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Previous studies dedicated to source localization are based on the spectral matrix algebraic properties. In particular, two
noneigenvector methods, namely, propagator and Ermolaev and Gershman (EG) algorithms, exhibit a low computational load.
Both methods are based on spectral matrix structure. The first method is based on the spectral matrix partitioning. The second one
obtains directly an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a
threshold value. It has been shown that these algorithms are efficient in nonnoisy or high signal to noise ratio (SNR) environments.
However, both algorithms will be improved. Firstly, propagator is not robust to noise. Secondly, EG algorithm that requires the
knowledge of a threshold value between largest and smallest eigenvalues, which are not available as eigendecomposition, is not
performed. In this paper, we aim firstly at demonstrating the usefulness of QR and LU factorizations of the spectral matrix for
these methods and secondly we propose a new way to reduce the computational load of a high resolution algorithm by estimating
only the needed eigenvectors. For this, we adapt fixed-point algorithm to compute only the leading eigenvectors. We evaluate the
performance of the proposed methods by a comparative study.
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1. INTRODUCTION

The most popular high-resolution method for source local-
isation is multiple signal classification (MUSIC) [1, 2]. The
principles of this method are to exploit the structure of the
vector space which is spanned by the measures collected
upon the sensors. This vector space is the direct sum of the
signal subspace and the noise subspace, which are orthogo-
nal. In the MUSIC method, the orthogonality between signal
and noise subspaces is exploited. Source localization is based
on the structure of the spectral matrix of the sensor outputs,
that is, the Fourier domain version of the covariance matrix
of the received signals. To cope with a spatially correlated
additive noise, the appropriate “cumulant matrix” of the sig-
nals [3, 4] is used instead of spectral matrix. In practice, the
main limitation for real-time implementation of the high-
resolution methods is the computational load. In the last
two decades, several algorithms without eigendecomposition
have been proposed [5–8]. In [5], propagator method is
developed. It is based upon spectral matrix partitioning.
In [6, 7], fast algorithms for estimating the noise subspace
projection matrix are proposed. These algorithms require a

prior knowledge of threshold value and an adjustable power
parameter. The problem of the choice of threshold value
is not completely solved. Independently, Bischof and Shroff
[8], and Strobach [9] developed two other noneigenvector
algorithms for source localization based on QR factorization.
All these algorithms [5–9] assume that the number of sources
is known. The existing criteria [10–13] cannot be applied
because the noneigenvector algorithms do not calculate the
eigenvalues of the spectral matrix.

In this paper, we propose new versions of the prop-
agator and EG localization methods [5, 7] which employ
a factorized spectral matrix and which are efficient in
noisy situations. To this end, we use the upper triangular
matrices obtained by the LU or QR factorizations of the
spectral matrix. We also propose a noneigenvector version
of MUSIC algorithm, where singular value decomposition
(SVD) is replaced by a faster algorithm to compute leading
eigenvectors.

Following [8, 9, 14, 15] the upper triangular matrices
obtained by the LU or QR factorizations of the spec-
tral matrix contain the main information concerning the
eigenelements of the spectral matrix. Both methods are
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meant to concentrate all the signal information in the upper-
left corner block matrix of the upper triangular matrix.

We recall that the LU factorization [14, 15] consists
in decomposing the spectral matrix Γ as Γ = LU where
L is a unity lower triangular matrix (“unity” meaning
that LLH = I, where superscript (·)H represents the
Hermitian transposition of (·)) and U is an upper triangular
matrix (UTM). QR factorization consists in decomposing
the spectral matrix Γ as Γ = QR where Q is a unitary
matrix and R is UTM [14, 15]. In both factorizations,
it has been shown that the diagonal elements of R or
U matrices tend to the eigenvalues of the spectral matrix
in decreasing order [14, 15]. We propose to use these
elements to estimate the number of sources and to determine
the threshold value needed in Ermolaev and Gershman
algorithm [7]. We also exploit the benefit of the factorization
algorithm regarding the new rearrangement of the elements
of the spectral matrix in the resulting upper triangular
matrices R or U. All the signal information is focused in
the upper-left corner block matrix of size equal to the
number of sources. This block matrix contains the largest
diagonal elements of the factorized matrix. In other words,
it concentrates the signal information which is scattered in
all spectral matrix elements. This concentration improves the
propagator operator. Indeed, according to the partitioning
procedure defined in the propagator method [5], when we
use R or U, the estimation of the propagator uses this
block matrix. This is in accordance with the principle of
the propagator theory, and the obtained result is similar to
that obtained in the nonnoisy case. This new way leads to
minimize the influence of model errors. This permits the
propagator method to estimate accurately the directions-of-
arrival of the sources in the presence of noise.

We also propose a new solution to accelerate the
subspace-based high-resolution method. A fixed-point algo-
rithm is adapted to compute the leading eigenvectors from
the spectral matrix.

The remainder of the paper is organized as follows:
problem statement is presented in Section 2. In Section 3, we
give an overview of the propagator localization method and
the outline of Ermolaev and Gershman algorithm. Section 4
details improved versions of propagator and EG methods.
In particular it describes the propagator estimation using
LU or QR factorization. It also details the estimation of
the threshold value for the EG method. It presents how
a statistical criterion can be adapted to the estimation of
the number of sources. It provides a solution to accelerate
the subspace-based high-resolution MUSIC method, using
fixed-point algorithm. Section 5 provides a study about
performance analysis of the reviewed methods. Section 6
provides the numerical complexity of the reviewed and pro-
posed algorithms. Comparative results are given in Section 7
on simulated data. Last section concludes the paper.

2. PROBLEM STATEMENT

Consider an array of N sensors receiving the wave field
generated by P (P < N) narrow-band sources in the presence
of an additive noise. The received signal vector is sampled

and the FFT algorithm is used to transform the data into the
frequency domain, we present these samples by [1, 2, 5]

x( f ) = A( f )s( f ) + n( f ). (1)

In the rest of the paper the frequency f is omitted. In (1) x is
the Fourier transform of the array output vector,

s = [s1, . . . , sP
]T

(2)

is the signal source vector, and

n = [n1, . . . ,nN
]
T (3)

is the additive noise vector. The (N × P) matrix

A = [a(θ1), . . . , a(θP)
]

(4)

is the transfer matrix of the sources-sensors array system
with respect to a chosen reference point. The steering vectors
a(θi), where θi, i = 1, . . . ,P, is the DOA of the ith source
measured with respect to the normal of the array. For a linear
uniform array with N sensors the steering vector is

a(θi) = 1√
N

[
1, e− jϕi , e−2 jϕi , . . . , e−(N−1) jϕi

]T
, (5)

where ϕi = 2π f (d/c) sin(θi), d is the sensor spacing, and
c is the wave propagation velocity. Assume that the signals
and the additive noises are stationary and ergodic zero-mean
complex-valued random processes. In addition, the noises
are assumed to be uncorrelated between sensors, and to have
identical variance σ2 in each sensor. It follows from these
assumptions that the spatial (N × N) spectral matrix of the
observation vector is given by

Γ = AΓsAH + Γn, (6)

where

Γ = E
[

xxH
]
,

Γs = E
[

ssH
]
,

Γn = E
[

nnH
] = σ2I,

(7)

where E[·] denotes the expectation operator and I is the (N×
N) identity matrix.

In the following, the propagator and EG algorithms are
presented and improved.

3. OVERVIEWOF EXISTING
NONEIGENVECTORMETHODS

We present in this section two noneigenvector methods,
propagator and “Ermolaev and Gershman” methods.

3.1. Propagatormethod

3.1.1. Principles of propagator method

Propagator method [5, 16] relies on the partition of the
transfer matrix A. Providing that A is full rank P, and the
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first rows are linearly independent, there exists a P× (N −P)
matrix ΠΓ called propagator operator, such that [5]

Ã = ΠH
Γ A, (8)

where A and Ã are the P×P and (N −P)×P block matrices,
respectively, obtained by partitioning the transfer matrix A:

A = [AT
Ã T
]T
. (9)

Define the N × (N − P) matrix DΓ:

DΓ =
[
ΠT

Γ −IN−P
]T

, (10)

where IN−P is the (N − P)× (N − P) identity matrix.
Now, using (8) and (9), we have

DH
Γ A = ΠH

Γ A− Ã = 0. (11)

In other words, the (N −P) columns of DΓ are orthogonal to
the columns of A. This means that the subspace spanned by
the columns of the matrix DΓ is the same as the subspace
spanned by the noise subspace given by the eigenvectors
associated with the (N − P) smallest eigenvalues of matrix Γ.
We then obtain the DOAs of the sources by the peak positions
in the so-called spatial spectrum [5, 14]:

FPr(θ) = [a(θ)H DΓ DH
Γ a(θ)

]−1
. (12)

Equation (12) shows that the propagator algorithm is based
on the noise subspace spanned by the columns of matrix DΓ.
The computation of matrix DΓ requires a prior knowledge of
the sources DOAs ((8) and (10)). In practice, these DOAs are
unknown. However, the matrix DΓ must be estimated only
from the received data [5, 17].

3.1.2. Estimation of the propagator from
the received signals

We define the data matrix X containing all K signal
realizations as X = [x1, . . . , xK ].

Matrix X is partitioned (in the same way as in (9)) as X =
[X

T
X̃
T

]T . The resulting spectral matrix will be expressed as
follows [18]:

Γ =
(
Γ11 + σ2Ip Γ11ΠΓ

ΠH
Γ Γ11 ΠH

Γ Γ11ΠΓ + σ2IN−p

)

=
(

G11 Γ12

Γ21 G22

)

,

(13)

where Γ11 and Γ12 are, respectively, (P×P) and (P× (N−P))
matrices, using the partition of matrix A ((8) and (9)), we

have Γ11 = AΓs A
H

.
In nonnoisy environment (σ2 = 0) in [18], the relation

Γ12 = Γ11ΠΓ is used to estimate ΠΓ:

ΠΓ = Γ−1
11 Γ12. (14)

In the presence of noise, (14) is no longer valid. An
estimation of the matrix ΠΓ is provided by minimizing the

cost function J(ΠΓ) = ‖Γ12 − G11ΠΓ‖2, where ‖·‖ is the
Frobenius norm. The optimal solution is given by

ΠΓ = G−1
11 Γ12. (15)

In practice, the data are generally impaired and the SNR
value is not always high. Then, the performance of propaga-
tor method depends on the signal information contained in
the block matrix G11 with respect to the noise and its linear
dependency with the block matrix Γ12. In [16], a statistical
performance study concerning the propagator method is
presented.

3.2. Ermolaev and Gershmanmethod

The conventional high-resolution algorithms are based on
the noise subspace spanned by the eigenvectors associated
with the smallest eigenvalues of spectral matrix. In order
to reduce the computational load, several methods have
been proposed for estimating the noise subspace without
singular value decomposition (SVD). In [6, 7], the proposed
algorithms are based on the properties of the spectral matrix
eigenvalues. A threshold value and an adjustable parameter
are used in order to make an approximation of noise
subspace projection matrix.

The Ermolaev and Gershman algorithm relies on the
eigenvectors of the spectral matrix:

Γ =
P∑

i=1

λiPi +
N∑

i=P+1

λiPi = VsΛsVH
s + VnΛnVH

n , (16)

where λi, i = 1, . . . ,N , is the ith eigenvalue of Γ and Pi =
vivH

i is the associated ith eigenprojection operator Vi, being
the ith eigenvector. The well-known properties are [1, 2] as
follows.

(i) The smallest eigenvalues of Γ are equal to σ2 with
multiplicity (N − P). Then, we have

λ1 ≥ · · · ≥ λP > λP+1 = λP+2 = · · · = λN = σ2, (17)

(ii) The eigenvectors associated with the smallest eigen-
values are orthogonal to the columns of matrix A. Namely,
they are orthogonal to the signal steering vectors:

Vn =
{

vn+1, vn+2, . . . , vN
} ⊥ {a

(
θ1
)
, a
(
θ2
)
, . . . , a

(
θP
)}

,
(18)

where the columns of the (N × (N − P)) matrix Vn are
the (N − P) eigenvectors associated with the (N − P)
smallest eigenvalues of the spectral matrix. The columns of
matrix span Vn the noise subspace [2]. This orthogonality
is used for estimating the DOAs. Vs = [v1, v2, . . . , vP] is
called the signal subspace, Λs = diag�λ1, . . . , λP� and Λn =
diag�λP+1, . . . , λN�. For any integer value m, the calculation
of the estimate of the noise subspace projection matrix can
be found in details in [7]; we have

VenVH
en = lim

m→∞

((
1
λs
Γ
)m

+ I
)−1

, (19)
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where the threshold value λs is bounded by λP and λP+1:

λP > λS > λP+1. (20)

In (19), index “en” in Ven refers to Ermolaev and
Gershman. Equation (19) shows also that the estimation
of the noise subspace projection matrix depends on the
threshold value λs which separates the largest and the
smallest eigenvalues of the spectral matrix. In practice, the
determination of this value still remains very difficult. In [6],
the inverse power algorithm is used to calculate the threshold
value, which is taken equal to the smallest eigenvalue of the
spectral matrix. However, the stability of this algorithm is not
always ensured. More precisely, the matrix inversibility is not
ensured.

Propagator method is not robust to noise, and Ermolaev
and Gershman method requires the threshold value. In
the next section, we propose to solve both problems by
introducing LU and QR factorization methods.

4. PROPOSED IMPROVEMENTS FOR
NONEIGENVECTORMETHODS

In this section, we show how LU or QR factorization of the
spectral matrix can improve propagator and EG algorithms.
We propose a method for the estimation of the number of
sources and an accelerated version of MUSIC algorithm.

4.1. Propagatormethod using upper
triangularmatrices

In this subsection, we insert an LU decomposition step in
propagator method to improve the robustness to noise of
propagator method. The properties of the upper triangular
matrix are used to minimize the influence of model errors.

Assume that spectral matrix Γ bears LU factorization,
then it is expressed as [19, 20]

Γ = LU =
(

L11 0

L21 IN−P

)(
U11 U12

0 U22

)

; (21)

we have

Γ =
(

L11U11 L11U12

L21U11 L21U12 + U22

)

. (22)

Using (13), (14), and (22), we have

L11U12 = L11U11ΠU. (23)

Finally, the novel estimate of the propagator operator using
LU factorization is

ΠU = U−1
11 U12. (24)

If we calculate the following product,

[
U11 U12

0 U22

] [
U−1

11 U12

−I

]

=
[

0

−U22

]

. (25)

We show that the columns of matrix
[U−1

11 U12

−I

]
form a basis

for the eigenvectors associated with the smallest eigenvalues
and the block matrix U22 contains the smallest eigenvalues of
matrix Γ. This result confirms that the propagator (see (15))
estimated from the LU factorized spectral matrix (24) is in
accordance with the propagator principle.

As mentioned in several papers [12, 19, 21], (25) shows
that the smallest eigenvalues are in the lower-right corner
of U, that is, the block matrix U22. The useful signal
components are concentrated in matrices U11 and U12. This
yields a better robustness to noise compared to the case,
where the classical propagator method is applied.

Following similar calculations with the QR factorization,
we obtain

ΠR = R−1
11 R12. (26)

In the same way as for LU-based method, we have
[

R11 R12

0 R22

][
R−1

11 R12

−I

]

=
[

0
−R22

]

. (27)

As in the LU factorization the smallest eigenvalues are in the
lower-right corner of R, that is, the block matrix R22. The
columns of matrix

[ R−1
11 R12
−I

]
form a basis for the eigenvectors

associated with the smallest eigenvalues and the block matrix
R22 contains the smallest eigenvalues of matrix Γ.

Let the matrices

DU =
[
ΠT

U −I
]T

,

DR =
[
ΠT

R −I
]T
.

(28)

It follows that the DOAs of the sources are given by the
positions of the maxima of the following functions:

FU−Pr(θ) = ⌊aH(θ)DUDH
Ua(θ)

⌋−1
,

FR−Pr(θ) = ⌊aH(θ)DRDH
R a(θ)

⌋−1
.

(29)

Column vectors of DU and DR do not form an orthonormal
basis, as was provided by SVD method. However, in general,
this is not necessary since the roots of FU−Pr(θ) or FR−Pr(θ)
are, respectively, identical for all basis DU or DR of the noise
subspace [8].

Both LU and QR factorization procedures rearrange the
elements of the spectral matrix by concentrating all the
signal information in the upper-left corner block matrix
of the upper triangular matrix, whereas signal information
is scattered arbitrarily in the initial matrix. Indeed, this
block matrix contains the largest elements of the factorized
matrix. This permits the propagator method to keep its good
performance even in the presence of noise.

4.2. Improvement of EGmethod: threshold value
estimation using triangular factorization of
spectral matrix

In this subsection, we show how the upper triangular
matrices can be used to estimate the threshold value in
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the EG algorithm [7]. We propose an analytical solution
based on the linear algebra results developed in [19] and
recently improved in [20] concerning the eigenvalues of the
symmetric and definite positive matrices.

Let us consider that the spectral matrix Γ has a numerical
LU factorization, then its factorization is [19, 20]

Γ = LU =
(

L11 0

L21 IN−P

)(
U11 U12

0 U22

)

. (30)

Following the algebra results published in [19, 20], we have

λP ≥ λmin
(

L11U11
)
 ∥

∥U22
∥
∥
 λP+1, (31)

where L11 is a (P × P) unit lower triangular block matrix,
U11 is (P × P) upper triangular block matrix, L21 , U12, and
U22 are the (N −P)×P, P× (N −P) and (N −P)× (N −P)
block matrices, respectively. λmin

(
L11U11

)
is the minimal

eigenvalue of the (P × P) matrix L11U11. Several papers [19–
22] were dedicated to the question of whether there is a
strategy that will force entries with magnitudes comparable
to those of eigenvalues to concentrate them in the lower-right
corner of U, so that LU factorization reveals the numerical
rank.

The QR factorization of the spectral matrix is [19, 20]

Γ = QR = Q

(
R11 R12

0 R22

)

, (32)

where R is an (N × N) UTM and Q is a (N × N) matrix
with orthonormal columns. R11, R12, and R22 are the (P ×
P), P × (N − P), and (N − P) × (N − P) block matrices,
respectively. Besides being able to reveal rank deficiency of
Γ, a QR factorization with a small R22 block is very useful
in many applications, such as in rank deficient least squares
computation [22]. Following [20] we have the minimal
eigenvalue of R11, denoted by λmin

(
R11
)
, and the maximal

eigenvalue of R22, denoted by λmax
(

R22
) = ∥∥R22

∥∥, bounded
[19, 20, 22] by

λP ≥ λmin
(

R11
)
 ∥

∥R22
∥
∥
 λP+1. (33)

The EG algorithm [7] requires the prior knowledge of the last
signal eigenvalue and the first noise eigenvalue to estimate
the threshold. In this paper, we propose to improve the
traditional EG algorithm concerning crucial threshold value
estimation problem. According to the previous expressions
(25), (27), (31), and (33) the values

∥
∥U22

∥
∥ or

∥
∥R22

∥
∥ can be

chosen as threshold value λs.
The spatial spectrum corresponding to EG algorithm for

source localization becomes

F(θ) = lim
m→∞

[
aH(θ)

((
1
λS
Γ
)m

+ I
)−1

a(θ)
]−1

. (34)

with λS = λUS =
∥
∥U22

∥
∥ or λS = λRS =

∥
∥R22

∥
∥.

We have concluded from numerous simulations that
values close to 10 are convenient. Close values were experi-
mentally shown, in [6, 7, 23], to be the appropriate ones.

4.3. Estimation of the number of sources using
the upper triangularmatrices

In this subsection we show how to estimate the number
of sources. We use the diagonal elements, which are in
decreasing order, of the matrices R or U for this purpose.
We propose to add this step in the noneigenvector source
localization procedures, which currently suffer with this
problem in real-world applications. Indeed, in propagator
method, we need the number of sources to partition matrices
Γ, R, or U.

The estimation of the number P of sources is a delicate
problem. Several methods have been developed. The two
most popular methods are akaike information criterion
(AIC) [10] and minimum description length (MDL) [11].
These algorithms are based on spectral matrix eigenvalues.
This is the main difficulty, while applying the noneigenvector
methods, as the eigenvalues are supposed to be known. In
this paper, we propose to use the diagonal elements of the
UTM obtained thanks to the triangular factorizations of the
spectral matrix for estimating the number of sources. Indeed,
asymptotically the diagonal elements of R or U matrix tend
to the eigenvalues of Γ.

Algorithms for LU factorization based on Gaussian
transformations are given, for example, in [15, Section
3.2] or in [24]. Algorithms for QR factorization based on
Householder and Givens orthogonalization procedures are
described in [15, Sections 5.2 and 5.3] and in [25]. In
this paper, we refer to the Householder orthogonalization
procedure, which is generally preferred to Givens method
because it is twice fast.

The estimation of the number of sources is usually based
on the application of AIC or MDL criteria to the eigenvalues
of the spectral matrix. We propose to use the diagonal
elements of the matrix U or R instead of eigenvalues, as these
elements tend to the eigenvalues [14, 15]. According to [23],
another simple way to estimate the number of sources is
based on the successive comparison of diagonal elements of
the matrix U or R defined as

Λu = diag
[
u1

uN
,
u2

uN
, . . . ,

uN
uN

]
(35)

or

ΛR = diag
[
r1

rN
,
r2

rN
, . . . ,

rN
rN

]
, (36)

where ui and ri for i = 1, . . . ,N are the diagonal elements of
U and R in decreasing order, respectively.

For instance, we have u1 ≥ u2 ≥ · · ·≥ uN and r1 ≥ r2 ≥
· · · ≥ rN .

It is easy to see that lim
t→∞

Λ−1
U = lim

t→∞
Λ−1
R = diag[0, 0, . . . ,

1, 1]. Then, the number of zeros in this diagonal matrix gives
the number of sources. Choosing a too small value of t does
not permit to distinguish clearly between null and 1 values,
choosing a too high value of t increases the computational
load.

According to the numerous simulations we performed,
a value of t less than 10 gives good results, which is in
accordance with the results presented in [6, 7, 23].
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4.4. MUSICwithout eigendecomposition

In this subsection, we present an overview of the traditional
multiple signal characterization (MUSIC) method and pro-
pose a noneigenvector version of MUSIC.

4.4.1. Principles of MUSICmethod

MUSIC method provides the DOAs of the sources by the
peak positions in the so-called spatial spectrum [5, 14]:

Fmusic(θ) = [aH(θ)VnVH
n a(θ)

]−1
. (37)

The maximum values of Fmusic (θ ) yield the source DOAs.
MUSIC requires the eigenvectors of the spectral matrix

that span the noise subspace. Traditionally, singular value
decomposition (SVD) of the spectral matrix is performed.
We propose to replace singular value decomposition by
fixed-point algorithm [26] and thereby accelerate MUSIC
algorithm.

4.4.2. Acceleration of MUSIC algorithm
with fixed-point algorithm

We present the fixed-point algorithm for computing leading
eigenvectors and show how it can be inserted in MUSIC to
compute the noise subspace.

Fixed-point algorithm for computing the P orthonormal
basis vectors is summarized in the seven following steps.

(1) Choose P, the number of eigenvectors to be esti-
mated. Consider spectral matrix Γ and set p ← 1.

(2) Initialize eigenvector vp of size N × 1, for example,
randomly.

(3) Update vp as vp ← Γvp.

(4) Do the Gram-Schmidt orthogonalization process

vp ← vp −
∑p−1

j=1 (vT
P v j)v j .

(5) Normalize vp by dividing it by its norm: vp ← vp/
‖vp‖.

(6) If vp has not converged, go back to step (3).

(7) Increment counter p ← p + 1 and go to step (2) until
p equals P.

The eigenvector with dominant eigenvalue will be measured
first. Similarly, all remaining P−1 basis vectors (orthonormal
to the previously measured basis vectors) will be measured
one by one in a reducing order of dominance. The previously
measured (p − 1)th basis vectors will be utilized to find
the pth basis vector. The algorithm for pth basis vector will
converge when the new value v+

p and old value vP are such
that vT

p v+
P = 1. It is usually economical to use a finite

tolerance error to satisfy the convergence criterion | vT
P v+

P −
1 | < δ, where δ is a prior fixed threshold and |·| is the
absolute value. Let Vs = [v1, v2, . . . , vP] be the matrix whose
columns are the P orthonormal basis vectors. Then, Vs is the
subspace spanned by the P eigenvectors associated with the
largest eigenvalues. It is also called ”signal subspace.” The
projector onto the noise subspace spanned by the (N − P)

eigenvectors associated with the (N −P) smallest eigenvalues
is I − VsVH

s = V f nVH
f n. This estimated projector can be used

in (37). In V f n and VH
f n, index “ f n” refers to fixed point.

5. PERFORMANCE ANALYSIS OF
THE CONSIDERED ALGORITHMS

In this section, we investigate the performance of the
considered methods in terms of mean-squared error of the
source bearing estimates. This investigation is inspired by
previous results in [27–29].

A common model for the null spectrum function
associated with the propagator, EG algorithm as well as with
MUSIC is

M(θ) = aH(θ)Ba(θ) , (38)

where B = D DH with D = DΓ, DU , or DR or B =
Vn VH

n , B = V f nVH
f n, or B = VenVH

en

The DOAs are the arguments of the minima of M(θ),
when no perturbation affects matrix B. When noise is present
in the data, or when there are some uncertainties on the data
model, the function from which we search for the minima in
order to determine the DOA estimates is

M̂(θ) = aH(θ)B̂a(θ) (39)

with a first-order expansion of the first derivative M̂′(θ) of

M̂ (θ) around the bearing estimates θ̂p and with a first-

order expansion B̂ = B + ΔB it has been shown in [28] that

the error on the bearing estimates, Δθp = θp− θ̂p, is given by

Δθp = −
Real

(
aH
(
θp
)
ΔBg

(
θp
))

gH
(
θp
)

Bg
(
θp
) , (40)

where g(θ) is the vector whose components are the first
derivative of the components of a(θ). In order to compute
the DOA estimation error (40), it is necessary to evaluate
matrix ΔB when the data matrix is perturbed by X = X f +
ΔX, where X = [x1, . . . , xK ] with K number of snapshots
of measurement vectors x and X f is the data matrix with
no perturbation and where ΔX is the additive perturbation
matrix. From the partition (9), we can write X f = [ X

T
f X̃T

f ]T .
Following the calculation given in [27, 28], in the case

of the MUSIC method using SVD, that is, B = VnVH
n , the

authors of [28] have shown that

Δθp = −
Real

(
aH
(
θp
)

T1ΔXHBg
(
θp
))

gH
(
θp
)

Bg
(
θp
) (41)

with T1 = VsΛ−1
s VH

s , Vs = [v1, . . . , vP], Λs = diag[λ1, . . . ,
λP] which gives the error on the bearing estimates for the
EG and fixed point, by replacing B by VenVH

en and V f nVH
f n,

respectively.
Following the same calculations [27, 28], we obtain for

the propagator method

Δθp = −
Real

(
aH
(
θp
)

T2ΔXHDDHg
(
θp
))

gH
(
θp
)

DDHg
(
θp
) (42)
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with D = DΓ, DU, or DR

T2 = −
[

(X f X
H
f )−1·X f

0

]

. (43)

In [28, 29], the MSE, that is, E[|Δθp|2] has been derived
from (41) for an additive perturbation matrix ΔX with zero-
mean uncorrelated random components with equal variance
σ2 (see [28, 29]), for the MUSIC method, we have

E
[∣∣Δθp

∣∣2] = σ2 aH
(
θp
)

T1TH
1 a
(
θp
)

2gH
(
θp
)

Bg
(
θp
) (44)

with B = VenVH
en.

When EG method is considered B = VenVH
en, and

when MUSIC with fixed-point algorithm is considered, B =
V f nVH

f n.
We easily deduce that the MSE expressions are

E
[∣∣Δθp

∣
∣2]=σ2

(
gH
(
θp
)

DDHDDHg
(
θp
))

aH
(
θp
)

T2TH
2 a
(
θp
)

2
(

gH
(
θp
)

DDHg
(
θp
))2

(45)

with D = DΓ, DU, or DR.
We therefore provided the expressions of the error

((41) and (42)) and variance ((44) and (45)) for the DOA
estimation by the considered methods.

6. ALGORITHM COMPLEXITIES

In this version, we provide the theoretical expressions of
the numerical complexities of the proposed noneigenvector
methods.

6.1. Propagator and Ermolaev and
Gershmanmethods

The main advantage of the methods presented in this
paper, namely, propagator (29) and Ermolaev and Gershman
methods (34) is their low computational load. Indeed, these
methods do not require the costly eigendecomposition of
the spectral matrix. The complexity of the LU factorization
algorithm is [19, 25] NLU

op (N) ≈ N3/3. The number of opera-
tions required by Householder QR factorization algorithm
[25] is NQR

op (N) ≈ 2N3/3. The number of multiplications
involved in calculating an upper triangular matrix inversion
is N2. Proposed EG method requires consequently around
N3/3 + N2 operations. It is well known that the number of
operations to calculate an (N × N) matrix Γ inversion is
N3, so the original EG method needs around N3 operations.
Considering the number of sensors which is usually used, the
proposed method is faster than the traditional one.

Following [16] the cost involved by the estimation of the
propagator from the spectral matrix of the received signals
(15) is N2P + P2N + P3. The computational load involved
by the LU or QR-based methods to obtain ΠU (24) or ΠR

(26) is P2(N − P + 1). The proposed methods are based
on the LU or QR factorization which requires considerably
less computations than eigendecomposition. This result is
interesting for large arrays with few sources which is often
the case in underwater acoustics.

6.2. MUSIC algorithm and accelerated version

The traditional MUSIC method estimates the noise sub-
space eigenvectors by singular value decomposition (SVD).
Then, we compare the computational complexities of the
traditional MUSIC method and the proposed accelerated
version of MUSIC method through the comparison of
the computational complexities of SVD and fixed-point
algorithm.

One well-known SVD method is the cyclic Jacobi’s
method. The Jacobi’s method which diagonalizes an (N ×
N) symmetric matrix requires around N3 computations.
The computational complexity of fixed-point algorithm is
computed as follows. Let It be the number of iterations used
in converging the algorithm to obtain vp. Then, the estimated
computational complexity is given in the following steps.

(i) The Gram-Schmidt orthogonalization for vp (any
value of p) implies around NP It operations.

(ii) Which yields, for all p = 1, . . . ,P basis vectors,
around NP2 It operations.

(iii) The updating process for all p = 1, . . . ,P basis vectors
implies around N2P It operations.

(iv) Then, the total estimated is then It (NP2 + N2P)
operations.

If dimension N is large compared to P the compu-
tational complexity can be estimated to be around N2.
Then, replacing SVD by fixed-point algorithm, the gain
in terms of computational complexity is of an order of
magnitude. Therefore, MUSIC with fixed-point algorithm
has the smallest computational load.

7. SIMULATION RESULTS

In the following simulations, a linear antenna of N = 15
equispaced sensors d = c/2 f0 is used, where f0 is the source
frequency and c is the velocity of the propagation. Eight
uncorrelated source signals of equal power have DOA values:
5◦, 10◦, 20◦, 25◦, 35◦, 40◦, 50◦, and 55◦, and are temporally
stationary zero-mean with the same central frequency f0 =
115 Hz. The additive noise is not correlated with the signals
and it is also assumed white. The number of snapshots taken
was 1000 and the number of observations was 1000. Taking
an elevated number of snapshots yields a good estimation of
the spectral matrix. Then, the performance of each method
can be evaluated independently from the accuracy of the
estimation of the spectral matrix. Choosing a number of
snapshots equal to 100, such as in [1, 2, 6, 7, 23], does not
change the results.

Reducing these numbers while keeping for them the same
order of magnitude does not change the DOA estimation
performance. The SNR is defined by SNR = 10log10(s/σ2),
where s is the power of the source and σ2 is the noise variance.

The following experiments are carried out in order to
study the performance of the noneigenvector source local-
ization algorithms based on the U or R matrix properties.
This section is divided into two experiments: one is devoted
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Figure 1: ΠΓ-propagator with SNR = 0 dB.

to the propagator method and the other concerns the EG
algorithm.

7.1. Experiment 1: Propagatormethod

In order to study the source localization using the propagator
methods based on the U or R matrices, we have considered
several simulations with different SNR values. Firstly, the
employed propagator methods are calculated using (15),
(24), and (26) with SNR = 0 dB. The number of sources is
estimated from the matrices of (36), parameter t is chosen
as t = 10. We have obtained a correct estimated number of
sources P = 8.

It has been shown that, in the presence of an additive
noise, the performances of the standard propagator (15)
are considerably degraded [16, 18]. However, the results
obtained show that these degradations are not significant
when the proposed propagator algorithms are used even if
the values of SNR are relatively low. Indeed Figures 1, 2, and
3 show that only the proposed methods have localized all the
sources when the SNR is equal to 0 dB.

We propose a statistical study to measure the robustness
of the considered methods. The criterion that is used is the
standard deviation (std) defined by

std =
[

1
8T

8∑

j=1

T∑

i=1

∣
∣θ − θ̂ ji

∣
∣2
]1/2

, (46)

where T is the number of trials, θ̂i is the estimate of the DOA
from ith trial, and θ = {θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8}.

The results provided in Figure 4 show that the std values
obtained with the propagator method based on U or R
matrix are lower than those obtained with the classical
propagator for all SNR values.

The previous results have shown that even in the presence
of noise, the propagator algorithms localize all the sources
when LU or QR factorization is used.

These results could be expected according to the theoret-
ical results obtained in Section 4 (see (24) and (26)).
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Figure 2: ΠU -propagator with SNR = 0 dB.
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Figure 3: ΠR-propagator with SNR = 0 dB.

The estimation of matrix Π leads exactly to the noise
subspace (see (25) and (27)). In contrast to the case where
the traditional propagator method is used in the presence of
noise, only a least square solution is possible to implement.
That is why the corresponding results are more biased.

To assess these first results, we performed another study:
in place of studying the bias over angle estimation we study
the bias over the estimation of Π. We refer to the basic
definition of the propagator, that is, Ã = ΠH A. We compute
Π from all considered methods ((15), (24), and (26)) and
for several numbers of sensors. We considered the following
error criterion:

e = ∥∥Ã−ΠHA
∥
∥, (47)

where Ã and A are the matrices used for simulating the data.
The evolution of the error criterion with respect to the

number of sensors for all propagator operators ΠΓ, ΠU , and
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Figure 5: Error obtained with different propagator operators as a
function of the number of sensors.

ΠR is represented in Figure 5. The main outcome of this
figure is that whatever the number of sensors, the error
obtained with LU or QR-based factorization techniques is
lower than the one obtained with the spectral matrix-based
technique. QR-based factorization technique gives slightly
better results compared to LU-based factorization technique,
especially for low SNR values (less than –10 dB).

This confirms that better estimation of Π leads to better
estimation of angles.

Note that during our simulations, in order to verify
that the information about the source localization is totally
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Figure 6: std value obtained with EG method with variable value
of parameter m and P = 8.

confined in the matrices U or R, we have used the lower unit
triangular matrix L, instead of the matrix U, with several high
SNR values. Our conclusion is that the lower matrix cannot
be used to localize the sources.

7.2. Experiment 2: Ermolaev and Gershman algorithm

In this experiment, we first justify the choice of parameter m
involved in EG method, and we then study its performance
in terms of accuracy of source localization and robustness
to noise. The number of sources is taken equal to 8 as in
experiment 1.

7.2.1. Choice of parameter m value

We performed a specific study concerning the EG method:
in the current experimental conditions, with SNR = 0 dB,
we vary the value of parameter m (see (34)). We use QR
factorisation and we will keep the same conclusions while
using further LU decomposition. The std value over the
estimation of source DOAs is decreasing until m = 10
and is then steady (Figure 6). Then, we deduce that the
best compromise between reliability of DOA estimation and
computational load is reached by choosing m = 10, in
the considered experimental conditions. This result is in
accordance with studies performed in [6, 7, 23].

7.2.2. Performance of EGmethod for source localization

In order to compare the performance of the considered
algorithms based on our thresholds λUs or λRs to one based
on the threshold value λs arbitrarily chosen between λP and
λP+1 as suggested by [10], several experiments with the same
experimental conditions as in the previous subsection are
carried out with m = 10 and P = 8. Figure 7 plots the
std values over the angles obtained with each considered
method and for several SNR values. Therefore, the proposed
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
oc

al
iz

at
io

n
fu

n
ct

io
n

s

0 10 20 30 40 50 60 70

Azimth (deg)

λUS
λs

Figure 8: EG algorithm as a function of the threshold values λUS and
λs with m = 10 and SNR = −5 dB.

threshold values lead to better results for all SNR values.
Figures 8 and 9 exemplify the obtained localization results.

The good performances of the proposed modified EG
method are reached thanks to the estimation of the number
of sources using diagonal elements and the proposed thresh-
old values. The results obtained show that the rank revealing
triangular factorizations improve DOA localization. This can
be explained as follows.

In [7], the approximation of (19) depends strongly on
the threshold λs between signal subspace and noise subspace
eigenvalues of the spectral matrix.
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Figure 9: EG method as a function of the threshold values λRS and
λs with m = 10 and SNR = −5 dB.

Supposing that P is the correct number of sources,
choosing a value of λs which is too close to λp induces
the overestimation of noise subspace dimension as signal
subspace vectors may be included in the noise subspace,
which leads to the degradation of the localization using the
EG algorithm.

Now, if P is chosen inadequately, std increases. Indeed
several simulations have shown the following behavior. If
the number of sources is underestimated the estimated DOA
values are uncorrect and if the number of sources is overes-
timated one observes unexpected DOA values depending on
the experiment.

Then, the problem of the estimation of λs required in EG
algorithm could be solved thanks to LU or QR factorizations
of the spectral matrix.

7.3. Experiment 3: Fixed-point algorithm andMUSIC

We exemplify the proposed fixed-point algorithm with
source localization based on MUSIC method. Several exper-
iments with the same experimental conditions as in the
previous subsections are carried out with various numbers
(see Figure 10 and Table 1, N = 20 up to 250) of sensors, to
study the computational load of the proposed algorithm as a
function of the antenna size. Parameter δ is fixed to 10−6 and
SNR to 0 dB with P = 8 sources. DOA values are 5◦, 10◦, 20◦,
25◦, 35◦, 40◦, 50◦, and 55◦.

The number of realizations is 1000, and the number of
observations is 1000. By taking into account the computa-
tional time needed to localize the sources at each experiment,
the mean computational load is then up to 2.5 times less
with fixed-point algorithm than with SVD. Both versions of
MUSIC provide the same pseudospectra (Figures 11 and 12).
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Table 1: Computational time needed to run MUSIC, using SVD and fixed point, for various numbers of sensors.

Number of sensors 10 15 20 25 30

Time SVD (10−2 second) 0.95 1.3 2.4 4.4 7.1

Time fixed point (second) 0.5 0.6 1.1 1.8 2.8

Ratio SVD/fixed poin 1.9 2.2 2.2 2.4 2.5
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Figure 10: Computational time for MUSIC with SVD (·) and for
MUSIC with fixed-point algorithm (+).
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Figure 11: Pseudospectrum of MUSIC obtained using SVD.

Figure 10 and Table 1 show that MUSIC method with
fixed-point algorithm is up to 2.5 faster than MUSIC method
using SVD.

7.4. Experiment 4: Performance of
noneigenvectormethods

In this experiment, we study the robustness to noise of
propagator and of the EG method both using QR factoriza-
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Figure 12: Pseudospectrum of MUSIC obtained using fixed point.
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Figure 13: Standard deviation values for various SNR values
obtained with noneigenvector EG method (+), MUSIC method (∗),
propagator method (o), Cramér Rao bound (∗-).

tion of the accelerated MUSIC algorithm. Indeed we noticed
(see Figures 4 and 7) that the results obtained are the best
when QR factorization is used. Moreover, using fixed-point
algorithm in place of SVD does not alter the results in terms
of performance.

Figure 13 provides the std values for various SNR values
and for the three considered noneigenvector methods and
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Cramér-Rao bound for MUSIC method (which exhibits the
lowest Cramér Rao bound values).

We used the formulas provided in [27].

7.5. Performance in the estimation of
the number of sources

In the algorithms studied in this paper, one major point is
the estimation of the number of sources.

The accuracy of DOA estimation is conditioned by the
correct estimation of the number of sources.

We proposed (36) to estimate the number of sources.
This method was tested with several simulations, and we
validated this criterion for several values of number of
sources and SNR values.

In all simulations, we retrieve the correct number of
sources.

8. CONCLUSION

In this paper, we have improved two noneigenvector high-
resolution methods, namely, the propagator method and
the Ermolaev and Gershman algorithm. We proposed a
noneigenvector version of MUSIC algorithm, replacing
singular value decomposition by fixed-point algorithm. The
improvement of the propagator method and Ermolaev and
Gershman algorithms is based on LU or QR factorization
of the spectral matrix. This leads to an efficient local-
ization of the narrow-band sources even if the SNR is
low. Actually, the upper triangular matrices contain the
information enabling source localization. We have modified
the existing methods to estimate the number of sources
based on eigenvalues by introducing the diagonal elements
of the upper triangular matrix. The existing propagator
method is a least square solution and still very sensitive to
noise. On the opposite, the modified propagator method
is calculated accurately from the upper triangular matrix
even in the presence of noise. A major problem of the
Ermolaev and Gershman algorithm is the estimation of the
threshold. New and analytical thresholds are proposed to
apply Ermolaev and Gershman algorithm. The threshold
values are estimated thanks to the norm of the block
matrix of the upper-right corner triangular matrix. The
resulting algorithm for the localization without eigendecom-
position is an approximation method, but the numerical
results show its high accuracy even when the SNR is low.
By adapting fixed-point algorithm for the estimation of
leading eigenvectors, we obtained a noneigenvector source
localization method. MUSIC algorithm has been shown
to be up to 2.5 times faster with this improvement.
We compared the performances of the three proposed
noneigenvector methods, propagator and EG and MUSIC
using fixed-point algorithm, by providing std evolution for
several SNR values. MUSIC and propagator yield close
std results. MUSIC with fixed-point algorithm has the
smallest computational load and exhibits the best perfor-
mance.
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