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best suits the application. The purpose of postcorrection of an ADC is to improve the performance. Hence, for each component,
expressions for the potential improvement have been developed. The measures of performance are total harmonic distortion
(THD) and signal to noise and distortion (SINAD), and to some extent spurious-free dynamic range (SFDR).
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1. INTRODUCTION

The analog to digital converter (ADC) is a key component
in many applications, for example, radio base stations and
test and measurement instruments. In state-of-the-art de-
signed vector signal analyzers (VSAs), the ADC is the bot-
tle neck and an improvement in ADC performance directly
improves the VSA performance. Characterization and test-
ing of ADC’s are important in many different aspects. One
example is ADC postcorrection, where improvements in the
ADC characteristics are obtained by digital signal process-
ing methods, in particular the error occurrence is predicted
in order to compensate for error source effects. A survey of
error compensation methods is given in [1]. Postcorrection
is built on the model of the ADC. A survey of state-of-the-
art ADC modeling techniques and models may be found in
[2]. Normally, the ADC model is based on a characteriza-
tion performed in high-performance test setups, whereupon
an off-chip postcorrection algorithm is developed. In the lit-
erature, a majority of the proposed ADC characterization
methods describes the static properties of the converter. A
common solution for postcorrection based on a static model
is the use of lookup tables (LUTs); that is, the ADC output

is remapped using a table lookup, where the table entries
are such that some performance measure is improved, as for
example [3]. ADC postcorrection by table lookup methods
has shown to improve performance measures such as spuri-
ous free dynamic range (SFDR), total harmonic distortion
(THD), and signal-to-noise and distortion ratio (SINAD).
It has been shown that postcorrection based on LUTs that
do not take the dynamics of the ADC into account is band
limited (see, e.g., [4, 5]). Characterization and testing of the
dynamic effects of ADC’s are instrumental for the perfor-
mance of systems characterized by a wide bandwidth and
high-dynamic range, such as contemporary and future mo-
bile telephony systems requiring higher resolution and sam-
pling rates.

Error tables can be used to characterize and compensate
ADC’s characterized by dynamic effects with short memory.
Here, two types of tables that are normally considered are
phase plane [6] and state space [3, 7], respectively. In a phase
plane approach, the error is related to the amplitude and
slope of the input, while for the state space the error is re-
lated to the current and the previous sample amplitude. In
(8, 9], a further development of the state space method is
suggested, where a generalized approach is taken with full
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FIGURE 1: Postcorrection by using an inverse model of the ADC.

flexibility between the dynamics (i.e., the number of delayed
samples) and the precision or number of bits of each sample.
Thus, the size of the multidimensional lookup table is kept at
a reasonable predetermined number. However, these meth-
ods are burdensome considering the time they take to train
the entries of the LUT, as well as the requirement on the size
of the memories. Accordingly, there is a need for dynamic
postcorrection that is easy to train and simple to implement.

A parametric model requires less memory size than an
LUT and does not need to be trained for every combination
of present and previous samples. A well-assigned model is
able to describe scenarios for which it is not trained, even
though one should strive to train the model with a stimulus
as realistic as possible for a given application. Different types
of parametric models have been suggested in the literature,
such as Volterra models and a variety of different box models
(e.g., Wiener and Hammerstein models). These models de-
scribe the nonlinear dynamic behavior well, but typical error
models of an ADC also include components that can not be
described by nonlinear dynamic models. That implies that
a postcorrection that compensate for multiple kinds of er-
ror behavior might be based on two or more models, where
each error behavior is compensated with a suitable postcor-
rection method. The purpose of this paper is to provide a
tool to evaluate to what extent a given parametric model can
improve the ADC performance, when the model is used for
postcorrection.

Postcorrection can be divided into two different meth-
ods. One method is to use an inverse ADC model and the
other is to add a correction term. When using LUT for post-
correction, the two methods are often denoted replacement
and correction, respectively. The inverse model corresponds
to replacement. The output code from the ADC is a table in-
dex. The code addresses a memory, where the memory value
of that address is an estimate of the analog input. The index
can also be compounded by one or more previous samples
(see Figure 1).

Figure 1 can also represent a correction method based
on inverse models. In other words, the method is based on
some mathematical system model and its inverse. Typically,
a model is characterized for the ADC under test. The model
gives an approximation of the input-output signal relation-
ship. An inverse—possibly approximate—of the model is cal-
culated, thereafter. The model inverse is used in sequence af-
ter the ADC, hence operating on the output samples, in order
to reduce or even cancel the unwanted distortion.

Instead of replacing the output code from the ADC, one
can add a correction term. (see Figure 2). In postcorrection
using LUT, the output sample (possibly together with previ-
ous samples) addresses a correction term instead of an esti-

ADC Postcorrection
v(t) 'T‘ N\ k[n] N\ v(n)
L= 1

INL[k, w]

FIGURE 2: Postcorrection of an ADC by adding a correction term.
The block G includes analog preprocessing, sample and hold, and
quantization.

Output digital code k

0 N
Vimin 0 Vimax

Analog input V' (Volt)

FiGure 3: The relationship between the analog input signal v and
the digital output code k from an ideal n = 3 bits ADC (dashed
line) and a practical one (solid line).

mate of the input as in the replacement method. The cor-
rection term is added to the output code. In model-based
postcorrection, the postcorrection term is computed from
a mathematical model. The correction term is added to the
output code. In a static postcorrection, the correction term
corresponds to the ADC integral nonlinearity (INL).

2. BASIC PROPERTIES OF ADC NONLINEARITIES

The relationship between the analog input signal V' [Volt]
and the digital output code k from an ideal ADC approxi-
mates the dotted staircase transfer curve shown in Figure 3.
For the ideal ADC, the code transition levels T} [Volt] within
the ADC range (Vmin> Vmax) [Volt] are given by

Ty = Q(k — 1) + T, [Volt], (1)

where Q [Volt] is the ideal width of a code bin; in other
words, the full-scale range of the ADC is divided by the to-
tal number of codes (Vinax — Vimin)/2YN, where N denotes the
number of bits. Further, T is the ideal voltage correspond-
ing to first transition level, and T is equal to Viin + Q or
Vmin + Q/2 depending on the convention used: the “mid-
riser” convention or “mid-tread” convention, respectively
[10]. The code k spans k = 1,...,2N — 1.

Due to imperfections in all practical ADC’s, the trans-
fer curve is normally somewhat distorted, which is illustrated
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FIGURE 4: Exemplary measured INL from a 12 bit commercial ADC.

by the solid line in Figure 3. The actual code transition level
T[k] [Volt] (i.e., the ideal and practical transition levels are
distinguished by the placement of the argument k, viz. Ty and
T[k], resp.) is the voltage that results in a transition from
ADC output code k — 1 to k. The INL is described as the
difference between the ideal Ty in (1) and the actual T[k]
code transition levels of the ADC, after a correction has been
made for gain and offset errors [10, 11]. Given the ideal code
transition levels Ty in (1) and the measured levels T[k], the
correction is made by adjusting the gain G and offset V, in
order to “minimize” the residual e[k] (fork = 1,...,2N — 1)
[10],

elk] = T — G - T[k] — Vos[Volt]. (2)

Equation (2) describes an overdetermined set of 2V — 1 equa-
tions with the two unknowns G and Vs that are sought for.
According to the IEEE standards [10], different methods may
be applied for determining the optimal (G, V)-pair such as
the “terminal-based” method [10] as used in this paper. The
INL as a percentage of the full scale (FS) range of the ADC is
given by the normalized residual in (2), that is,

~100% - e[k]

INL[k] = NQ [% of FS]. (3)

The INL is normally expressed in least significant bits (LSBs),
where a LSB is synonymous with one ideal code bin width Q
[Volt], that is, INL[k] = [k]/Q[LSB].

Differential nonlinearity (DNL) is the difference, after
correcting for the obtained static gain G, between a speci-
fied code bin width and the ideal code bin width Q, divided
by the ideal code bin width. The DNL is given as follows:

_ WK -Q
Q

where W k] is the corrected width of code bin k, that is,
Wlk] = G(T[k + 1] — T[k]). From (2), it follows that

DNL[k] [LSB], (4)

elk + 1] — ¢[k] = Q — W[k], and thus the relation between
INL[k] and DNL[k] is

DNL[k] = INL[k + 1] — INL[k]. (5)

The root-mean-square (RMS) value of the DNL is commonly
used and given by

N-1 172
1 2
DNLgys = <2N_1 > DNLZ[k]> : (6)
k=1

3. PARAMETRIC INL MODELING FOR
ADC POSTCORRECTION

In Figure 4, a typically measured INL from a commercial
ADC is plotted. As it is evident from the plot, the behav-
ior is a combination of a smooth wave or polynomial curve
and a prickly sawtooth wave. In the following analysis, the
INL will be broken up in two components; one representing
the smooth curve and one representing the prickly sawtooth
wave. The INL[k] is then described as

INL[k] = HCFINL' [k] + "“FINL[k], (7)

where the first term is the contribution by the, so-called,
high-code frequency component and the second term by
the low-code frequency component, respectively. In [12], the
static INL model was expressed as a one dimensional image
in the code k domain consisting of the two components. The
smooth curve was entitled low-code frequency (LCF), to un-
derstand the meaning of low-frequency code, consider that
the code axis represent a time axis. Accordingly, low-code fre-
quency means slow variation over the codes, [13] component
denoted by "“FINL[k] and was represented by a polynomial
approximation:

LCFINL[k] = ho + hik + hok? + - - - hykE, (8)

where the hy’s are the polynomial coefficients and L is the
order of the polynomial. The parameters hy and h; are typ-
ically set to zero due to the fact that INL is calculated after
a correction has been made for gain and offset errors when
determining the INL [10]. The high code-frequency compo-
nent HCFINL' [k] is caused by a significant deviation between
the polynomial approximation (8) and the actual INL[k].
In [14], the high-code frequency component was further
divided into two parts: "CFINL[k] and NO¢INL[k], respec-
tively. The former term, HFINL[k], depends on the physical
design of the component (designs such as pipeline, succes-
sive approximation, or any other structure) and is modeled as
piecewise linear [12, 15]. The latter component, NS¢ INL k],
is the part of INL[k] that cannot be described by an equation.
Thus, the INL[k] model in (7) is refined to

INL[k] = HFINL[k] + ““FINL[k] + NS¢ INL[k].  (9)

A static model of an ADC and in particular the correspond-
ing INL[k] is in general not sufficient to accurately describe
an ADC in a wideband application. Hence, the dynamic be-
havior also needs to be included in the model, which can be



EURASIP Journal on Advances in Signal Processing

done by adding amplitude information from either previous
sample amplitudes or estimates of the input slope, which is
state-space and phase plane modeling, respectively. The dy-
namic behavior of the INL can alternatively be described as a
frequency dependency, that is, different sine wave test stimuli
result in different INL data. One may note that frequency se-
lective LUTs for ADC postcorrection was considered in [16].
In order to stress the dependency of some of the components
in (9) on the stimuli frequency w, (9) is rewritten as

INL[k, w] = HCFINL[k] + *CFINL[k, w] + N INL[k, w],

(10)
where w denotes the normalized frequency variable,
2
w=24 (11)
fs
where f is the actual frequency in Hertz and f; is the sam-

pling frequency.

The main purpose of the model (10) is to use it for
ADC postcorrection. The structure of the components of the
model may, to some extent, be affected by the aim to find a
dynamic model that is easy to train and simple to implement.

Even though the behavior models are black-box mod-
els, the arguments for having a static "FINL[k] can be jus-
tified based on some knowledge of the ADC design. The
hardware structure of an ADC is consisting of two sections.
First is an analog signal processing section with an ampli-
fier and sample-and-hold circuits followed by a section per-
forming the quantization. The high-code frequency compo-
nent HCFINL[k] is mainly representing the imperfections in
the quantizer, which are (at least in a first approximation)
static and thus depend on the code k only and not on the
test frequency. One favorable feature with considering the
high-code frequency component to be static is that the size
of the lookup table will be minimized. The low-code fre-
quency component "“FINL[k, w] is a two-dimensional para-
metric model describing a dynamic behavior. Due to the pa-
rameterization, the postcompensation can be implemented
by numerical calculations.

The component **FINL[k, w] is described as a nonlin-
ear dynamic model and can be described by different model
structures. In [17], the input-output relation of the ADC was
explored based on measured Volterra kernels [18]. In partic-
ular, in that paper it was argued for employing a constrained
nonlinear Volterra model known as the parallel Hammer-
stein model [19]. Based on the promising results in [17], the
parallel Hammerstein model is used in this work to analyze
the nonlinear dynamic parts of the integral nonlinearity, as
well. The basic Hammerstein model is given by a static non-
linearity, followed by a linear filter. The difference between
the ordinary Hammerstein model and the parallel structure
is that the contributions of different orders £ are now fil-
tered by different filters defined by their frequency functions
H/[w], respectively. Starting with the polynomial nonlinear-
ity i (8), a frequency dependency is incorporated by letting
the polynomial coefficient be frequency dependent, that is,

LCFINL[k, w] = ho(w) + by (w)k + ha(w)k? + - - - + hy(w)kL.
(12)

The above dynamic nonlinearity can be described in
terms of a parallel Hammerstein model with the £th single-
input multiple-output given by k%, and the zero phase linear
filters with frequency function h/(w). In summary, the paral-
lel Hammerstein structure with a polynomial nonlinearity is
a natural generalization of the static polynomial model (8).
Although in this paper constraints are imposed both on the
static nonlinearity as well as the phase characteristics of the
bank of linear filters, the obtained dynamic model will be
used throughout this paper in order to analyze and compen-
sate for the nonlinear dynamic parts of ADC integral nonlin-
earity.

The Y“FINL[k, w] is a continuous function by construc-
tion and thus models employing Volterra Kernels or a box-
model for the transfer function are appropriate. Moreover,
the noncontinuous behavior is modeled by the remaining
terms, that is, HCFINL[k] and N°"INL[k,w], respectively.
The complete block scheme over the employed dynamic INL
model is given in Figure 5. The high-code frequency compo-
nent HCFINL[k] depends on the code k only, and not on the
test frequency. Further, "FINL (k] is as in [15] assumed to be
piecewise linear in the code k; in other words, it is described
by the first-order polynomial ag + a; k within a limited set of
neighboring code values k, — 1 < k < k,; denoted as the code
interval K,. The HCFINL[k] is thus modeled such that

HEFINLIK] = ao[p] + [l (k — kp-1), (13)
where p refers to the ordered code interval
Ky:{kl ko <k <kpl, (14)

where p = 1,..., P. The initial value of ky is given by ko = 1,
and the upper end point is, by definition, kp = 2V, Typically,
the number of intervals P is small compared with the total
number of codes, P < 2N — 1 (see, e.g., the INL curve given
in Figure 3).

Two different postcorrection methods based on the theo-
ries given in Section 3 were presented in [14, 20], respectively.
In both papers, the different components ““FINL[k, w] and
HCFINL[k] were postcorrected separately and the dynamics
were concentrated to the low-code frequency component.

4. IDENTIFICATION OF INL MODEL PARAMETERS
FROM MEASUREMENTS

In [15], the dynamic characterization of an ADC, when us-
ing a plurality of different test frequencies in the measure-
ment setup, was considered. In particular, the different test
frequencies are denoted by the integer m, that is, a one-to-
one map to the employed set of test frequencies f; - - - fy; in
Hertz. This ordering of test frequencies attaches the notation,
that is, the normalized frequency w is below replaced by the
integer m corresponding to the actual test frequency f,, (in
Hertz).

The low- and high-code frequency components are pa-
rameterized and a least-square method was derived for
the estimation of the parameter values from the obtained
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FIGURE 5: A block scheme over the complete INL model. The nonlinear block N[-] is a polynomial.

measurements. A closed-form solution to the estimation
problem was derived. The method in [15] is reviewed be-
low. The high-code frequency component is assumed to be
piecewise linear in the code k, that is, described by (13) and
(14). Accordingly, there are P sets of polynomial coefficients
{ao[p], a1 [p]}, which are gathered in the parameter vector 5
of size 2P. That is,

n= : . (15)

The parameter vector # in (15) describes the local gain and
offset in INL for the different code intervals K,. As pre-
viously mentioned, the high-code frequency component is,
at least approximately, independent of the input test fre-
quency. The low-code frequency component models the re-
maining dynamic behavior of the INL. The latter component
LCFINL[k, w] is modeled by a polynomial of order L as in
(12). Consider the signal model

LCFINL[k, m] = f[k]"6[m], (16)

where T denotes transpose. In (16), the vector 8[m] =

T
(hz[m] . hL[m]) is the parameter vector (i.e., O[m] is
possibly dependent on the test frequency as indicated by the

argument m) and f[k] = <k2 e kL)T is the regressor.
One may note that each entry in the parameter vector de-
scribes the gain of the corresponding zero-phase filter in the
parallel Hammerstein model. In order to estimate the pa-
rameters in the dynamic model of the integral nonlinear-
ity, experiments are performed where in each experiment a
sinewave Histogram test is used in order to pick up a set of
INL data. Collecting all experimental data corresponding to
the unique test frequency f,, [Hertz] in an vector y,,, a least
squares fit is employed in order to fit the model parameters,

so that y,, is as close as possible (in least squares) to our
model, that is,

INL[1,m]

Ym = N >
INL[2N — 1, m]

m=1,...,M. (17)

In (17), yy is the vector with experimental data and the
right-hand side in our model (10), where the frequency vari-
able used in (10) has been replaced by its corresponding in-
teger value m.

We introduce (where p spans p = 1,...,P)

g = (18)

1 kp_kpfl_l

with the convention that k = 1 and kp = 2. Further, we
introduce the Vandermonde matrix f of size 2V — 1 X L + 1
given by

10 11 . lL
f= : : : (19)
25-1)° (22-1)' (28 -1)"

Then we may put the model that describes the experimental
integral nonlinearity on a vector form as

Ym = gy + kO[m] + ey, (20)

where 7 is given by (15). Here, g is introduced as the block
diagonal matrix with the g,’s defined by (18) on its main di-
agonal, that is, g = blockdiag(gi,...,gp).

For M sets of test frequencies, we have to augment
the model in (20) by incorporating the multiple data sets
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{Y1,...ym} and expanding the parameter vector with the m-
dependent components, that is,

Y1 g f 0[1] €

=1 + (21)
Ym g f . €

y [GF] —_— e

The least-squares (LS) solution of (21) is by a block ma-
trix notation given by

[Z] B ([gTT] 6 F]>1 [?TT] y. (22)

In [15], it is shown that the above LS solution can be sepa-
rated into one solution for # and one for each of the M fre-
quency independent parameter vectors 0(m). The complex-
ity of the LS solution is significantly reduced by exploiting the
spares structure of the involved matrices, leading to M +1 sets
of solutions, that is,

-1
i=(s'ng) g'my (23)
Olm) = (£76) 7 (ym —ghi), m=1,..,M.  (24)

In (23), y is defined as the average (over all test frequencies)
of all INL data, that is,

| M
y= MmZ:lym- (25)

Further, 7, is given by
m, =1—f(£7f) 7, (26)

where I denotes the unity matrix of proper size.

We note that (23) is a linear combination of the averaged
INL data (25). Regarding (24), one may note that this is the
least-squares solution corresponding to the detrended data

Y — 8-
5. PERFORMANCE ANALYSIS

The purpose of postcorrection is to improve the perfor-
mance for the system, where the ADC’s are used. Commonly
used figures of merits are THD, SFDR, and SINAD. For a
model-based postcorrection based on the model structure
described in Section 4, and given that all model parame-
ters are estimated, questions of relevance include the follow-
ing. What are the achievable performance improvements for
these figures of merits? How advanced must the postcorrec-
tion method be to meet the demands for the system?

In Section 5.1, we will formulate the relationship between
a given INL model and the ADC performance, hence, the po-
tential of improvement of an optimal postcorrection. Below,
the influence of the three terms in (10) on the ADC per-
formance measures are investigated separately. By gradually

correcting for each INL term, the performance will improve
step by step. We consider the case when a multiterm dynamic
model of the INL (such as (10) above) is available, and is used
for postcorrection as illustrated in Figure 2.

The term N INL [k, w] in (10) is throughout the paper
modeled as noise, so that NS¢ INL[k, w] = e[k, w] is assumed
to be zero mean independently identically distributed noise
both in the code k and in test frequency w. The general rela-
tion (10) is accordingly reduced to

INL[k, w] = "FINL[k, w] + "CFINL[k] + e[k, w].  (27)

In the following sections, we will describe the different
components in more detail and how they affect the perfor-
mance of the ADC. The conditions for the analysis are that
the ADC performance is limited by the effects of the inte-
gral nonlinearity. In the following analysis, an expression for
the THD, SINAD (and to some extent also the SFDR) as
functions of the INL model parameters is developed. Con-
sequently, the derived expressions constitute an upper limit
on the performance improvements by postcorrection elim-
inating the effects of INL. That is, under the condition that
the estimated INL used for postcorrection corresponds to the
actual INL of the ADC.

5.1. Effects of the INL low-code frequency component
on ADC performance

The ““FINL[k,w] is a weakly nonlinear dynamic transfer
function (12). Since its transfer function is a polynomial,
LCFINL[k, w] will mainly affect the harmonic distortion such
as THD, and also SFDR since the 2nd and 3rd harmonics are
usually the limiting spurs in SFDR. To get a measure on how
the ADC performance depends on this component, an eval-
uation in the frequency domain will be done.

For simplicity, but without loss of generality, the analysis
is performed in continuous time. Let the time domain input
v[t] to a static nonlinear system with output x[t] be a unit
amplitude cosine with zero initial phase

jwot —jwot
v[t] = coswot = %, (28)
where ¢ is the absolute time, and j is the imaginary unit j =
+/=1. The harmonic distortion on the output x[¢] of a static
nonlinearity driven by input v[t] is given by a combination
of (28) and (12), that is,

ejwl,t + e—jwot

L ejw0t+e—ja)0t 2
+ e —
2 : 2

. . L
e]wgt+e—]w0t
+-thy — )

x[t] = ho + hy
(29)

Note that, we here include hy and h; since the output
from the ADC is a sum of a linear quantization of the input
v[t] (where hy and h; are included) and the nonlinear error
model given by INL[k, w] (i.e., described by hy(w) - - - hp(w)
according to (12)). The figures of merits used in the perfor-
mance analysis below are defined for the output from the
ADC.
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The even exponents produce harmonic distortion prod-
ucts at the ADC level and on even multiples of the funda-
mental frequency. Odd exponents will result in distortion
at odd overtones. For example, the third-order component
reads

ejwol’ + e—ngt 3
hs| ————
2

_ h3 <Ej3wo[ + e—j3(uot + 3(ejw0t + e—jamt)) (30)

8

1 3
=hs (Z cos 3wpt + 1 cos wot).

In a more general case of order 1, one can find the coeffi-
cients from the binomial theorem,

12
(c+d) =3 ( f ) cdi, (31)
i=0

For example, the output v/ [¢] will have the following set
of frequencies:

( ] i !
1 1-(=1) .
21'—12< 2 ) -1
i=1 2
x cos [(£ — i+ 1)wot] £ odd,
=1 1 (1) G+
= 1 A P
2 /) "
L
x| i cos [(£ — i)wot] L even.
2
(32)

The components v/ [¢] are the input to the linear parts of the
parallel Hammerstein model, where each branch v/ [¢] will be
filtered by the corresponding zero-phase linear filter. The re-
sulting output of the parallel Hammerstein model y[t] reads

y[t] = Ag + A cos (wot)

33
+ Aj cos (2wot) + + - - + Ap cos (Lwot), (33)

where the real-valued A-coefficients are obtained from fil-
tering the components v/ [t] given in (32) by the individual
zero-phase filters in the parallel Hammerstein model

A0:212(%)h2(0)+214<3>h4(0)+---, (34)
Alzhl(w0)+212(?>h3(wo)+214(;)hS(wo)+---,
(35)

Az—zll(é)hz(szH;(‘f)m(zwon---, (36)
A3—212(8>h3(3w0)+214(i’)hs(mon---. (37)

7
For an arbitrary order g, one has
( 1+(=D7\ 1 i
Z((2)> 2i-1 i-q hi(qwo)  q even,
i=q 5
Ay =
1-(-D7\ 1 i
z( (2 ! >2i1 i—gq [hi(quo) q odd.
j:q 2
(38)

For a pure sinusoidal input signal, the amplitude A, is the
fundamental tone and all A;, where g# 1, are distortion prod-
ucts. Thus, the figure of merit THD (and eventually SFDR)
can be expressed as a function of the amplitudes, as outlined
below.

5.1.1.  Total harmonic distortion (THD)

For a pure sinewave input of a specified amplitude and fre-
quency, the THD is the root sum of squares (RSS) of all the
harmonic distortion components including their aliases in
the spectral output of the ADC. Normally, THD is estimated
by the RSS of the second through the tenth harmonics, in-
clusive. THD is often expressed as a dB ratio with respect to
the root mean square (RMS) amplitude of the output com-
ponent at the input frequency.

The total harmonic energy (THE) for the specific subset
of harmonics is defined by [10]

THE - %2 ¥wn] % (39)
where R is the length of the data record, Y [w,] is the complex
value of the spectral component at frequency w,,. Further, w,
is the nth harmonic frequency of the discrete Fourier trans-
form (DFT) of the ADC output data record, M is the number
of samples in the data record, and n is the set of harmonics
over which the sum is taken. The absolute value of Y[w,] is
the amplitude A,,.

Employing the above expression for the ““FINL, the result
reads

L L
1 2 1
LCFTHE = ﬁzz |Y[wi]]™ = EIZAZ’ (40)
=2 =2

where L is the order of the polynomial in (12).

The total harmonic distortion is given by the ratio
THD = +/THE/A;. The THD is often expressed as a dB ratio
with respect to the RMS amplitude of the fundamental com-
ponent of the output. The maximum achievable gain in the
postcorrection of the ADC is accordingly given by the total
harmonic distortion from the low-code frequency compo-
nent,

LCFTHE) (41)

LCFTHD = 20 1og10<
Ay

5.1.2.  Spurious-free dynamic range (SFDR)

Spurious-free dynamic range (SFDR) is the frequency do-
main difference in dB between the input signal level and the
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level of the largest spurious or harmonic component for a
large, pure sinewave signal input. Including harmonics re-
flects common usage of the term SFDR. Normally the second
or third harmonic in (36) or (37) will be the limiting spuri-
ous. Under condition that postcorrection can eliminate these
harmonics, the SFDR will be limited by a nonharmonic or
high-order harmonic distortion. An exact values for achiev-
able performance it thus not possible to find.

5.1.3.  Signal to noise and distortion ratio (SINAD)

The signal-to-noise-and distortion ratio (SINAD) is the ratio
of the signal to the total noise. Unless otherwise specified, it
is assumed to be the ratio of RMS signal to RMS noise, in-
cluding harmonic distortion, for sinewave input signals [10].
To study the effects of “FINL, SINAD is evaluated in the fre-
quency domain.

Both the signal and the total noise can be determined
from the DFT of data records. Let Eyym[w] equal the resid-
ual spectrum of Yoy after the bins at w, = 0 (DC) and test
frequencies, wy, have all been set to zero (excised from the
spectrum). Then, the RMS noise is found from the sum of all
the remaining Fourier components,

N 12
rms noise = R[ Z | Eaym[@im] |2] ) (42)
m=0

The contribution to the noise from *°FINL[k] is ““FTHE.
The noise will thus be reduced to

LMo 12
rms noise = R[ > (| Eam[wm] |* - LCFTHE)] . (43)

m=0

To conclude this section, the achievable effect from elim-
inating the low-code frequency component by using postcor-
rection is for THD given by (41) and for SINAD by (43). In
indication of potential, SFDR improvement is given by (38),
if the limiting spurious is an overtone.

5.2. Effects of the high-code frequency component on
ADC performance

Since both THD and SFDR are evaluated in the frequency
domain, these components can be described by a transfer
function with an amplitude dependent piecewise constant
amplification. How this will affect the harmonic distortion
can be found from its DFT, where the error from H°FINL[k]
will result in a piecewise constant amplification:

ap sin(wt) + 07 sin(wt) < ki,
a sin(wt) + 0, ki < sin(wt) < ky,
yucr(f) = ) . (44)
apsin(wt) + 0, kp_1 < sin(wt),
where O is an offset and y};(#) is an virtual, internal signal

in the INL model (Figure 5), namely, the "*"INL output for
a single tone stimulus.

The harmonic distortion is highly dependant on the
structure of HCFINL[k] given in (13). Thus, one needs to
solve and the DFT for (44) for the specific ADC used to get
information about the effects on the THD and SFDR. How-
ever, one property of HFINL[k] worth mentioning is that
the amplitudes from the harmonics from "CINL[k] are not
necessarily declining with the order of the harmonic. For a
smooth nonlinearity (as in the low-code frequency compo-
nent) the amplitude of harmonics decreases with higher or-
der, but this not necessarily the case for "CFINL[k].

Since we are not able to find a general expression for the
effect from HCFINL[k] in the frequency domain, we will eval-
uate SINAD based on the results from [21], where the max-
imum achievable SINAD for a N-bit ADC is for a floating-
point postcorrection given by

22N

SINAD = ———————
1+3 - DNLEys

, (45)

where DNLrys was defined in (6). In [22], (45) was further
developed to include a correction algorithm with a fixed-
point resolution for correction values.

Assume that we have eliminated the errors due to the
low-code frequency component. That will give us from (27)
the remaining INL[k] to be "CFINL' [k],

HCFINL [k] = HCFINL[k] + e[k]. (46)

The differential nonlinearity DNL[k] is found from (5), that
is,

DNL[k]
= HCFINL/ [k + 1] — HCFINL' [k]

=elk+1] — e[k]
al[P] kp_1<k<kp
traolpl —aolp— 1] —ailp = 11(k—1—kp-)
k=kp1.
(47)

Since {e[k]} are random variables independent and identi-
cally distributed, DNLgs yields

DNLiys

2N -2
1

— 2
72N_2]§1DNL (k]

2N -2
1

_ T kz“ ErrorDNLZ[k]
=1

b o 3l Py~ )
2N —2 5\ Pt

+ {aolpl—aolp — 1-ar[p — 1) (kpor — 1 — kp,z)}z),
(48)
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where F"'DNL[k] is the DNL[k] related to e[k]. The poten-
tial for improvement from H°FINL[k] is thus,

HCF DNL2

MS
i( {an[pP(kp — kp1)}

+ {aolp] —aolp — 1] —anlp — 1 (kpr — 1 kp,z)ﬁ).
(49)

The improvement in terms of SINAD is given by inserting
(49) into (45).

5.3. Model Errors effect on ADC performance

The third component in (27) is considered as a zero mean in-
dependently and identically distributed noise. Thus no har-
monic distortion can be expected; only nonharmonic distor-
tion is present. The effect on THD will thus be zero, and this
component affects SINAD only. The potential for SINAD im-
provement is [21]

(2V)*
(143 - ErorDNLo)

SINAD = , (50)

where the root-mean-square value of DNL was introduced in
(6).

In conclusion, the performance measures THD and
SINAD (and to some extent SFDR) have been developed at
a function of the model parameters. The objective has been
to provide a tool for the user to get an estimate of what per-
formance improvement can be achieved from an ideal post-
correction.

6. CONCLUSIONS

In this paper, a three-component model of an ADC aimed
for postcorrection is presented. Each component has its own
properties; (i) the low-code frequency component captures
the dynamic component and it is modeled by a polyno-
mial followed by linear filters, that is, a parallel Hammerstein
model, (ii) the high-code frequency component is static and
piecewise linear in the code k, and (iii) the model error is
assumed to be zero mean and independent identically dis-
tributed noise.

The purpose is to provide a tool to evaluate to max-
imum achievable performance improvement for a model-
based postcorrection. For each of the three components, per-
formance analyses in THD and SINAD are presented. The
improvement potential for SINAD as well as the effect on
THD from the low-code frequency component is given by
the coefficient in the model of the ADC, while the effect from
high-code frequency component on THD requires a DFT
analysis.
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