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INTRODUCTION

Marker-driven watershed segmentation attempts to extract seeds that indicate the presence of objects within an image. These
markers are subsequently used to enforce regional minima within a topological surface used by the watershed algorithm. The
classification-driven watershed segmentation (CDWS) algorithm improved the production of markers and topological surface by
employing two machine-learned pixel classifiers. The probability maps produced by the two classifiers were utilized for creating
markers, object boundaries, and the topological surface. This paper extends the CDWS algorithm by (i) enabling automated fea-
ture extraction via independent components analysis and (ii) improving the segmentation accuracy by introducing heterogeneous
stacking. Heterogeneous stacking, an extension of stacked generalization for object delineation, improves pixel labeling and seg-
mentation by training base classifiers on multiple target concepts extracted from the original ground truth, which are subsequently
fused by the second set of classifiers. Experimental results demonstrate the effectiveness of the proposed system on real world im-
ages, and indicate significant improvement in segmentation quality over the base system.

Copyright © 2008 Ilya Levner et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

segmented into a large number of minuscule regions. As a

Pixel grouping and segmentation are two critical tasks in im-
age processing and computer vision. If objects of the same
predefined class are poorly delineated from the background
or cannot be separated from one another, pixel grouping
techniques can be employed for clustering the foreground
pixels into objects. In order to separate two objects in close
proximity to one another, the watershed algorithm [1] has
been widely applied. Used within the unsupervised setting,
the algorithm segments an image into a set of nonoverlap-
ping regions. Embedded within the more general framework
of mathematical morphology, the watershed algorithm con-
siders a 2-dimensional gray scale image to be a set of points
in a three-dimensional space, where the third dimension
constitutes image intensity [2]. Segmentation is achieved by
“flooding” the image topology, whereby water flows from ar-
eas of high intensity values along lines of steepest descent into
regional minima (low intensity regions). In the end, individ-
ual watersheds or catchment basins of an image represent in-
dividual objects that are separated by the watershed lines.
Unfortunately, applying the watershed to the raw image
rarely produces the desired result. The image is usually over-

result, several extensions have been proposed in order to pro-
duce more natural image segmentation (e.g., hierarchical wa-
tersheds or region split/merge [3]). Bar none, the most com-
mon remedy is to use markers [4, 5] for identifying relevant
region minima. By setting marker locations as the only lo-
cal minima within the watershed image, the number of re-
gions can be automatically controlled. However, the process
of finding a “good” set of markers can itself be problematic,
nonintuitive, and ad-hoc.

To improve and automate watershed segmentation sev-
eral machine learning approaches have been proposed. In
[6, 7], a naive Bayes classifier was trained to identify and la-
bel pixel groups as internal markers. The discovered markers
were then utilized, together with the color gradient magni-
tude of the image, by the watershed algorithm to identify and
delineate colored cell nuclei. In [8], the classification-driven
watershed segmentation (CDWS) algorithm furthered the
notion of using machine learning to improve the watershed
algorithm. Inspired by [6, 7], the CDWS utilized two dis-
tinct (sets of) classifiers trained to specialize in (a) marker
identification and (b) object-background boundary delin-
eation. In addition, rather than using the raw pixel values
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to train the classifiers, as was done in [6], the CDWS ex-
panded the feature space by creating feature maps using stan-
dard image processing techniques, resulting in a very high
pixel classification accuracy. Furthermore, the CDWS made
additional use of the probability map produced by the object-
background classifier. Rather than the conventional intensity
or gradient magnitude image, the aforementioned probabil-
ity map was employed as the topographic function within the
watershed algorithm. Experimental results on gray scale and
color image segmentation tasks demonstrated the effective-
ness of CDWS on single and multichannel data.

CDWS proposed several novel ideas, including the use of
ground truth manipulation, which is further explored in this
paper. The original CDWS trained a pixel classifier heroded to
detect markers. The “ground truth” for this objective was cre-
ated by applying morphological erosion to the original pixel
labeling (L ~— Leroded). Figures 1 and 2 provide an exam-
ple of this process. In this research, we further explore the
use of ground truth manipulation by creating several new
mappings (also shown in Figure 2). In addition to markers,
the new target classes identify object boundaries that help in
identifying markers, object regions as well as object bound-
aries. Subsequently, stacking, [9] is utilized to combine the
output of the aforementioned classifiers in order to produce
improved markers and object-background boundaries. The
concept is called heterogeneous stacking and abbreviated as
HS-CDWS.

Despite its success, the CDWS algorithm is not with-
out its shortcomings. In particular, the original CDWS em-
ployed a set of manually engineered features, that, despite
their generic nature, cannot work well in all potential do-
mains. Furthermore, the need for explicit feature extraction
demands a substantial knowledge of image processing and
computer vision as well as domain expertise. To overcome
this limitation, the second part of this research proposes us-
ing independent components analysis (ICA) for automating
the feature extraction process. Unlike a fixed set of features,
ICA enables the system to learn a feature set specific to the
image domain at hand, and therefore allows for a greater de-
gree of autonomy and flexibility.

The rest of the paper is structured as follows. Section 2
provides an in-depth overview of the CDWS algorithm from
[8], and introduces the mathematical notation used through-
out the article. Section 3 details heterogeneous stacking. Sub-
sequently, Section 4 presents the feature extraction algo-
rithm. Experimental results used to evaluate the efficacy of
the proposed algorithms are provided in Section 5. The pa-
per is concluded with final remarks and a discussion of future
research directions in Section 6.

2. CLASSIFICATION-DRIVEN WATERSHED
SEGMENTATION

2.1. Pixel classification

The particular data driven approach to image segmentation
employed within CDWS attempts to learn a pixel classifier
that assigns to each pixel the probability of belonging to a
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FIGURE 1: Image-based granulometry. Top: input image of a gran-
ulous material (in this case frozen oil sand ore) on a conveyor belt.
Middle: ground truth image produced by a domain expert. Bottom:
histogram of pixel intensities for each class.

given class. Formally, let (i, j) index a discrete set of sites on
a spatially regular N x M lattice:

S=1{(G,j)I1<i<N,1=<j=<M} (1)

for each input image I and the corresponding image labeling
L, let I(i, j) and L(3, j) € {0, 1}, respectively, denote the in-
tensity values of image pixels and the corresponding (binary)
labels. Throughout this paper, L(i, j) = 0 labels the image
pixel I(4, j) as background, while L(i, j) = 1 denotes the pixel
belongs to the target object class. The main objective is to
produce a probability map P:

PG, j) = p[LG, j) =1 | 1, )] VG, j)es  (2)
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F1GURE 2: New target creation via morphological operations on the
original ground truth (L).

with p[-] denoting the probability density function. To ob-
tain the final image segmentation L, the probability map P is
thresholded:
L(i,j) =P, j) >t V(ij) €S (3)

The process in (2) treats individual pixels as i.i.d. (indepen-
dent identically distributed). Unfortunately, this assumption
is rarely satisfied in practice, since most nontrivial domains
exhibit complex pixel interactions and dependencies. There-
fore, simply using raw pixel values for classification in (2)
results in very poor segmentation. (Otherwise, thresholding
the input image at every pixel I(4, j) > 7 would produce
the desired result. The histogram at the bottom of Figure 1
clearly demonstrates the practical shortcomings of this ap-
proach.) To overcome this problem, feature extraction tech-
niques are needed to produce a set of feature maps describing
local (and possibly global) image characteristics. The specific
feature extraction method used in our research will be dis-
cussed in Section 4. For the moment, let (i, j) denote the
extracted feature vector at each lattice site (4, j). The prob-
ability map can now be conditioned on the feature vectors
rather than just the raw gray scale values as follows:

P(i,j) = plL(;,j) =1 | (i, j)] V(@ j) €S (4)
The form p[y = [ | x] in (4) defines an arbitrary binary
classifier. As in [8], we model this class conditional using the
generalized linear model (GLM) [10] and a logistic link func-
tion as follows:

1

ply=11xl= ———=
1+e*(IUn+w1 x)

= hy(x), (5)

where w = {wy, w} are the model parameters, which can be
estimated by maximizing the likelihood of the training data
using standard nonlinear optimization routines, (The details
of the optimization procedure can be found in [10, 11].) and
he denotes the trained pixel classifier. From a Bayesian per-
spective, the model parameters w need to be integrated over
using some prior distribution. However, this is usually in-
tractable and is approximated in practice by learning a set of

classifiers Q = {hy,,...,he,}, each optimized over a differ-
ent subset of the training data. The outputs of each classifier
are subsequently merged by uniform averaging as in bagging
[12]:

Ho(x) = > ha,(3). ©)
k

Using (5) and (6) to model the probability map elements in
(4), we get:

P(i,j) = p[L(, j) = 1 | £(i, )]

= (£, ) ?)
k

= Hq(f(i, j)).

To simplify the notation, we will refer to Hq simply as 4 in
the remainder of the paper.

Provided relevant features f(i, j) have been identified,
and the chosen machine learning technique, used to build
the conditional probability model in (4), are capable of utiliz-
ing the extracted features, the outlined approach can achieve
a high pixel classification accuracy. Unfortunately, even if the
method exhibits good generalization performance, objects of
the same class that are in close spatial proximity to one an-
other will be merged together into a single connected compo-
nent. Hence while the machine learned classifier may have a
high pixel classification score, due to the unresolved object-
object boundaries (i.e., under segmentation), the resulting
object labeling can still be very poor.

2.2, Watershed segmentation

A popular approach to resolve object-object boundaries is
to use region growing methods such as the watershed algo-
rithm. However, to be effective the watershed algorithm re-
quires object markers. Using ad-hoc rules to extract mark-
ers requires a priori knowledge of either (a) the number of
objects within an image as in [4], (b) specific image proper-
ties, or (c) object locations (e.g., medical images registered
to an anatomical template). In all cases, the parameters gov-
erning marker extraction tend to vary from image to image,
again motivating the use of machine learning approaches for
robust identification of object markers. In [6], the Bayesian
marker extraction algorithm utilized a naive Bayes classifier
in order to generate object markers. Unfortunately, since the
classifier is trained on the ground truth delineating whole ob-
jects, the approach does not provide any constraints to en-
sure that only one marker per target object is extracted, nor
that the extracted markers even lie within the object bound-
ary. Naturally, one could threshold the probability map P,
using a higher value for threshold 7 in (3). As a consequence,
precision will improve at the cost of recall, and thereby pixels
that correspond (with higher probability) to object markers
may be extracted. However, there is still no guarantee that
the markers will be within object boundaries, nor that there
will be a one-to-one correspondence between objects and
markers. To improve the situation, in [8], a machine learn-
ing approach was proposed, that explicitly trained a marker



EURASIP Journal on Advances in Signal Processing

identification classifier fmarker, on ground truth modified by
morphological erosion. Let

Leroded =LeB (8)

denote the erosion of the label image L by a suitably chosen
structural element B. (For our experiments we used a disk
with a radius of 7 pixels for the structural element.) The out-
put of Amarker, denoted as Prarker, is then given by

Pmarker(iaj) = p[Leroded(i>j) | f(l:])] = hmarker(f(i)j)):
9)

where hmarker i derived in the manner analogous to (7).
To make the notational distinction more pronounced, we
henceforth denote by hregion and Pregion the classifier trained
on the standard ground truth and the resulting probability
map, respectively. The hmarker classifier is overly conserva-
tive (i.e., higher precision, lower recall) and produces supe-
rior object markers as compared to thresholding Pregion, us-
ing higher values of 7.

For topological surface needed by the watershed algo-
rithm, again several options exist. The typical approach uti-
lizes the gradient of the original image. However, since the
probability maps themselves form a topological surface, the
output of the machine learned probabilistic classifier can be
utilized. Intuitively, the highest intensity values within Pyegion
correspond to pixels with the highest probability of being
part of the target class, hence using the inverted probability
map 1 — Pregion can be advantageous because the aforemen-
tioned high-probability regions will be flooded first. To pro-
duce a topology amenable to the watershed algorithm, the
inverted probability map 1 — Pregion is seeded with regional
minima corresponding to marker locations extracted from
the Pmarker via hard thresholding (3).

3. HETEROGENEOUS STACKING

In [9], Wolpert introduced stacked generalization, which uti-
lized the output of several base level (£y) classifiers as inputs
to the higher level (£;) classifier, thereby improving classifi-
cation accuracy. From a different perspective, one can view
stacking as learning a gating function to control a mixture-
of-experts [13], which in this case are the £, classifiers. The
mixture-of-experts algorithms attempt to partition the input
space into different regions or categories. In contrast, our
approach explicitly partitions the output space and subse-
quently trains (a set of) classifiers on each newly created tar-
get concept. To combine these heterogeneous sources of in-
formation, we employ a second set of classifiers, analogous
to stacking. To train the £y modules, we observe that even
simple objects like the rocks presented in Figure 1 are not
homogeneous, but instead contain several components that
can be readily extracted by manipulating the ground truth
in a manner analogous to producing Leroded labels. Figure 2
presents four label images produced by applying the follow-

ing morphological operations to the original label image L:
Leroded = L © B, Lailated = L ® B,
(10)

Lo = L — Leroded, Ly = Lailated — L.

The transformations denote morphological erosion, dila-
tion, and two difference operators resembling top-hat and
bottom-hat operations. As in the original CDWS algorithm,
Leroded identifies object markers, while L, and Ly iden-
tify inner and outer object boundaries, respectively. In turn,
boundary information indicates where markers and object
regions (i.e., L) cannot be found. Hence these newly extracted
target concepts are complementary to each other and to the
original ground truth. Consequently, the £; gating network
needs to fuse the output of £ classifiers together rather
than select the output of a single base classifier as in defacto
mixtures-of-experts algorithm. From this point of view, our
work resembles ensemble learning algorithms, for example,
bagging [12] and boosting [14], which are inherently coop-
erative in nature. However, these methods introduce diver-
sity into the ensemble by resampling the training set as does
stacked generalization. In contrast, we modify the label im-
age L and otherwise keep the training set unchanged. Ran-
dom label flips have been previously explored in [15-17]. Of
course once the i.i.d. assumption has been made, as was done
in the aforementioned references, there is nothing more “in-
telligent” one can do with the training data other than to try
and regularize the learning algorithm via the aforementioned
random label permutations. In contrast, image pixels, for any
nontrivial domain, are definitively not i.i.d. (cf., Figure 1)
and are, therefore, amenable to much more interesting label
modification schemes. To the best of our knowledge, our re-
search is the first to propose explicit and knowledge directed
modification of the ground truth image.

Having defined all target concepts Liyp., where type €
{region, eroded, dilated, ¢’, d'}, the corresponding proba-
bility maps are created by generalizing (9) as follows:

Pi0e(iy ) = p[Lypelis j) | £9(, )] = highe (£ (i, ).
(11)

Noting that this set of probability maps forms a multidi-
mensional image, we simplify the notation by letting P1* =
{Pt{%e}. Recently, Ting and Witten [18] have empirically
demonstrated that using the raw probability maps rather
than the thresholded classification labels as input to £, clas-
sifier(s) improves performance. As our experimental results
will demonstrate, for non i.i.d. data, one can go further and
interleave feature extraction with learning to further improve
performance. Once again, this effectively allows us to take ad-
vantage of the rich domain structure present within images
and the resulting probability maps. Consequently, the second
round of feature extraction can be implemented via the fol-
lowing mapping:

piol . £} (12)

where 1/ denotes the ith level of feature extraction. Subse-
quently, the extracted features can be utilized to train a set of
£ classifiers ht{ylge, where type € {region, eroded}.

The final labeling L' can then be produced by creat-
ing a topology usable by the watershed algorithm from the
probability maps P! and applying the watershed algorithm.
The process was described in Section 2. Within the stack-
ing framework, the topology creation process can be viewed
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FIGURE 3: Generic set of mappings describing the process of HS-
CDWS with A + 1 levels. The last level represents the application of
the watershed algorithm, abbreviated as ws.

as a feature extraction step mapping P! —~ ") while
the watershed process can be viewed as an unsupervised
classifier. The heterogeneous stacking process (named, HS-
CDWS) can now be succinctly summarized by a sequence of
mappings presented in Figure 3.

4. £, FEATURE EXTRACTION

Currently, many different feature extraction approaches have
been proposed in the literature, with texture features being
most relevant [19-21]. Common descriptions of texture in-
clude: (a) cooccurrence matrices [22], (b) local binary pat-
terns [23], and (c) random field methods [24]. In [8], the
feature extraction resembled Viola’s approach [25, 26], which
utilizes a sequence of linear filters to produce the feature
maps. In contrast, [8] used more general algorithms for ex-
tracting feature maps in order to compose a multichannel
image f, whereby each pixel vector f(i, j) corresponded to a
single training/test sample. The large set of simple and re-
dundant feature maps f,, « € {1,...,k}, was created with
the expectation that the (logistic regression) classifier will
weight each map according to relevance for a given task. Un-
fortunately, it is impossible to produce a single static set of
features applicable to a large number of domains. To en-
compass an ever increasing set of domains, one must con-
tinuously add features. Inadvertently, this process increases
computational complexity (both during learning and at run-
time) and introduces unwanted feature interactions which in
turn prevent logistic regression (and any classifiers expecting
an independent set of features) from learning a correct set
of weights w. To overcome these problems, feature selection
methods can be utilized in order to create a small set of inde-
pendent features relevant to a specific task.

In contrast to the aforementioned manual feature design
coupled with feature selection, we turned our attention to
fully automated methods. The proposed approach removes
the need for manual feature extraction altogether, by using
independent components analysis (ICA) to automatically ex-
tract features from raw image patches [27]. In general [28],
the ICA model represents data vectors (x) as linear mixtures
of latent feature vectors (s):

x=As = zaksk, (13)
k

where A is an unknown mixing matrix. For feature extrac-
tion, we are interested in finding the latent variables by ap-
plying the pseudoinverse of A, denoted as At to x

s=Afx (14)

Numerous ways of estimating A (or its pseudoinverse) have
been proposed in the literature [29]. Most of the algorithms
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FIGURE 4: A typical result produced by ICA. Left: matrix A with each
row reshaped into a patch. Right: matrix A" with each column re-
shaped into a patch representing a filter bank. The “optimal stimu-
lus” for each filter is given by the visualization of the corresponding
row in A.

optimize some measure of statistical independence between
the latent features s, via gradient descent techniques.

For images, each vector x represents a vectorized n X n
image patch. Conveniently, the rows (resp., columns) of A
(resp., A) can reshaped into image patches and visualized as
in Figure 4.

Once the matrix AT has been learned, features can be ef-
ficiently extracted by reshaping the columns into filters, and
subsequently convolving an input image with the newly cre-
ated filter bank. (Typically, the input image is normalized by
subtracting the mean and dividing by the standard devia-
tion). Furthermore, the local mean is then subtracted from
each n x n patch. The local mean normalization can be effi-
ciently implemented via convolution as well.) We denote by
a, the filters created from Af. The set of filters is denoted by
® = {ay,...,a}. Hence the feature maps f, can be produced
via convolution by

£l = Ixa, (15)

The feature vector £% (i, j) = s is the set of latent variables
describing the n x n pixel neighborhood centered at site (i, j).
In contrast, to use a monolithic set of features, ICA learns a
new feature extraction matrix A for each new domain in
an unsupervised and totally automated way. Furthermore,
the features are independent of one another, resulting in im-
proved estimates of logistic regression parameters @ during
the learning stage.

5. EXPERIMENTAL RESULTS
5.1. A brief summary of the algorithm

Previous sections have provided a very general framework for
building an automated object segmentation system. While
the general system can be succinctly described by a set
of mappings presented in Figure 3, our experiments used
the following instantiation of the aforementioned frame-
work. First, the feature extraction matrix At was learned
using an unlabeled set of images. Next, given a train-
ing image/label pair, the algorithm: (i) extracts features
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%, using At, and (ii) produces Leroded> Ldilateds Le's L
by applying morphological operations on the ground truth
image L. Subsequently, five £ classifiers are trained us-
ing ICA features as input and label images as targets.
The classifiers output probability maps P,{%e, type €
{region, eroded, dilated, ¢’, d’}. A second round of feature
extraction is then carried out on the newly extracted proba-
bility maps, producing second-order features fjo;, that serve
as the input to train two £, classifiers. In turn, the second-

order classifiers produce two probability maps, Pielgion
1

Pirgded, used for creating the topological landscape and mark-
ers. The last step employs the standard watershed algorithm
for producing the final output of the system L™},

and

5.2. Experimental procedure

To test HS-CDWS, we had a granulometry expert manually
label nine, 236 x 637 pixel, images containing oil sand ore
(see Figure 1). Using a different set of unlabeled oil sand ore
images, we learned a generative ICA model using the FastICA
algorithm [30]. This ICA model was estimated using 100, 000
randomly selected patches, each 16 X 16 pixels in order to
learn 49 Gabor-like filters (resembling those in Figure 4).
To provide multiresolution information, two gaussian filters
were applied to each ICA filter response, thereby producing
150 features for each pixel (147 multiresolution ICA features
+ 3 multiresolution raw pixel values from the original im-
age). This constituted f'°!, the input to the £, classifiers.
The target outputs L' included the original ground truth
as well as the derived targets depicted in Figure 2. For all ex-
periments a leave-one-out cross validation (LOOCV) testing
strategy was used, whereby each system was trained on eight
of the nine images with the remaining image used for test-
ing. The procedure was repeated with every image being a
test image once.

To reduce computational complexity, for each target out-
put, we trained a set of classifiers, one for each training im-
age. Hence, for each cross-validation fold, we trained 8 X 5 =
40 classifiers corresponding to eight training images and five
target outputs. This strategy effectively reduced the memory
overhead needed for training, since the number of training
examples is reduced by a factor of eight. Formally, for test
image I;:

n
oy _ 1 {0}
Ptype T - lzhwpe»i» (16)
Jj#i

where type € {region, eroded, dilated, e’, d'}. To take ad-
vantage of the rich information contained in the probabil-
ity maps P!”!, a second round of feature extraction was car-
ried out, where a bank of gaussian filters was used to extract
multiresolution features f11}. To fuse the information into £,
probability maps, we trained a set of £, classifiers to produce
the mapping: f{! — Pt{ylge, with type € {region, eroded}. As
in [31], we used an internal LOOCV procedure to maximize
generalization accuracy. Both £y level and £, level classifica-
tion were done using logistic regression as implemented by
the PrTools [32] Matlab toolbox.

5.3. Evaluation criteria

We used several criteria to evaluate the performance of each
algorithm. Respectively, TP, TN, FP, and FN stand for the
number of samples (i.e., pixels) being labeled as true positive,
true negative, false positive, and false negative.

Intersection-over-union (I/U), for binary labeling A and
B, is defined as |[A N B|/|A U B| = TP/(TP + FP + FN) and is
also known as the Jaccard measure.

Pixel accuracy defined as (TP+TN)/(TP+TN+FP +FEN).

Precision defined as TP/(TP + FP) and is also known as
positive predictive value.

Recall defined as TP/(TP + FN) and is also known as sen-
sitivity.

Labeling score defined as

L = min(S(4, B), S(B,A)),

m | n (17)
|AjnBi| B Aj
S(A,B) = >
o ;Z [AjUB|  UB;j | U4,
IAjﬂBi\
#0

where each A; is a connected component in image A and
each B; is a connected component in image B. The labeling
score is a form of local intersection-over-union, which penal-
izes errors at both the pixel level and at the object level.

5.4. Results

To examine the efficacy of the proposed algorithm, three
sets of systems were tested. First, a standard CDWS system
(no stacking) was created using ICA features called ICA-
CDWS. Next, for the ICA-HS-CDWS system, we trained £,
level classifiers directly on the output of the five £, probabil-
ity maps produced by classifiers trained on standard ground
truth as well as new targets derived from the ground truth.
Note that this version of the system did not perform the
second round of feature extraction, that is, f!! = P} Fi-
nally, the third system, MR-ICA-HS-CDWS, had the same
setup as the second system, but used the extended set of mul-
tiresolution features extracted from P*}, Results, presented
in Table 1 and Figure 5, clearly demonstrate the improve-
ment gained by using heterogeneous stacking together with
features extracted from P!?. Notice that heterogeneous cas-
cades, with interleaved feature extraction, produce the best
results on average and improve upon the scores for essen-
tially every performance metric in every image. The only ex-
ception being image 5, where the recall score was slightly de-
graded by the proposed system. In all other cases, the MR-
ICA-HS-CDWS system was able to improve performance in
comparison to the base (ICA-CDWS) classification. Inter-
estingly, the recall score for image 5 is one of only two im-
ages, where the stacking without feature extraction outper-
formed stacking with interleaved feature extraction. We be-
lieve better features can fix this anomaly and further improve
performance. The probability that there are no statistically
significant differences in performance as calculated by the
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TABLE 1: Performance comparison of base classification (L0) to heterogeneous stacking (L1). For each experimental condition the tables

represent leave-one-out cross-validation results.

(a) ICA-CDWS

Image jacq acc prec Recall Label score
1 0.68 0.77 0.79 0.83 0.51
2 0.74 0.83 0.80 0.91 0.62
3 0.73 0.81 0.84 0.84 0.56
4 0.72 0.79 0.86 0.81 0.51
5 0.69 0.78 0.79 0.84 0.52
6 0.76 0.83 0.87 0.86 0.62
7 0.73 0.80 0.84 0.84 0.51
8 0.66 0.76 0.75 0.85 0.54
9 0.73 0.80 0.83 0.85 0.54
Mean 0.71 0.80 0.82 0.85 0.55
stdev 0.03 0.02 0.04 0.03 0.04
(b) MR-ICA-HS-CDWS
Image jacq acc prec Recall Label score
1 0.71 0.80 0.82 0.84 0.59
2 0.77 0.85 0.83 0.91 0.63
3 0.76 0.84 0.87 0.86 0.62
4 0.74 0.81 0.88 0.82 0.54
5 0.71 0.80 0.83 0.83 0.57
6 0.81 0.86 0.89 0.89 0.69
7 0.77 0.84 0.88 0.86 0.53
8 0.71 0.80 0.79 0.87 0.57
9 0.74 0.81 0.85 0.85 0.61
Mean 0.75 0.83 0.85 0.86 0.60
stdev 0.03 0.02 0.04 0.03 0.05
(c) ICA-HS-CDWS
Image jacq acc prec Recall Label score
1 0.70 0.79 0.81 0.83 0.56
2 0.77 0.86 0.83 0.91 0.61
3 0.75 0.83 0.86 0.85 0.61
4 0.74 0.81 0.88 0.82 0.54
5 0.70 0.79 0.81 0.84 0.55
6 0.79 0.85 0.88 0.89 0.65
7 0.75 0.82 0.86 0.86 0.55
8 0.68 0.79 0.77 0.86 0.56
9 0.73 0.81 0.84 0.86 0.56
Mean 0.74 0.82 0.84 0.86 0.58
stdev 0.03 0.03 0.04 0.03 0.04

students t-test for each performance metric is, respectively:
0.00004, 0.00001, 0.00000, 0.01942, and 0.00049, (for I/U,
accuracy, precision, recall, and label scores) indicating that
the performance of MR-ICA-HS-CDWS is superior to that
of the ICA-CDWS system. In addition, to compare the three
aforementioned systems against previous results, Table 2 dis-
plays data from the original CDWS research [8]. Several
points are immediately apparent. First, the ICA features

are weaker than the original hand-crafted features used by
CDWS. To some extent this is not surprising, as ICA ex-
tracted 49 linear features at three resolutions. In contrast,
CDWS utilized 30 hand-crafted nonlinear extraction pro-
cedures (e.g., morphological operators) at four resolutions.
We believe nonlinear feature extraction methods (e.g., non-
linear PCA) can improve performance and expect to pur-
sue this line of research in the future. However, despite the
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TABLE 2: Performance of OSA, WipFrag, and original CDWS sys-
tems against CDWS using ICA and heterogeneous stacking.

System /U Ezfllracy Precision Recall Label
OSA 0.68 0.78 0.84  0.79 0.55
WipFrag 0.59 0.65 0.66  0.85 0.36
CDWS 0.76 0.84 0.87 0.86 0.62
ICA->CDWS 0.71 0.80 0.82  0.85 0.55
HS(ICA)->CDWS 0.74 0.82 0.84 0.86 0.58
MR-HS(ICA)->CDWS 0.75 0.83 085 0.86 0.60
Ground truth
L)

ICA-CDWS

e« ®@W

¥

K ¢ 3

(b)

v S ;;3;;@”5
¥
S géi

F1GURE 5: Output for £, and £; layers. Notice the significant reduc-
tion in noise as well as the improvement in object-object boundary
delineation.

(c)

shortcomings of ICA, the MR-ICA-HS-CDWS system, a fully
automated algorithm, was able to achieve results very similar
to those of CDWS utilizing hand-crafted features.

6. CONCLUSION

Our previous paper, [8], proposed a principled machine
learning approach, for extracting (i) object markers, (ii)
object-background region boundaries, and (iii) topological
surface used by the classical watershed algorithm. A major
contribution of this paper was to further expose the benefits

of manipulating ground truth data by presenting and eval-
uating heterogeneous stacking. By training a classifiers on
transformations of the ground truth—for example, eroded,
dilated, and so on—the resulting probability maps produced
useful components readily utilized by higher-order machine
learned classifiers to derive object markers and boundaries.
The second contribution of the paper was the application
of ICA to automate feature extraction process. By utilizing
automated feature extraction in conjunction with hetero-
geneous stacking, an automated segmentation system can
be efficiently constructed with little or no domain knowl-
edge but with performance comparable to state-of-the-art.
Furthermore, Section 5 also indicate that additional perfor-
mance can be achieved by interleaving learning and feature
extraction.
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