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morphology of the data provided by the multisensor geometry of the so-called multichannel superconducting quantum
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1. INTRODUCTION

One focus in the field of prenatal diagnostics is the
investigation of fetal developmental brain processes that
are limited by the inaccessibility of the fetus. Currently,
there exist two techniques for the study of fetal brain
function in utero, namely, functional magnetic resonance
imaging (fMRI) [1, 2] and fetal magnetoencephalography
(fMEG) [3–6]. There are several advantages and disad-
vantages of both techniques. The fMEG, for instance,
is a completely passive and noninvasive method with
superior temporal resolution and is currently measured
by a multichannel superconducting quantum interference
device (SQUID) system, see Figure 1. However, the fMEG
is measured in the presence of environmental noise and
various near-field biological signals and other interference
as, for example, maternal magnetocardiogram (mMCG),
fetal magnetocardiogram (fMCG), uterine smooth muscle
(magnetomyogram = MMG), and motion artifacts [7, 8].
After the removal of environmental noise [9], the emphasis
is on the detection and separation of mMCG, fMCG, and

MMG. Solving this detection problem seriously is the main
prerequisite for observing and analyzing the fMEG. In the
majority of reported work, the MCG was reduced by adaptive
filtering and/or noise estimation techniques [10, 11]. In [10],
different algorithms for elimination of MCG from MEG
recordings are considered, for example, direct subtraction
(DS) of an MCG signal, adaptive interference cancellation
(AIC), and orthogonal signal projection algorithms (OSPAs).
All these approaches and their slightly modified versions
are used for fMEG detection. In this paper, we present a
different data processing technique that reliably detects both
the mMCG + fMCG and MMG + “motion artifacts” by
involving the spatiotemporal morphology of the data given
by the multisensor geometry information. Mathematically,
the main ingredients of our procedure are the so-called
multi-α-modulation frames (for which the construction relies
on the theory of coorbit spaces) for an optimal/sparse
signal expansion and the concept of joint sparsity mea-
sures.

A sparse representation of an element in a Hilbert or
Banach space is a series expansion with respect to an
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Figure 1: Multichannel superconducting quantum interference
device (SQUID) system.

orthonormal basis or a frame that has only a small number of
large/nonzero coefficients. Several types of signals appearing
in nature admit sparse frame expansions, and thus sparsity
is a realistic assumption for a very large class of problems.
Recent developments have shown the practical impact of
sparse signal reconstruction (even the possibility to recon-
struct sparse signals from incomplete information [12–14]).
This is in particular the case for the medical multichannel
data under consideration that usually consist of pattern
representing specific biomedical information (mMCG and
fMCG). But multichannel signals (i.e., vector valued func-
tions) may not only possess sparse frame expansions for
each channel individually, but additionally (and this is the
novelty) the different channels can also exhibit common
sparsity patterns. The mMCG and fMCG exhibit a very
rich morphology that appears in all the channels at the
same temporal locations. This will be reflected, for example,
in sparse wavelet/Gabor expansions [15, 16] with relevant
coefficients appearing at the same labels, or in turn in sparse
gradients with supports at the same locations. Hence, an
adequate sparsity constraint is the so-called common or joint
sparsity measure that promotes patterns of multichannel
data that do not belong only to one individual channel but
to all of them simultaneously.

In order to sparsely represent the MCG data, we propose
the usage of multi-α-modulation frames. These frames have
only been recently developed as a mixture of Gabor and
wavelet frames. Wavelet frames are optimal for piecewise
smooth signals with isolated singularities, whereas Gabor
frames have been very successfully applied to the analysis
of periodic structures. Therefore, the α-modulation frames
have the potential to detect both features at the same time,

so they seem to be extremely well suited for the problems
studied in this paper. Indeed, the numerical experiments
presented here definitely confirm this conjecture.

This paper is organized as follows. In Section 2, we briefly
recall the setting of α-modulation frames as far as this is
needed for our purposes. Then, in Section 3, we explain how
these frames can be used in multichannel data processing
involving joint sparsity constraints. Finally, in Section 4, we
present the numerical experiments.

2. COORBIT THEORY AND α-MODULATION FRAMES

In this section, we review the basic that provides the so-
called α-modulation frames. We propose to treat the medical
data analysis problem with this specific kind of frame
expansions since varying the parameter α allows to switch
between completely different frame expansions highlighting
different features of the signal to be analyzed while having
to manage only one frame construction principle. The focus
is not yet on multichannel data approximation but rather
on the basic methodologies that apply for single-channel
signals but can simply be extended to multichannel data (in
Section 3).

In general, the motivation (and central issue in applied
analysis) is the problem of analyzing and approximating
a given signal. The first step is always to decompose the
signal with respect to a suitable set of building blocks.
These building blocks may, for example, consist of the
elements of a basis, a frame, or even of the elements of
huge dictionaries. Classical examples with many important
practical applications are wavelet bases/frames and Gabor
frames, respectively. The wavelet transform is very useful to
analyze piecewise smooth signals with isolated singularities,
whereas the Gabor transform is well-suited for the analysis
of periodic structures such as textures. Quite surprisingly,
there is a common thread behind both transforms, and that
is a group theory. In general, a unitary representation U of a
locally compact group G in a Hilbert space H is called square
integrable if there exists a function ψ ∈H such that

∫
G

∣∣〈ψ,U(g)ψ〉H
∣∣2
dμ(g) <∞, (1)

where dμ denotes the (left) Haar measure on G. In this case,
the voice transform

Vψ f (g) := 〈 f ,U(g)ψ〉H (2)

is well defined and invertible on its range by its adjoint. It
turns out that the Gabor transform can be interpreted as the
voice transform associated with a representation of the Weyl-
Heisenberg group in L2, whereas the wavelet transform is
related with a square-integrable representation of the affine
group in L2.

Since both transforms have their specific advantages, it is
quite natural to try to combine them in a joint transform.
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Figure 2: Left: second component, generated by combination of two sinusoidal functions (7 Hz and 0.6 Hz). The different amplitudes
correspond to signals of the different channels. Right: geometric visualization of the SQUID device with 151 sensors (coils). The color
encodes the Gaussian weighting, that is, the influence of the synthetic background signal. The center of appearance of the synthetic signal is
marked by a circle.

One way to achieve this would be to use the affine Weyl-
Heisenberg group GaWH which is the set R2+1 × R+ equipped
with group law

(q, p, a,ϕ) ◦ (q′, p′, a′,ϕ′)

= (q + aq′, p + a−1p′, aa′,ϕ + ϕ′ + paq′
)
.

(3)

This group has the Stone-Von-Neumann representation on
L2(R) as follows:

U(q, p, a,ϕ) f (x) = a−1/2e2πi(p(x−q)+ϕ) f
(
x − q

a

)

= e2πiϕTxMωDa f (t),

(4)

where

Mω f (t) = e2πiωt f (t), Tx f (t) = f (t − x),

Da f (t) = |a|−1/2 f
(
t

a

)
,

(5)

which obviously contains all three basic operations, that is,
dilations, modulations, and translations. Unfortunately, U is
not square integrable. One way to overcome this problem is
to work with representations modulo quotients. In general,
given a locally compact group G with closed subgroup H ,
we consider the quotient group X = G/H and fix a section
σ : X → G. Then, we define the generalized voice transform

Vψ f (x) := 〈 f ,U(σ(x))ψ〉H . (6)

In the case of the affine Weyl-Heisenberg group, it has
been shown in [17] that by using the specific group H :=

{(0, 0, a,ϕ) ∈ GaWH} and the specific section σ(x,ω) =
(x,ω,β(x,ω), 0), β(x,ω) = (1 + |ω|)−α, α ∈ [0, 1), the
associated voice transform (6) is indeed well defined and
invertible on its range. Hence, it gives rise to a mixed form
of the wavelet and the Gabor transform, and it also provides
some kind of homotopy between both cases. Indeed, for
α = 0, we are in the classical Gabor setting, whereas the case
α = 1 is very close to the wavelet setting (see, e.g., [17] for
details).

Once a square-integrable representation modulo quo-
tient is established, there is also a natural way to define
associated smoothness spaces, the so-called coorbit spaces,
by collecting all functions for which the voice transform
has a certain decay, see [18–20]. More precisely, given some
positive measurable weight function v on X and 1 ≤ p ≤ ∞,
let

Lp,v(X) := { f measurable : f v ∈ Lp(X)
}
. (7)

Then, for suitable ψ, we define the spaces

Hp,v := { f : Vψ
(
A−1
σ f

) ∈ Lp,v
}

,

Aσ f :=
∫
X

〈
f ,U(σ(x))ψ

〉
HU(σ(x))ψ dμ,

(8)

where dμ denotes a quasi-invariant measure on X . In the
classical cases, that is, for the affine group and the Weyl-
Heisenberg group, one obtains the Besov spaces and the
modulation spaces, respectively. In the setting of the affine
Weyl-Heisenberg group and the specific case vs(ω) = (1 +
|ω|)s, the following theorem has been shown in [17].
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Figure 3: Measured spontaneous activity of selected individual channels. Top row: channel 1 corresponds to coil number 20, and channel 2
corresponds to coil number 40. Middle row: channel 1 corresponds to coil number 80, and channel 2 corresponds to coil number 40. Bottom
row: channel 1 corresponds to coil number 40, and channel 2 corresponds to coil number 41. It can be clearly observed that the neighboring
channels have similar structures, whereas channels with large geometric distance have completely different structures.
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Figure 4: Synthetic sinusoidal signals of selected individual channels. Top row: channel 1 corresponds to coil number 20, and channel
2 corresponds to coil number 40. Middle row: channel 1 corresponds to coil number 80, and channel 2 corresponds to coil number 40.
Bottom row: channel 1 corresponds to coil number 40, and channel 2 corresponds to coil number 41. Due to the Gaussian weighting,
the neighboring channels have similar amplitudes, whereas channels with large geometric distance have significantly different amplitudes
(attenuation).
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Figure 5: Top row: signal to be analyzed. Second to bottom row: ICA decomposition of generated signal “spontaneous activity + sinusoidal
signal,” where the maximum amplitude of the synthetic signal component is 125 fT.

Theorem 1. Let 1 ≤ p ≤ ∞, 0 ≤ α < 1, and s ∈ R. Let
ψ ∈ L2 with suppψ̂ compact and ψ̂ ∈ C2. Then the coorbit
spacesHp,vs−α(1/p−1/2),α are well defined and can be identified with
the α-modulation spacesMs,α

p,p, which are defined by

M
s+α(1/q−1/2),α
p,p (R)={f∈S′(R) :

〈
f ,U(σ(x,ω))ψ

〉∈Lp·vs(R
2)
}
.

(9)

Consequently, the α-modulation spaces are the natural
smoothness spaces associated with representations modulo
quotients of the affine Weyl-Heisenberg group.

When it comes to practical applications, then one can
only work with discrete data, and therefore it is necessary
to discretize the underlying representation in a suitable
way. Indeed, in a series of papers [18–20], Feichtinger and
Gröchenig have shown that a judicious discretization gives
rise to frame decompositions. The general setting can be
described as follows. Given a Hilbert space H , a countable
set { fn : n ∈ N} is called a frame for H if

‖ f ‖2
H ∼

∑
n∈N
|〈 f , fn〉H |2 ∀ f ∈H . (10)
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Figure 6: Top row: signal to be analyzed. Second to bottom row: ICA decomposition of generated signal “spontaneous activity + sinusoidal
signal,” where the maximum amplitude of the synthetic signal component is 250 fT.

As a consequence of (10), the corresponding operators of
analysis and synthesis given by

F : H −→ 	2(N), f −→ (〈 f , fn〉H
)
n∈N, (11)

F∗ : 	2 −→H , c −→
∑
n∈N

cn fn (12)

are bounded. The composition S := F∗F is boundedly
invertible and gives rise to the following decomposition and

reconstruction formulas:

f = SS−1 f =
∑
n∈N

〈
f , S−1 fn

〉
H fn

= S−1S f =
∑
n∈N
〈 f , fn〉HS−1 fn.

(13)

The Feichtinger-Gröchenig theory gives rise to frame decom-
positions of this type, not only for the underlying represen-
tation space H but also for the associated coorbit spaces.
Indeed, it is possible to decompose any element in the
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Figure 7: Top row: signal to be analyzed. Second to bottom row: ICA decomposition of generated signal “spontaneous activity + sinusoidal
signal,” where the maximum amplitude of the synthetic signal component is 500 fT.

coorbit space with respect to the frame elements (atomic
decomposition), and it is also possible to reconstruct it from
its sequence of moments. For the case of the α-modulation
spaces, these results can be summarized as follows.

Theorem 2. Let 1 ≤ p ≤ ∞, 0 ≤ α < 1 and s ∈ R. Let ψ ∈ L2

with suppψ̂ compact and ψ̂ ∈ C2. Then there exists ε0 > 0 with
the following property. Let Λ(α) := {(xj,k,ωj)} j,k∈Z denote the
point set ωj := pα(εj), xj,k := εβ(ωj)k, 0 < ε ≤ ε0, where

pα(ω) := sgn(ω)
(
(1 + (1− α)|ω|)1/(1−α) − 1

)
, (14)

then the following holds true.

(i) (Atomic decomposition) Any f ∈Ms,α
p,p can be written

as

f =
∑

( j,k)∈Z2

cj,k( f )Txj,kMωjDβα(ωj )ψ, (15)

and there exist constants 0 < C1, C2 < ∞ (independent of p)
such that

C1‖ f ‖Ms,α
p,p

≤
( ∑

( j,k)∈Z2

|cj,k( f )|p(1 + (1− α)| j|)((s−α(1/p−1/2))/(1−α))p

)1/p

≤ C2‖ f ‖Ms,α
p,p
.

(16)
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Figure 8: Top row: signal to be analyzed. Second to bottom row: ICA decomposition of generated signal “spontaneous activity + sinusoidal
signal,” where the maximum amplitude of the synthetic signal component is 1000 fT.

(ii) (Banach Frames) The set of functions {ψj,k} j,k∈Z :=
{Txj,kMωjDβα(ωj )ψ} j,k∈Z2 forms a Banach frame forMs,α

p,p. This
means that the following hold.

(1) There exist constants 0 < C1, C2 < ∞ (independent of
p) such that

C1‖ f ‖Ms,α
p,p

≤
( ∑

( j,k)∈Z2

∣∣〈 f ,ψj,k
〉∣∣p(1+(1−α)| j|)((s−α(1/p−1/2))/(1−α))p

)1/p

≤ C2‖ f ‖Ms,α
p,p
.

(17)

(2) There is a bounded, linear reconstruction operator S
such that

S

((〈
f ,ψj,k

〉
H ′

1,vs−α(1/p−1/2)×H1,vs−α(1/p−1/2)

)
j,k∈Z

)
= f . (18)

In what follows, we apply the concept of α-modulation
frames according to Theorem 2 to our multichannel data.
As we have mentioned in this section, we expect that these
frames provide a mixture of Gabor and wavelet frames: for
small α, the frames are similar to Gabor frames and therefore
suitable for texture detection (e.g., the detection oscilla-
tory/swinging components), whereas for α close to one, the
frames are similar to wavelet frames and therefore suitable
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Figure 9: Top row: signal to be analyzed. Second to bottom row: ICA decomposition of generated signal “spontaneous activity + sinusoidal
signal,” where the maximum amplitude of the synthetic signal component is 2000 fT.

to extract signal components that contain singularities (e.g.,
rapid jumps as they appear in heart beat pattern). By varying
the parameter α, it is possible to pass from one case to the
other.

3. MULTICHANNEL DATA, 	q-JOINT SPARSITY AND
RECOVERYMODEL

Within this section, we focus now on multichannel data
and its representation by different α-modulation frames, the
concept of joint sparsity (detection of common pattern), and
finally on establishing the signal recovery model.

The aspect of common sparsity patterns was quite
recently under consideration, for example, in [21, 22]. In the

framework of inverse problems/signal recovery, this issue was
discussed in [23]. In the latter paper, the authors proposed an
algorithm for solving vector-valued linear inverse problems
with common sparsity constraints. In [24], this approach
was generalized to nonlinear ill-posed inverse problems. In
what follows, we revise this specific iterative thresholding
scheme for solving the MCG signal recovery problem with
joint sparsity constraints. We refer the interested reader to
[24] in which the vector-valued joint sparsity concept is dis-
cussed and for more about the projection and thresholding
techniques used therein to [25–27].

In order to cast the recovery problem as an inverse
problem leading to some variational functional with a
suitable sparsity constraint (forcing the detection of common
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signal pattern), we firstly have to realize that we want to act
on channels of frame coefficient sequences since we aim to
identify those coefficients at labels where specific medical
patterns appear. To this end, we assume we are given n
channels containing m components we wish to recover, that
is, we measure data

y = (y1, . . . , yn) ∈
n�
j=1

Y = Yn, (19)

where each channel can be represented as a sum of m
different components as follows:

yj =
m∑
i=1

f ij . (20)

Suppose f ij belongs, for j = 1, . . . ,n, to some Hilbert
space Xi and that each Xi is spanned by one individual αi-
modulation frame Ψαi = {ψi

λ : λ ∈ Λ(αi)} such that each
f ij ∈Xi can be expressed by

f ij =
∑

λ∈Λ(αi)

(
f ij
)
λ
ψi
λ. (21)

The index λ is a shorthand notation for ( j, k) and Λ(αi) for
the index set corresponding to the specific choice αi. This
construction allows the choice of different smoothness spaces
that are spanned by differently structured frames (different
choice of αi) and involves therewith the fact that fMCG,
mMCG, and MMG are of completely different nature. If
we denote with Fi : Xi → 	2(Λαi) the associated αi-
modulation analysis operator, compare with (11), and with
idi : Xi → Y the embedding operator, we may define
the relationship between the data of the jth channel yj and
the frame coefficients f j = (f1

j , . . . , fmj ) of the m associated
components

yj = Af j = A(f1
j , . . . , fmj ) =

m∑
i=1

idiF
∗
i f ij , (22)

where f ij ∈ 	2(Λ(αi)), that is, f j = (f1
j , . . . , fmj ) ∈⊗m

i=1	2(Λαi). Consequently,

A :
m�
i=1

	2(Λαi) −→ Y via (f1, . . . , fm) −→
m∑
i=1

idiF
∗
i f i,

A∗ : Y −→
m�
i=1

	2(Λαi) via y −→ (F1id∗1 y, . . . ,Fmid∗my).

(23)

Following the arguments in [21, 23] on joint sparsity and
denoting with f i = (f i1, . . . , f in) the vector of frame coefficient
sequences of all n channels with respect to one specific signal
component, a reasonable measure that forces a coupling
of nonvanishing frame coefficients through all n channels
(representing a common morphology) is of the form

Φ(f i) = Φpi,qi,ωi(f i) =
∑

λ∈Λ(αi)

ωi
λ

∥∥(f i·)λ
∥∥pi
qi

(24)

with qi ∈ [1,∞], pi ∈ {1, qi}, ωi
λ ≥ c > 0, where the qi-

norm is taken with respect to the channel index, that is,

∥∥(f i·
)
λ

∥∥
qi
=
( n∑

j=1

∣∣(f ij
)
λ

∣∣qi
)1/qi

. (25)

Forcing for a common sparsity pattern (e.g., common heart
beats), a coupling of the different channels is advantageous
and can be achieved when setting, for example, qi = 2 and
pi = 1.

Summarizing the findings, an m component signal
recovery model in a variational formulation reads as

Jμ,p,q(f) = Jμ,p,q
(

f1, . . . , fm
)

=
n∑
j=1

∥∥yj − Af j
∥∥2
Y + 2

m∑
i=1

μiΦpi,qi,ωi

(
f i
)
,

(26)

or in compact form

Jμ,p,q(f) = ∥∥y − Ãf
∥∥2
Yn + 2

m∑
i=1

μiΦpi,qi,ωi(f i), (27)

where we have defined the following shorthand notations:

Ãy = (Ay1, . . . ,Ayn), μ = (μ1, . . . ,μm),

p = (p1, . . . , pm), q = (q1, . . . , qm).
(28)

An approximation to the original m different signal com-
ponents (mMCG, fMCG, MMG, etc. ) is now computed
by means of the minimizer f ∈ (

⊗m
i=1	2(Λαi))

n
of (26).

Unfortunately, a direct approach toward its minimization
leads to a nonlinear optimality system where the frame
coefficients are coupled. Instead, we propose to replace (26)
by a sequence of functionals that are much easier to minimize
and for which the sequence of the corresponding minimizers
converges at least to a critical point of (26). To be explicit, for
f ∈ (

⊗m
i=1	2(Λαi))

n
and some auxiliary a ∈ (

⊗m
i=1	2(Λαi))

n
,

we define a surrogate functional

J sμ,p,q(f , a) := Jμ,p,q(f) + C‖f − a‖2
(
⊗m

i=1	2(Λαi ))
n − ∥∥Ãf − Ãa

∥∥2
Yn,

(29)

and create an iteration process by

(1) picking some initial guess [f]0 ∈ (
⊗m

i=1	2(Λαi))
n

and
some proper constant C > 0;

(2) deriving a sequence ([f]k), k = 0, 1, . . ., by the
iteration

[f]k+1 = arg min
f∈(

⊗m
i=1	2(Λαi ))

n
J sμ,p,q(f , [f]k), k = 0, 1, 2, . . . .

(30)

It will turn out that the minimizers of the surrogate function-
als are easily computed. In particular, the problem decouples,
and every frame coefficient can be treated separately. In order
to ensure the existence of global minimizers, norm conver-
gence of the iterates [f]k, and regularization properties, some
weak assumptions (exhibiting no significant restriction) have
to be made, see for details [24, 28] and references therein.
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4. ALGORITHMIC IMPLEMENTATION AND
NUMERICAL EXPERIMENTS

In order to specify the numerical algorithm, we have to set
up the constant C and to derive the necessary conditions for
a minimum of J sμ,p,q(f , a), yielding the concrete proceeding of
iteration (30).

The constant C can be easily determined, see [28]. For
f ∈ (

⊗m
i=1	2(Λαi))

n
, we have

〈
Ãf , Ãf

〉
Yn =

n∑
j=1

∥∥Af j
∥∥2
Y. (31)

Since A is bounded, it holds ‖A‖ = ‖A∗‖, and we may
estimate

〈
A∗y,A∗y

〉⊗m
i=1	2(Λαi )

=
m∑
i=1

∥∥Fiid∗i y
∥∥2
	2(Λαi )

≤
m∑
i=1

∥∥Fi∥∥2∥∥id∗i
∥∥2‖y‖2

Y.

(32)

Therefore,

∥∥Ãf
∥∥2 ≤

n∑
j=1

m∑
i=1

∥∥Fi∥∥2∥∥id∗i
∥∥f j
∥∥2⊗m

i=1	2(Λαi )

≤
m∑
i=1

∥∥Fi∥∥2‖id∗i
∥∥2‖f‖2

Yn ,

(33)

and consequently, C must be chosen such that ‖Ã‖2 ≤∑m
i=1‖Fi‖2‖id∗i ‖2 < C. In order to specify the algorithm, we

firstly rewrite (29) as

J sμ,p,q(f , a) = ∥∥C−1Ã∗y + a− C−1Ã∗Ãa− f
∥∥2

(
⊗m

i=1	2(Λαi ))
n

+
2
C

m∑
i=1

μiΦpi,qi,ωi(f i) + rest,

(34)

where the “rest” does not depend on f . The right-hand side
without the “rest” can be rewritten as follows:

J sμ,p,q(f , a)− rest

=
n∑
j=1

∥∥C−1A∗yj + a j − C−1A∗Aa j − f j
∥∥2⊗m

i=1	2(Λαi )

+
2
C

m∑
i=1

μiΦpi,qi,ωi(f i)

=
n∑
j=1

m∑
i=1

∥∥C−1Fiid
∗
i (yj − Aa j) + aij − f ij

∥∥2
	2(Λαi )

+
2
C

m∑
i=1

μiΦpi,qi,ωi(f i)

=
m∑
i=1

{ n∑
j=1

∥∥C−1Fiid
∗
i (yj − Aa j) + aij − f ij

∥∥2
	2(Λαi )

+
2μi
C

Φpi,qi ,ωi(f i)

}

=
m∑
i=1

∑
λ∈Λ(αi)

{ n∑
j=1

∣∣∣(C−1Fiid
∗
i

(
yj − Aa j

)
+ aij − f ij

)
λ

∣∣∣2

+
2μi
C

ωi
λ

∥∥(f i·
)
λ

∥∥pi
qi

}

=
m∑
i=1

∑
λ∈Λ(αi)

{∥∥(C−1Fiid
∗
i

(
y· − Aa·

)
+ ai·

)
λ −

(
f i·
)
λ

∥∥2
2

+
2μi
C

ωi
λ

∥∥(f i·
)
λ

∥∥pi
qi

}
. (35)

For pi = qi, the variational equations completely decouple,
and a straightforward minimization with respect to (f ij)λ
yields the necessary conditions. For pi = 1, the term within
the brackets is of the following general structure:

‖y − x‖2
2 + ν‖x‖q (36)

with x, y ∈ Rn and some ν ∈ R+. The minimizing element
x∗ of this functional is easily obtained, see [23, 24],

x∗ = (I − PBq′ (ν)
)
(y), (37)

where PBq′ (ν) is the orthogonal projection onto the ball Bq′(ν)
with radius ν in the dual norm of ‖·‖q (i.e., 1/q + 1/q′ =
1). In general, the evaluation of PBq′ (ν) is rather difficult and
only for a few individual choices of q given, see [23, 28]. For
the case qi = 2 (on which we will focus), the projection is
explicitly given by

PBq′ (ν)(y) =

⎧⎪⎨
⎪⎩
y, if ‖y‖2 ≤ ν,

ν
y

‖y‖2
, otherwise. (38)

In what follows, we adapt now the algorithm to our
concrete medical signal analysis problem. The 151-channel
SQUID data consist (beside biological background noise)
essentially of four components: fMCG, mMCG, MMG, and
“motion artifacts.” We aim to split the multichannel signal
into fMCG + mMCG and MMG + “motion artifacts.”
Therefore, we set n = 151 and m = 2. Since the fMCG
+ mMCG is assumed to be coupled through all the 151
channels, we put on this signal component (i = 1) the joint
sparsity constraint. This ensures the natural condition that
heart beat patterns appear in all the channels at the same



Stephan Dahlke et al. 13

(temporal) location. On the other hand, since the MMG
+ “motion artifacts” component (i = 2) can be arbitrarily
(but sparsely) localized, we do not put a common sparsity
constraint on this signal component. These constraints setup
can be realized when choosing p1 = 1, q1 = 2, and p2 =
q2 = 1. Finally, we have to select adequate αi-modulation
frames. Since the fMCG + mMCG component is allowed to
consist of rapid jumps (being close to singularities), we prefer
α1 close to one. In contrast, the MMG + “motion artifacts”
component is supposed to be much smoother, we prefer α2

close to zero. For this particular situation, the variational
functional reads as

J s(μ1,μ2),(1,1),(2,1)(f , a)− rest

=
∑

λ∈Λ(αi)

{∥∥(C−1F1id∗1
(
y·−Aa·

)
+a1

·
)
λ−
(

f1
·
)
λ

∥∥2
2

+
2μ1

C
ω1
λ

∥∥(f1
·
)
λ

∥∥
2

+
∥∥(C−1F2id∗2

(
y·−Aa·

)
+a2

·
)
λ−
(

f2
·
)
λ

∥∥2
2

+
2μ2

C
ω2
λ

∥∥(f2
·
)
λ

∥∥
1

}
.

(39)

Defining

Mi(yj , a j) := C−1Fiid
∗
i (yj − Aa j) + aij , (40)

the individual α1-modulation frame coefficients of signal
component 1 are given thanks to (37) and (38) by

(
f1)

λ =
((

f1
1

)
λ, . . . ,

(
f1
151

)
λ

)

= (I − PB2(μ1ω
1
λ/C)

)

× ((M1(y1, a1
))

λ, . . . ,
(
M1(y151, a151

))
λ

)
,

(41)

for all λ ∈ Λ(α1), whereas the α2-modulation frame
coefficients of signal component 2 are given by
(

f2)
λ =

((
f2
1

)
λ, . . . ,

(
f2
151

)
λ

)

= Sμ2ω
2
λ/C

((
M2(y1, a1

))
λ, . . . ,

(
M2(y151, a151

))
λ

)
,

(42)

for all λ ∈ Λ(α2) and where Sμ2ω
2
λ/C

denotes the well-known
nonlinear soft-shrinkage operator (acting on each channel
individually).

With the help of (41) and (42), the iteration (30) can
finally be written as
⎡
⎢⎣
(

f1
)
λ

(
f2
)
λ

⎤
⎥⎦
k+1

=
⎛
⎝
(
I − PB2(μ1ω

1
λ/C)

)((
M1(y1,

[
f1
]
k

))
λ, . . . ,

(
M1

(
y151,

[
f151

]
k

))
λ),

Sμ2ω
2
λ/C

((
M2

(
y1,
[

f1
]
k

))
λ, . . . ,

(
M2

(
y151,

[
f151

]
k

))
λ)

⎞
⎠ .

(43)

Procedure (43) is now applied to the SQUID multichan-
nel data and compared with the ICA-based algorithm JADE.

The data we aim to analyze are for reasons of verification
synthetically generated and consist of two components.
One component is a measured spontaneous activity (fMCG
and mMCG, i.e., fetal and maternal heart beats filtered
with a high-pass filter at 0.5 Hz), see for a few individual
channels Figure 3. The second component is a combination
of two sinusoidal functions (7 Hz and 0.6 Hz, which should
resemble a growing and vanishing uterine contraction, i.e.,
motion artifacts + possible MCG), see for a few individual
channels Figure 4. The sinusoidal signal has its maximum
amplitude at a channel in the center of the SQUID array
whereas the amplitudes of the other sensors were attenuated
by a Gaussian weight function, see Figure 2. The sum of the
two components (spontaneous activity + sinusoidal signal)
forms the data basis to be analyzed. In order to evaluate
advantages and/or disadvantages of the two methods, the
maximum amplitude at the center of appearance of the
synthetic data component was gradually decreased from
2000 fT to 125 fT (2000 fT, 1000 fT, 500 fT, 250 fT, and
125 fT).

For the sake of simple illustration, we have restricted
the visualization of data and reconstruction/decomposition
results to one channel (JADE algorithm) and two channels
(our proposed algorithm). The results of the JADE algorithm
are visualized in Figures 5, 6, 7, 8, and 9 (for one particular
channel). As usual for an ICA analysis, numerous compo-
nents (here 12) are derived. Clearly, it is visible in the figures
that even the fetal and maternal heart beats are completely
decomposed. As a quantitative observation, in Figure 5, a
sinusoidal structure is not reconstructed at all. In Figure 6,
a very noisy version of the sinusoidal structure could be
separated (see 5th row). In the remaining Figures (7 (5th
row), 8 (3rd row), and 9 (3rd row)), the sinusoidal structure
could be sufficiently reconstructed.

The results that we have obtained with the application of
our proposed iteration scheme (43) (setting α1 = 0.9, α2 =
0, and μ1 = μ2 = 0.001) are visualized in Figure 10 (sinu-
soidal signal with maximum 125 fT), 11 (sinusoidal signal
with maximum 250 fT), 12 (sinusoidal signal with maximum
500 fT), 13 (sinusoidal signal with maximum 1000 fT), and
14 (sinusoidal signal with maximum 2000 fT). In order to
show the reconstruction results also for different channels,
we have switched the visualization of the channels. In
particular, we have shown the reconstruction/decomposition
results for channels 80 and 40 in Figure 10, for channels
20 and 40 in Figures 11–13, and for channels 40 and 41 in
Figure 14.

Summarizing the numerical results, we may deduce that
in comparison with the JADE algorithm, our proposed
algorithm recovers all simulated sinusoidal signal structures
(containing no noise contribution as it is the case for
JADE reconstructions). For the critical data examples (with
125 fT, 250 fT, and 500 fT maximum amplitude) in which the
sinusoidal signal component was very weak, the recovered
signal contains for the maximum amplitude of 125 fT at
least cyclic-modulated oscillations (not fitting well with the
shape of the originally generated synthetic signal), and for
250 fT and 500 fT gradually improved recovery results. This
is comparable to the results achieved by the JADE algorithm.
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Figure 10: The reconstruction/decomposition of channels 80 (left) and 40 (right). Top row: data to be analyzed (spontaneous activity
+ sinusoidal signal with maximum 125 fT). Second row: reconstructions f1

1 + f2
1 (left) and f1

2 + f2
2 (right). Third row: fMCG + mMCG

reconstructed component f1
1 (left) and f1

2 (right). Fourth row: MMG + “motion artifacts” reconstructed component f2
1 (left) and f2

2 (right).
Bottom row: residuum (containing noise, contribution of maternal (minor) and partially fetal heart beat components, and background
signals).
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Figure 11: The reconstruction/decomposition of channels 20 (left) and 40 (right). Top row: data to be analyzed (spontaneous activity
+ sinusoidal signal with maximum 250 fT). Second row: reconstructions f1

1 + f2
1 (left) and f1

2 + f2
2 (right). Third row: fMCG + mMCG

reconstructed component f1
1 (left) and f1

2 (right). Fourth row: MMG + “motion artifacts” reconstructed component f2
1 (left) and f2

2 (right).
Bottom row: residuum (containing noise, contribution of maternal (minor) and fetal heart beat components, and background signals).
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Figure 12: The reconstruction/decomposition of channels 20 (left) and 40 (right). Top row: data to be analyzed (spontaneous activity
+ sinusoidal signal with maximum 500 fT). Second row: reconstructions f1

1 + f2
1 (left) and f1

2 + f2
2 (right). Third row: fMCG + mMCG

reconstructed component f1
1 (left) and f1

2 (right). Fourth row: MMG + “motion artifacts” reconstructed component f2
1 (left) and f2

2 (right).
Bottom row: residuum (containing noise, contribution of maternal (minor) and fetal heart beat components, and background signals).
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Figure 13: The reconstruction/decomposition of channels 20 (left) and 40 (right). Top row: data to be analyzed (spontaneous activity
+ sinusoidal signal with maximum 1000 fT). Second row: reconstructions f1

1 + f2
1 (left) and f1

2 + f2
2 (right). Third row: fMCG + mMCG

reconstructed component f1
1 (left) and f1

2 (right). Fourth row: MMG + “motion artifacts” reconstructed component f2
1 (left) and f2

2 (right).
Bottom row: residuum (containing noise, contribution of maternal (minor) and fetal heart beat components, and background signals).
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Figure 14: The reconstruction/decomposition of channels 40 (left) and 41 (right). Top row: data to be analyzed (spontaneous activity
+ sinusoidal signal with maximum 2000 fT). Second row: reconstructions f1

1 + f2
1 (left) and f1

2 + f2
2 (right). Third row: fMCG + mMCG

reconstructed component f1
1 (left) and f1

2 (right). Fourth row: MMG + “motion artifacts” reconstructed component f2
1 (left) and f2

2 (right).
Bottom row: residuum (containing noise, contribution of maternal (minor) and fetal heart beat components, and background signals).
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In particular, for the case of 125 fT maximum amplitude, a
better reconstruction was achieved (JADE has recovered no
sinusoidal signal component at all).
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