, we have pursued optimal
quantization at sensor nodes to effect optimal reconstruction
at the fusion center. (De)modulation and propagation were
captured through the use of the classical binary symmetric
channel model. In particular, we have found the number of
quantization bits for minimizing the mean-absolute recon-
struction error bound in a point-to-point link when each
bit is allocated the same energy. We also derived an optimal
scheme for energy allocation across quantization bits. Both
transmission energy as well as circuit energy were considered.
When multiple sensors collaborate to estimate a parameter in
noise, we also obtained the optimal energy allocation scheme
to distribute the limited total energy among different sensors
when each sensor assigns the same energy to all its quantiza-
tion bits. It turned out that this allocation scheme depends
on the prescribed number of quantization bits {Nk}Kk=1, and
thus the optimal {Nk}Kk=1 can also be found with the help
of our convex optimization formulation. We also studied the
effects of channel coding on energy constrained quantiza-
tion and optimized the number of quantization levels and
the number of channel uses per source sample.

APPENDIX

A. PROOF OF f0(x∗n ;n) < f0(x∗ñ ; ñ), FOR ALLN > Ñ

Because N > Ñ , we can construct the following N-dimen-
sional vector

xN := [
x1, . . . , xN

]T = [
x∗T
Ñ

, 0, . . . , 0
]T

, (A.1)

where x∗
Ñ

:= [x̃∗1 , . . . , x̃∗
Ñ

]T is the optimal solution of (8)

when transmitting Ñ quantization bits. By construction, xN
is a feasible point for the optimization problem in (8) when
transmitting N bits because

xi ≥ 0, i = 1, . . . ,N ,
N∑

i=1

xi =
Ñ∑

i=1

x̃∗i = 1. (A.2)

As x∗N is the optimal solution when transmitting N bits,
we have

f0
(
xN ;N

) ≥ f0
(
x∗N ;N

)
. (A.3)

We can write down f0(xN ;N) explicitly as

f0
(
xN ;N

) = 2−N +
N∑

i=1

ε
(
Exi
N0

)

2−i

= 2−N +
Ñ∑

i=1

ε
(
E x̃∗i
N0

)

2−i +
N∑

i=Ñ+1

ε(0)2−i

= 2−N − 2−Ñ + f0
(
x∗
Ñ

; Ñ
)

+
1
2

N∑

i=Ñ+1

2−i

= 2−N−1 − 2−Ñ−1 + f0
(
x∗
Ñ

; Ñ
)
< f0

(
x∗
Ñ

; Ñ
)

,

(A.4)
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Figure 11: Multiple measurements transmitted together.

where we have used the property that ε(0) = 1/2. From (A.3)
and (A.4), it follows readily that f0(x∗N ;N) < f0(x∗

Ñ
; Ñ).
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