
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2008, Article ID 542735, 19 pages
doi:10.1155/2008/542735

Research Article
Early Termination and Pipelining for Hardware
Implementation of Fast H.264 Intraprediction Targeting
Mobile HD Applications

Jin-Su Jung, Genhua Jin, and Hyuk-Jae Lee

School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742, South Korea

Correspondence should be addressed to Hyuk-Jae Lee, hjlee paper@capp.snu.ac.kr

Received 2 March 2008; Revised 16 June 2008; Accepted 7 August 2008

Recommended by Liang-Gee Chen

H.264/AVC adopts aggressive compression algorithms at the cost of increased computational complexity. To speed up the
H.264/AVC intraframe coding, this paper proposes two novel techniques: early termination and pipelined execution. In P slices,
intra 4×4 and 16×16 predictions are early terminated with the threshold determined by the cost of motion estimation. In I slices,
intra 4×4 prediction is early terminated with the threshold derived from intra 16×16 prediction. The threshold function is chosen
as a monotonically decreasing linear function with its optimal coefficients determined by experiments. For the pipelined execution
of 4×4 intrapredictions, the processing order of 4×4 blocks is changed to reduce the dependencies between consecutively processed
blocks. In I slices, computation for 4× 4 intraprediction is reduced by 19 percent with the proposed early termination. In P slices,
computations for 4 × 4 and 16 × 16 intrapredictions are reduced by more than 81 and 91 percents, respectively. The pipelined
execution reduces the computation time by 41 percent. In spite of the speed-up by the proposed methods, degradation in rate-
distortion performance is negligible. The proposed pipelined execution is integrated with other H.264/AVC hardware accelerators
and fabricated as an SoC using Dongbu 0.13 μm technology.

Copyright © 2008 Jin-Su Jung et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The joint video team (JVT) of ISO/IEC MPEG and ITU-T
VCEG recently proposed a new video compression standard
known as H.264/AVC, advanced video coding (AVC). In
order to improve the compression efficiency, H.264/AVC
employs aggressive compression techniques such as variable
block size and 1/4-pel accuracy motion compensation.
Intraprediction is one of the aggressive techniques employed
to improve the coding efficiency of H.264/AVC. In the
baseline and main profiles, intraprediction is performed with
two block sizes (a 4 × 4 block and a 16 × 16 block) for 13
prediction modes (9 modes for 4 × 4 blocks and 4 modes
for 16 × 16 blocks), and the best intramode is selected
among the 13 modes. As a result, intraprediction requires a
large amount of computation, which is comparable to the
computation amount of JPEG2000 [1]. Accordingly, there
has been extensive research into a faster computation of

intraprediction for the real-time processing of H.264/AVC
video compression.

Extensive research efforts have been made to speedup
the computation of intraprediction [1–8]. One of the most
popular approaches reduces the computational complexity
of intraprediction by evaluating the RD cost not for the
entire set of prediction modes but only for a subset of them
and selecting the best mode among the estimated modes.
A number of previous studies take advantage of the fact
that an intraprediction mode is strongly related to the edge,
or texture, direction of the block. Therefore, this direction
is evaluated first, and then the RD cost is estimated only
for a subset of prediction modes according to the evaluated
direction [2, 9–18]. In [1, 19], the best prediction mode is
selected from candidate modes that are derived from the
prediction modes of neighboring blocks. In these techniques,
the compression efficiency is sacrificed because one of the
excluded prediction modes may be the optimal mode. In

2 EURASIP Journal on Advances in Signal Processing

another technique for fast intraprediction, one of the 4× 4 or
16× 16 intrapredictions is skipped [20–22]. The smoothness
of a macroblock is estimated, and 16 × 16 intraprediction is
chosen when the block is smooth while 4× 4 intraprediction
is performed in the other case. An early decision to skip
intraprediction has been proposed by several researchers as
another efficient method for fast intraprediction [3, 23–26].
In the reports by the researchers, the results of interpredic-
tion (i.e., motion estimation) is often used as the criterion
for the decision. The elimination of both or either of the 4
× 4 and 16 × 16 intrapredictions reduces the compression
efficiency because the skipped intraprediction may generate
the optimal compression result. Another technique for fast
intraprediction uses only a part of the pixels in a block when
evaluating the prediction error. For example, 8 pixels, instead
of 16 pixels, are used for the error evaluation of the 4 × 4
intraprediction [1]. This technique also suffers from a loss
of compression efficiency when the error evaluation with the
selected pixels leads to a suboptimal decision.

Intraprediction is often implemented by a hardware
accelerator as its computational complexity is large. Not
all of the algorithms explained above are suitable for
hardware implementation which requires a relatively regular
computation structure. Thus, a number of studies have
been published on the algorithms and architecture for the
hardware implementation of intrapredictions [1, 4, 27–29].
In [4], the DC components of 4× 4 DCT coefficients are pre-
calculated when 16 × 16 intraprediction is performed. This
technique enables pipelining of transform and quantization
(TQ) and inverse quantization and inverse transform (IQIT)
of the results from 16 × 16 intraprediction. In [27, 28],
an effective architecture is suggested for intraprediction and
mode decision. For these hardware implementations, the
hardware resources for 4× 4 intraprediction and reconstruc-
tion are often idle and wasted. Intraprediction of a 4 × 4
block depends on the reconstructed pixels in its neighboring
blocks, and therefore, intraprediction must remain idle
while the reconstruction of the neighboring blocks is being
completed. Hence, the execution of intraprediction and
reconstruction is often serialized. In [1], the idle cycles are
avoided by interleaving 4 × 4 intraprediction and 16 × 16
intraprediction. This architecture is pretty effective when a
single prediction module is shared by both 4 × 4 and 16
× 16 predictions. A recently proposed architecture employs
separate prediction modules to further speedup intraframe
coding [29]. This architecture employs three-step mode
decision algorithm to avoid the idle cycles at the sacrifice of a
slight degradation of R-D performance.

This paper proposes two novel techniques to speedup
the execution of intraprediction. The first technique is
early termination of intraprediction. The proposed early
termination performs intraprediction for each 4 × 4 block
and accumulates the cost of intraprediction for the 4 ×
4 block. At the end of every 4 × 4 block processing,
the accumulated cost is compared with a predetermined
threshold, and intraprediction is stopped when the cost is
higher than the threshold. The cost of motion estimation
is used to derive the threshold in a P slice. In an I slice,
motion estimation is not performed, so that its cost is not

available for the early termination. In this case, the results
from 16 × 16 intraprediction are used as the threshold for
the early termination of 4 × 4 intraprediction. An efficient
threshold for early termination is investigated to obtain the
best tradeoff between coding efficiency and computation
reduction. The second technique is pipelined execution of
intraprediction and reconstruction which minimizes the
waste of hardware resources by serialized execution. To allow
the pipelined execution, the processing order of 4 × 4
intrapredictions is rearranged so that neighboring blocks are
not processed consecutively. An optimal processing order is
derived to achieve the pipelining of intraprediction without
a significant reduction of compression efficiency. Early
termination combined with pipelined execution significantly
reduces the computation time of intraprediction without
much sacrifice of the coding efficiency. Experimental results
show that the proposed early termination achieves about
19 percent of savings of computation for the 4 × 4
intraprediction in I slices and over 81 percent savings for
the 4 × 4 and 16 × 16 intrapredictions in P slices. The
pipelined execution also reduces the computation time of
the 4 × 4 intraprediction by about 41 percent. In spite
of this large computation savings by early termination and
pipelining, the loss of compression efficiency is negligible.
The proposed pipelined architecture is integrated into an
H.264/AVC encoder and fabricated as an SOC using the
Dongbu 0.13 μm technology.

The rest of this paper is organized as follows. Section 2
proposes an early termination algorithm for intraprediction.
Section 3 proposes a simple pipelined execution of the 4
× 4 Luma prediction with the original H.264/AVC order
and explains the reduction of the compression efficiency
resulting from the pipelined execution. Section 4 proposes
a new processing order of intraprediction that improves
the pipelining efficiency. Evaluation results are shown in
Section 5, and the hardware implementation of the pipelined
architecture is presented in Section 6. Section 7 presents
conclusions.

2. VARIABLE THRESHOLD EARLY TERMINATION

2.1. Early termination of 4× 4 intra prediction

In this section, an early termination scheme for intrapredic-
tion is proposed to reduce the amount of computation for
intraprediction while minimizing the loss of compression
efficiency. The early termination algorithm for 4 × 4
intraprediction is shown in Figure 1. The first step is the
predictor generation step in which the neighboring blocks
of a 4 × 4 block are used to generate the predictors.
The next step calculates the SATD that is the sum of the
differences between the predictors and the original pixels in
the Hadamard transformed domain. Then, the cost of 4 × 4
intraprediction is derived from SATD as follows:

Costintra 4×4 = (K + 4M)× λ(QP) + SATD, (1)

where K is a constant to be determined and M is the number
of 4 × 4 blocks of which the best mode is not the most
probable mode which is derived from the best modes of the

Jin-Su Jung et al. 3

N = 1, start

Predictor generation

Cost 4×4 calculation

Intramode decision

ReconstructionN = N + 1

Cost(N) = cost(N − 1) + cost4×4(N)

Cost(N) >Th(N)

No
Yes

No

Yes

N = 16?

End

Figure 1: Early termination of 4 × 4 intraprediction.

neighboring 4 × 4 blocks [30]. λ(QP) is a function of the
quantization parameter, QP. This cost is the Lagrangian cost
defined in the H.264/AVC standard in which the constant
K is defined as 24. For the derivation of Costintra 4×4, SAD,
instead of SATD, can also be used. The use of SAD instead
of SATD reduces the computation time because Hadamard
transform needs not to be performed. However, the accuracy
of the cost estimation by SAD is slightly degraded.

The cost of a single 4× 4 block for intra 4× 4 prediction,
denoted by Cost4×4, is derived from (1) as follows:

Cost4×4 =
(
K

16
+ 4M′

)
× λ(QP) + SATD, (2)

where K and λ(QP) are same as (1) and M′ is 1 when the
selected prediction mode is not the most probable mode
derived from the neighboring 4 × 4 blocks [30] and M′ is
0 otherwise. SATD in (2) represents the summation over a
single 4 × 4 block (i.e., the 16 differences between the pre-
dictors and the original pixels in the Hadamard transformed
domain) while SATD in (1) represents the summation over a
16 × 16 macroblock. The Cost4×4 is derived for 9 prediction
modes; then, the next step, intramode decision, selects the
best mode among the nine possible modes. In the next
step, the 4 × 4 block is reconstructed and saved as a
reference frame. This reconstructed block is also used to
generate the predictors for its neighboring blocks. After the
reconstruction, the accumulated cost, cost(N), is calculated
by adding cost4×4(N) to cost(N − 1) where cost4×4(N)
represents the cost of the Nth 4 × 4 block (i.e., the current
block), and cost(N − 1) is the accumulated cost from the 1st
to the (N − 1)th blocks. The next step determines whether

N = 1, start

Predictor generation

4×4 block SATD(N) calculation

Cost(N) = cost(N − 1) + STAD(N)

Cost(N) >Th(N)

N = N + 1 N = 16?

No
Yes

No
Yes

Best 16×16 mode update

m = m + 1,N = 1

m = 4
No

Yes

End

Figure 2: Early termination of 16 × 16 intraprediction.

intraprediction is terminated early or not. If cost(N) is larger
than the threshold function, Th(N), then intraprediction is
terminated early. Otherwise, intraprediction proceeds to the
next 4 × 4 block. For an efficient early termination without
a degradation of compression efficiency, a proper selection
of the threshold function is important, and Section 2.3 dis-
cusses in detail the derivation of the threshold function. The
above steps are repeated until intraprediction is terminated
early or all 16 blocks are processed.

For P slices, the threshold function is derived from the
result of motion estimation (see Section 2.3 for details).
For an I slice, motion estimation is not performed, and
consequently, the result of motion estimation is not available
for the threshold function. Instead, the result of 16 × 16
intraprediction is used to obtain the threshold function for
early termination of 4 × 4 intraprediction (see details also
in Section 2.2). It is also possible to early terminate 16 ×
16 intraprediction using the result of 4 × 4 intraprediction.
However, the early termination of 4 × 4 intraprediction is
more efficient than that of 16 × 16 intraprediction because
the amount of computation of 4 × 4 intraprediction is much
larger than that of 16 × 16 intraprediction.

2.2. Early termination of 16× 16 intra prediction

The early termination scheme is also employed for 16 ×
16 intraprediction in P slices with its threshold derived
from the cost of motion estimation. A 16 × 16 macroblock

4 EURASIP Journal on Advances in Signal Processing

is decomposed into sixteen 4 × 4 blocks, and the SATD
of each 4 × 4 block is added up and compared with a
predefined threshold. If this accumulated cost is greater than
the threshold, the 16× 16 intraprediction is early terminated.
Figure 2 shows the early termination algorithm for 16 × 16
intraprediction. Predictor generation is performed first, and
then, a macroblock is decomposed into sixteen 4 × 4 blocks.
The SATD is calculated for one 4 × 4 block after another and
defined as the cost of the Nth 4 × 4 block:

Cost(N) = SATD(N). (3)

Then, the SATD of the Nth block (i.e., the current block)
is added to cost(N − 1), the accumulated cost from the 1st
to the (N − 1)th block. The SATD is simply chosen as the
cost of each 4× 4 block because H.264/AVC standard defines
the SATD of a 16 × 16 block with a slight adjustment as the
cost of the block for 16 × 16 intraprediction. Note that the
cost defined in the H.264/AVC standard is slightly different
from SATD because the DC coefficients of the sixteen 4
× 4 blocks in the transformed domain are transformed
again by the Hadamard transform [30]. Intraprediction is
early terminated if the accumulated cost, cost(N), is larger
than the threshold. Otherwise, the algorithm iterates the
SATD calculation and comparison for early termination
until all sixteen 4 × 4 blocks are processed. Unlike 4 ×
4 intraprediction, 16 × 16 intraprediction determines the
mode only after all sixteen 4 × 4 blocks are processed. After
deriving the cost of the sixteen 4 × 4 blocks for one mode
if intraprediction for the mode is not terminated early, the
cost is compared to that of the other modes that are not
early terminated. Then, the mode with the minimum cost
is selected as the best 16 × 16 mode.

In I slices, 16× 16 intraprediction is not terminated early
because a proper threshold cannot be obtained.

2.3. Variable threshold

The threshold function, Th(N), determines the amount of
computation savings by early termination. The selection
of Th(N) is important for an effective tradeoff between
computation savings and compression efficiency. In a P
slice, the threshold is derived from the Lagrangian cost of
the motion estimation of the corresponding macroblock as
follows:

Th(N) = Costinter

16
× (N + M(N)), (4)

where Costinter represents the Lagrangian cost of inter-
frame prediction (i.e., motion estimation) defined in the
H.264/AVC standard,and M(N) is a margin for considering
the cost variation of the remaining 4 × 4 blocks. N denotes
the number of the 4 × 4 blocks including the current block
for which intraprediction has been finished.

M is defined as a function of N because the cost variation
is proportional to the number of the remaining 4 × 4 blocks.
As the cost variation decreases with decreasing number of
the remaining blocks, M(N) should be a monotonically

decreasing function of N. Thus, a simple linear function is
chosen as follows:

M(N) = M(1)
15

× (16−N), (5)

where N varies from 1 to 16. Equation (5) is finally chosen
as the margin function employed for the early termination
proposed in this paper. As a margin is not necessary when
all 16 blocks are processed, M(N) is defined to be 0 for
N = 16, that is, M(16) = 0. The optimal M(1) is chosen
experimentally as explained in Section 5.

In (4), Costinter/16 × N implies the amount of temporal
correlation for the N 4 × 4 blocks while Cost(N) in Figure 1
represents the spatial correlation for the corresponding N
4 × 4 blocks. Therefore, the comparison of cost(N) with
Th(N) implies the comparison of the spatial correlation with
the temporal correlation (with a certain margin) of the N 4×
4 blocks. Using the threshold function of (4), intraprediction
is early terminated when the accumulated Cost4×4(N) is
larger than Th(N) (i.e., the spatial correlation of the N blocks
is smaller than the temporal correlation of the corresponding
N blocks).

As the threshold is derived from the result of motion
estimation, the above early termination assumes that motion
estimation is processed before intraprediction. This assump-
tion is true, in general, for the software implementation of
H.264/AVC [30]. In some hardware implementations, this
assumption is also true [31–33] while another type of pos-
sible hardware implementation executes motion estimation
and intraprediction in parallel [31]. Even in this type of
hardware implementation, motion estimation is, in general,
decomposed into integer and fractional motion estimations,
and integer motion estimation is performed earlier than
fractional motion estimation. In this case, the result of
integer motion estimation is available before the execution
of intraprediction so that it can be used as the threshold
for intraprediction. Although the result of integer motion
estimation is not exactly the same as that of the fractional
motion estimation, it can still be used effectively for the early
termination criterion of intraprediction. The experimental
results with both integer and fractional motion estimations
are presented in Section 5.

In I slices, 4 × 4 intraprediction is early terminated
based on the results of 16 × 16 intraprediction. In this case,
the threshold function for early termination of 4 × 4 intra
prediction is

Th(N) = Costintra 16×16

16
× (N + M(N)), (6)

where Costintra 16×16 represents the cost of 16 × 16 intrapre-
diction, and M(N) is the same as (5). Note that this threshold
function is the same as that for P slices as given by (4).

For Chroma intraprediction, its execution is determined
by the early termination of 4 × 4 and 16 × 16 Luma
intrapredictions. If the proposed early termination is imple-
mented in software, Chroma intraprediction is performed
later than both Luma 4 × 4 and 16 × 16 predictions. If
both Luma intrapredictions are early terminated, Chroma

Jin-Su Jung et al. 5

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

(a)

0 1 3 5

2 4 7 9

6 8 11 13

10 12 14 15

(b)

Figure 3: The processing order of 4 × 4 intraprediction. (a)
Original order, (b) optimal order minimizing the cost of (7).

prediction is skipped. Otherwise, Chroma prediction is
performed for all blocks. In the hardware implementation
of this paper (see Figure 10(a)), Chroma intraprediction
is performed after 16 × 16 Luma intraprediction and in
parallel with the later part of 4 × 4 Luma intrapredictions.
If both Luma intrapredictions are early terminated before
the time when Chroma intraprediction begins, then Chroma
prediction is skipped. If both Luma intrapredictions are early
terminated while Chroma intraprediction is performed, then
Chroma prediction is also early terminated at the same time.
Otherwise, Chroma intraprediction is performed to the end.

3. PIPELINED EXECUTIONOF INTRAPREDICTION AND
RECONSTRUCTION FOR 4× 4 LUMA BLOCKS

Figure 3(a) shows the processing order of the 4 × 4 intrapre-
diction employed by the reference software of H.264/AVC
[30]. In Figure 3, each box represents a 4 × 4 block of
pixel data, and the number inside a box is the processing
orders of these 16 4 × 4 blocks. For example, the block in
the upper-left corner (labeled 0) is processed first, and the
next block to the right (labeled 1) is processed next. The
intraprediction of block 1 uses the rightmost four pixels of
block 0 as the left-side predictors. Note that these predictors
should be given in the reconstructed frame. Therefore,
block 1 can be processed after block 0 is reconstructed. To
reconstruct block 0, additional operations such as integer
transform (T), quantization (Q), inverse quantization (Q−1),
and inverse integer transform (T−1) should be performed
after intraprediction. This implies that the intraprediction
of block 1 can start only after all the operations for the
reconstruction of block 0 are finished.

The execution order as shown in Figure 3(a) does not
efficiently use hardware resources because all operations
are serialized and only one hardware module among those
designed for intraprediction, T, Q, Q−1, and T−1 is utilized
at a given time. To achieve a higher utilization, a pipelined
execution of these hardware modules is desirable. For
example, consider the intraprediction of block 4. Note that
block 4 depends on block 1 but does not depend on the
previously computed block 3. Therefore, block 4 can be
pipelined with block 3. Among sixteen blocks, twelve blocks
are dependent on their previously computed blocks in the
order given in Figure 3(a). These blocks are blocks 1, 2,

3, 5, 6, 7, 9, 10, 11, 13, 14, and 15; operations for these
blocks must be serialized. For the remaining blocks 4, 8, and
12, intrapredictions can be pipelined. Figure 4(a) shows the
execution sequence of the sixteen 4 × 4 blocks where blocks
4, 8, and 12 are pipelined with their previous blocks. In this
figure, “reconstruction” represents the operations of T, Q,
Q−1, and T−1, and it is assumed that the execution time of
“reconstruction” is the same as that of intraprediction. The
numbers inside the boxes are designations for the 4 × 4
blocks. Let Tip denote the execution time of intraprediction.
Then, the total execution time of the sixteen blocks is 29×Tip

cycles.
The execution speed of intraprediction can be increased

with the sacrifice of compression efficiency by excluding
the support of certain intraprediction modes. For example,
consider the intraprediction of block 1 shown in Figure 3(a).
The reconstructed pixels of block 0 are necessary to process
six prediction modes: the Horizontal mode, the DC mode,
the diagonal down-right mode, the vertical-right mode,
the horizontal-down mode, and the horizontal-up mode.
If these six modes are excluded, block 1 can be processed
before the reconstruction of block 0 and therefore can
be pipelined with block 0 in the same way as block 4.
However, the exclusion of these six modes may reduce
the compression efficiency. Therefore, this pipelining results
in the tradeoff of computation speed with compression
efficiency. Similar to block 1, the other blocks except blocks
0, 4, 8, and 12 can be pipelined at the sacrifice of compression
efficiency. Figure 4(b) shows a fully pipelined execution
sequence of the sixteen blocks. In this case, the execution
time is reduced to 17 × Tip cycles. However, compression
efficiency is severely reduced due to the exclusions of many
modes. The simulation results evaluating the reduction of
compression efficiency due to the pipelined execution is
shown in Section 5.

4. OPTIMAL PROCESSING ORDER AND PARTIALLY
PIPELINED EXECUTION

4.1. The optimal order for encoding intra 4× 4 blocks

In order to improve the compression efficiency even with
the pipelined execution, this paper proposes a change in
the processing order of 4 × 4 intraprediction. One such
change for optimal processing order is given in Figure 3(b)
(the derivation of this order is to be discussed later). The
proposed ordering has two objectives. The first objective
is to separate the processing of dependent blocks so that
consecutively processed blocks are independent and executed
in a pipelined manner. For an example, in the proposed
order, block 3 does not depend on its previous block,
block 2, so that block 3 does not need to wait for block
2 to be reconstructed. In this new order, 3, 4, 5, 6, 7,
9, 10, 11, 12, and 13 are independent of their previously
processed blocks and can be pipelined without the reduction
of the compression efficiency. Note that blocks 4 and 12 are
processed before their upper-right blocks, blocks 3 and 11,
respectively. However, these two blocks do not use the upper-
right blocks in the original H.264/AVC reference software,

6 EURASIP Journal on Advances in Signal Processing

Block0

Block0

Block1

Block1

Block2

Block2

Block3

Block3

Block4

Block4

Block5

Block5

Block6

Block6

Block7

Block7

Block8

Block8

Block9

Block9

Block10

Block10

Block11

Block12

Block12

Block12

Block13

Block13

Block14

Block14

Block15

Block15

Time

Block0

Block0

Block1

Block1

Block2

Block2

Block3

Block3

Block4

Block4

Block5

Block5

Block6

Block6

Block7

Block7

Block8

Block8

Block9

Block9

Block10

Block10

Block11

Block12

Block12

Block12

Block13

Block13

Block14

Block14

Block15

Block15

(a)

(b)

Block0

Block0

Block1

Block1

Block2

Block2

Block3

Block3

Block4

Block4

Block5

Block5

Block6

Block6

Block7

Block7

Block8

Block8

Block9

Block9

Block10

Block10

Block11

Block12

Block12

Block12

Block13

Block13

Block14

Block14

Block15

Block15

(c)

Intra prediction

Reconstruction

Intra prediction

Reconstruction

Intra prediction

Reconstruction

Figure 4: Difference in processing time by pipelined execution of 4 × 4 intra prediction. (a) Partially pipelined execution of 16 4 × 4 blocks
in the original processing order. (b) Fully pipelined execution. (c) Partially pipelined execution in the proposed order shown in Figure 3(b).

either. Therefore, these two blocks are treated independently
of their upper-right blocks. Hence, the new order has seven
more independent blocks than that in the original order
shown in Figure 3(a).

The second objective of the proposed ordering is to select
the excluded modes which affect the compression efficiency
to a lesser degree and to reduce the number of excluded
modes if the exclusion of certain modes is unavoidable.
Consider block 8 in Figure 3(b). Block 8 depends on block
7 because the pixels of block 7 are used as predictors of block
8 for the diagonal down-left and vertical-left modes. If the
intraprediction of block 8 in this order cannot perform the
two modes that are dependent on block 7, the exclusion may
reduce the compression efficiency. However, its impact is less
significant than the exclusion of other important modes that
depend on either the left block or the upper block. When the
left block is not available, six modes should be excluded and
these six modes, in general, impact more significantly than
the two modes that depend on the upper-right block. Seven
modes are dependent on the upper block, so that the block
gives an even more significant impact than the left block.
Thus, the exclusion of the two modes that depend on the
upper-right block may affect the compression efficiency least
when compared to the exclusion of the left block or the upper
block.

To derive the processing order that satisfies the two goals
discussed above, an optimization problem is formulated.
To this end, a dependency graph is defined as shown in
Figure 5(b). The sixteen 4 × 4 blocks labeled from A to P
in Figure 5(a) are represented by the sixteen labeled nodes
in Figure 5(b). An edge between two nodes represents the
dependence between the source and destination nodes of
the edge. The weight of an edge represents the number
of intraprediction modes that depend on the source node.
For example, the edge weight of 6 from node A and
B represents the number of intraprediction modes that
require the predictors from A. Note that these six modes

are the horizontal, DC, diagonal down-right, vertical-right,
horizontal-down, and the horizontal-up modes. Any block
depends on its left blocks, and the number of dependent
modes is 6. Thus, the weight of any edge from a node to its
right node is always 6 in this graph. On the other hand, any
node depends on its upper node for 7 modes (i.e., vertical,
DC, diagonal down-left, diagonal down-right, vertical-right,
horizontal-down, and vertical-left modes). Thus, the weight
of any edge from a node to its lower node is assigned
to 7. Similarly, any node depends on its upper-left node
for 3 modes (i.e., diagonal down-right, vertical-right, and
horizontal-down modes), and the weight of an edge from
a node to its lower-right node is assigned to 3. All of these
weights are assigned to the edges in Figure 5(b). A block
depends on its upper-right block for 2 modes (i.e., diagonal
down-right and vertical-left modes). Thus, a weight of 2 is
assigned to the edge from a node to its lower-left node. Note
that there is no edge from E to D although E is the upper-
right block of D. This edge is absent because block D is
processed earlier than block E even in the original processing
order (as shown in Figure 3(a)), so that block D does not use
its predictors from block E for the diagonal down-right and
vertical-left modes even in the original H.264/AVC reference
software. For the predictors of these two modes, the bottom-
rightmost pixel of block B is copied to the right to become
the predictors. The edge from M to L is also absent for the
same reason as from E to D. Other than these two edges, all
edges from nodes to its lower-left nodes have their weights
assigned to 2.

The processing order is defined as a one-to-one function,
order(), that maps an integer (from 0 to 15) to a 4 × 4 block.
For example, suppose that function order() is defined such
as order(0) = A, order(1) = C, and order(2) = B. Then, the
processing order of the first three blocks is A, C, followed
by B. The objective of the order selection is to minimize the
excluded prediction modes. Consider the case when the ith
block (i.e., the block processed in the ith order, also denoted

Jin-Su Jung et al. 7

A B E F

C D G H

I J M N

K L O P

(a) Sixteen 4 × 4 blocks

A B E F

C D G H

I J M N

K L O P

6 6 6

666

6 6 6

666

7 7 7 7

7777

7 7 7 7

2 3 2 3

2 32 32 3

2 3 2 33

3

(b) Dependence graph

Figure 5: The dependency graph for cost formulation.

by order(i)) is dependent on the jth block and the ith block
is processed earlier than the jth block, that is, i < j. In this
case, by the time the ith block is processed, its predictors
that belong to the jth block are not available. Thus, among
the intraprediction modes of the ith block, the modes that
depend on the jth block must be excluded. The number of
excluded modes is represented by weight(order(j), order(i))
which is the weight of the edge from node j to node i. All the
blocks on which the ith block depends need to be processed
earlier than the ith block. Otherwise, the prediction modes
of the ith block must be excluded. Let pred(order(i)) denote
the set of blocks on which the ith block depends. Then, the
number of the excluded prediction modes of the ith block is
expressed as

Σorder(j)∈pred(order(i)), i< j weight(order(j), order(i)). (7)

Consider another case in which the ith block is depen-
dent on the (i− 1)th block. For the intraprediction of the ith
block, T-Q-Q−1-T−1 operations for the (i − 1)th block are
not completed. In this case, the number of excluded modes
is represented by

weight(order(i− 1), order(i)). (8)

This is because the predictors that belong to the (i − 1)th
block are not available, by the time the ith block is processed.
From (7) and (8), the total number of the excluded modes is
given as follows:

cost(order) = Σ(ι=0 to 14)Σorder(j)∈pred(order(i)), i< j

weight(order(j), order(i))

+ Σ(ι=1 to 15) weight(order(i− 1), order(i)).
(9)

The cost function of (9) is design to estimate the
number of excluded modes when all blocks are pro-
cessed in a pipelined manner. Note that this cost may
not always be a precise estimation of the number of
excluded modes because some excluded modes may be
counted twice in (9). For example, suppose that the blocks
shown in Figure 5(a) are processed in the order such that
order(0) = C, order(1) = A, and order(2) = B. Then,
block C depends on both blocks A and B, but C is
processed earlier than blocks A and B. Thus, cost(order)

includes the weight(order(1), order(0)) (= weight(A,C)) and
weight(order(2), order(0)) (= weight(B,C)). Note that the
7 excluded modes in weight(A,C) include the 2 excluded
modes in weight(B, C). Therefore, the two excluded modes
are counted twice. This example shows a possibility that the
cost of (9) may not estimate the exact number of excluded
modes because certain modes can be counted multiple times.
However, such a case does not occur unless a node is
processed earlier than the node that it depends on. For both
the original order and the optimal order in Figure 3, the
cost estimated by (9) does not have any excluded modes
counted twice. Thus, the cost function of (9) is a reasonable
approximation of the number of excluded modes, and in
most cases, it is the exact number of excluded modes.

With an exhaustive search, the optimal solution that
minimizes the cost function of (9) is derived as shown in
Figure 3(b). In this optimal order, the value of the cost
function is 18. Note that the cost of the original H.264/AVC
order is 56, and the improvement following the proposed
order is over 68%.

In the above discussion, it is assumed that the processing
time of intraprediction is greater than or equal to that of
T-Q-Q−1-T−1 operations. This assumption is true in the
implementation in this paper as discussed in Section 6,
and consequently the hardware implementation in this
paper follows the processing order given by Figure 3(b).
However, this assumption may not always be valid for other
implementations. The cost function of (9) can be easily
extended for a general case. For example, consider another
case in which the processing time of intraprediction is less
than that of T-Q-Q−1-T−1 operations. In this case, if the ith
block depends on the (i − 2)th block, the prediction modes
that depend on the (i− 2)th block must be excluded. This is
because the predictors that depend on the (i− 2)th block are
not available, by the time the ith block starts intraprediction.
Therefore, the term weight(order(i − 2), order(i)) needs to
be added to the cost function. As a result, the cost function
of (9) is modified as follows:

cost(order) = Σ(ι=0 to 14)Σorder(j)∈pred(order(i)), i< j

weight(order(j), order(i))

+ Σ(ι=1 to 15)weight(order(i− 1), order(i))

+ Σ(ι=2 to 15)weight(order(i− 2), order(i)).
(10)

If the processing time of T-Q-Q−1-T−1 operations is
larger than twice the execution time of intra prediction, then
the (i−3)th block is not available, by the time the ith block is
processed. In this case, the prediction modes that depend on
the (i− 3)th block also needs to be excluded for the intrapre-
diction of the ith block. Thus, according to the processing
times of T-Q-Q−1-T−1 operations and intraprediction, the
number of excluded modes is determined.

Although the number of excluded modes is significantly
reduced by the optimal order of Figure 3(b), the pipelined
execution of intraprediction and reconstruction (T-Q-Q−1-
T−1 operations) may still suffer from a substantial loss of
compression efficiency. This is because a large number of
modes are excluded in the intrapredictions of block 1 and

8 EURASIP Journal on Advances in Signal Processing

Step 1: select block0

Step 2 : select the block(s) with available predictors

Step 3: select the block(s) with most dependent blocks

Step 4: select the block(s) with largest weights

Step 5: select independent blocks

Step 6: include to the candidate set the blocks that
are dependent on selected block

Step 7: no candidate block left ?
No Yes

End

Figure 6: Processing order selection algorithm.

block 15. Other than these two blocks, at most two modes are
excluded, so that the loss of compression efficiency is minor.
For a reasonable tradeoff between the compression efficiency
and the execution time, this paper proposes a partial pipeline
such that all blocks are executed in a pipelined manner
except for block 1 and block 15, which are executed only
after their previous blocks are reconstructed. Figure 4(c)
shows the execution sequence of the partial pipeline. As
two blocks are not pipelined, the total execution time is
19×Tip cycles. Thus, the processing time increases by 2×Tip

cycles (11.7%) when compared to a fully pipelined execution
(see Figure 4(b)). However, the compression efficiency is
significantly improved as block 0 and block 15 do not
exclude any prediction modes. The evaluation results of the
compression efficiency for this partially pipelined execution
are presented in Section 5.

4.2. The optimal order for decoding intra 4× 4 blocks

This subsection focuses on decoding and discusses the
processing order of intraprediction. The discussion in this
subsection is made with the assumption that all data in
a 16 × 16 macroblock are available before the start of
intraprediction. If all data are not available, intraprediction
must follow the decoding order of CAVLD, so that the pro-
cessing order cannot be changed arbitrarily. Like encoding,
the intraprediction of a 4 × 4 block can start only after the
block containing the predictors is reconstructed. To allow a
pipelined execution for decoding, two back-to-back blocks
must be independent. A decoder needs to process only one
prediction mode while an encoder needs to process all modes
to select the best one. Thus, a predefined order is not possible
for a decoder. Instead, the algorithm shown in Figure 6 is
proposed for selecting the processing order.

In the algorithm in Figure 6, step 1 makes block 0
an element of the set of candidate blocks for the next
processing. Then, the algorithm moves to the next step. Step

0 2 5 A

1 4 B E

3 C F H

D G I J

Figure 7: A processing order example for decoding.

2 selects the block whose predictors are available, that is,
the blocks that contain the predictors are already processed
and reconstructed. If more than one block is selected in this
step, then the algorithm moves to the next step. Otherwise,
the next step becomes step 6. Among the blocks selected in
step 2, step 3 selects the block that has the most dependent
blocks that are not yet processed. Recall that one block is
dependent on the other block if its predictors belong to the
other block. Thus, for a given block, its dependent blocks are
the one in the right, down, down-left, and down-right if they
exist. Thus, one block has at most four dependent blocks. For
example, block 2 in Figure 7 has four dependent blocks, 1, 4,
5, and B. while block 1 has only three dependent blocks, 3,
4, and C. Note that the down-left block of block 1 does not
exist. If more than one block is selected, then the algorithm
moves to the next step. Otherwise, the next step becomes
Step 6. For the blocks selected in step 3, step 4 calculates
the summation of all the weights for these dependent blocks.
Then, step 4 chooses the one with the maximum weight. The
weight is the same as that given in the corresponding edge
of a dependence graph shown in Figure 5(b). For example,
the weight of the edge from B to C in Figure 7 is 2 which
corresponds to the edge weight from G to J in the dependence
graph of Figure 5(b). For another example, the weight of the
edge from B to E in Figure 7 is 6 which corresponds to the
edge weight from G to H in Figure 5(b). If more than one
block has the same maximum weight, then the algorithm
moves to the next step. Otherwise, the next step becomes
step 6. Among the blocks selected in step 4, step 5 selects
the block that is not dependent on the other blocks selected
in step 4. If more than one block is selected, choose any
block among them. Then, the algorithm moves to the next
step. Step 6 makes the neighboring blocks of the selected
block as elements of the set of candidate blocks for the next
processing. Then, the algorithm moves to the next step. In
step 7, if there is a candidate block, the algorithm moves to
step 2. Otherwise, the algorithm ends.

The proposed algorithm is explained with Figure 7 in
which six blocks numbered 0 to 5 are already processed in
the order given by the numbers, and the remaining blocks are
not yet processed. The basic idea of the proposed algorithm is
that a block having more dependent blocks is selected earlier
than the block with less dependent blocks. In this way, the
algorithm has more choices in the selection of the blocks to
be processed in the next steps. Consider an example that one
block between A and B needs to be selected. In this example,
block A has two dependent blocks, B and E, while block B has

Jin-Su Jung et al. 9

Table 1: Bitrate and PSNR comparison of various pipelined executions.

Sequence QP

Original
H.264
without
pipeline

Original
order + Full
pipeline

Proposed
order + Full
pipeline

Proposed
order +
Partial
pipeline

Original
H.264
without
pipeline

Original order
+ Full pipeline

Proposed order
+ Full pipeline

Proposed
order +
Partial
pipeline

Bit rate PSNR

Akiyo

16 4268.21 4585.53 4402.53 4297.93 47.36 47.3 47.34 47.36

20 2872.88 3138.17 2995.07 2908.32 44.84 44.83 44.83 44.84

24 2045.43 2242.07 2138.39 2067.89 42.53 42.53 42.52 42.55

28 1439.71 1584.1 1496.24 1459.21 40.17 40.16 40.2 40.16

Mother and
daughter

16 4413.6 4789.94 4569.89 4452.68 47.2 47.16 47.18 47.2

20 2940.71 3248.39 3073.19 2975.96 44.38 44.34 44.36 44.37

24 1980.31 2217.13 2088.11 2012.35 41.88 41.83 41.86 41.87

28 1327.41 1517.17 1406.12 1353.44 39.48 39.41 39.45 39.46

Stefan

16 10592.21 11278.49 10874.35 10604.33 46.39 46.36 46.38 46.39

20 8206.43 8781.96 8450.64 8217.89 42.96 42.95 42.96 42.96

24 6264.22 6750.28 6467.23 6275.59 39.6 39.59 39.6 39.6

28 4652.08 5059.1 4814.59 4662.62 36.36 36.36 36.37 36.37

Foreman

16 7741.97 8319.95 7963.94 7755 46.24 46.21 46.23 46.23

20 5474.14 5997.32 5677.29 5486.95 42.86 42.83 42.85 42.86

24 3744.46 4215.47 3928.1 3756.52 39.89 39.83 39.87 39.89

28 2528.31 2918.27 2684.19 2538.77 37.19 37.09 37.16 37.19

four dependent blocks C, E, F, and H. Thus, block B has more
dependent blocks than A so that it is selected earlier than
block A. As block B is selected, four dependent blocks can
be selected in the next steps. On the other hand, if block A is
selected instead, only two dependent blocks can be selected
in the next steps. Thus, the selection of block B gives more
choices for the selection of blocks to be processed in the next
steps.

Suppose that the algorithm is at step 2 attempting to
find the next block to be processed. The candidate blocks
are the neighboring blocks of the processed blocks, that is,
{A, B, C, D} is the set of the current candidate blocks. Assume
that the intraprediction modes of blocks A, B, C, and D are
1 (horizontal mode), 1, 4 (diagonal down-right mode), and
0 (vertical mode), respectively. Step 2 checks blocks A, B, C,
and D to see if their predictors are available. For block A,
its prediction mode is 1 that requires the predictors from
block 5. Note that block 5 is processed in the previous step
so that its data is not available. Therefore, these predictors
are not available, so that block A is not selected. For block
B, its prediction mode is mode 1 (horizontal mode) that
requires the predictors from block 4. Note that block 4
is not the previously processed block so that it is already
reconstructed and all data are available for block B. Thus,
block B is selected in step 2. Similarly, blocks C and D are
also selected because their predictors are available. In step 3,
the number of dependent blocks is counted. Block B has four
dependent blocks which are blocks C, E, F, and H. Block C
also has four dependent blocks (D, F, G, and I), and block
D has one (G). Thus, step 3 selects blocks B and C. Step 4
calculates the summation of the weights. Block B has four
dependent blocks: C, E, F, and H whose weights are 2, 6,

7, and 3, respectively, as shown in the dependence graph
of Figure 5(b). Thus, the summation of these weights is 18.
Block C also has four dependent blocks: D, F, G, and I whose
weights are 2, 6, 7, and 3. Thus, the summation of the four
weights is also 18. Thus, both blocks B and C are selected in
step 4 and the algorithm moves to the next step. Step 5 selects
block B because block C depends on block B.

5. EXPERIMENTAL RESULTS

This section evaluates the compression efficiency and exe-
cution speed of the proposed pipelined execution and early
termination. Table 1 shows the coding efficiency of the
pipelined execution of 4 × 4 intraprediction with the pro-
cessing order proposed in Section 3. Four video sequences,
Foreman, Akiyo, Mother and daughter, and Stefan are used.
Each of these video sequences is tested for three hundred CIF
(352× 288 pixels) size frames. The reference software version
7.3 is used for this comparison, and the rate distortion
optimization for the high complexity mode decision [1]
is not used in the simulation. For mode decision, SAD,
instead of SATD, is used in the simulation. The QP values
of 16, 20, 24, and 28 are tested, and all frames in a video
sequence are encoded as I slices. The bit rate of the partially
pipelined execution with the proposed order as shown
in Figure 3(b) is compared with the original H.264/AVC
encoder without pipelining. The compression efficiencies are
also presented for the fully pipelined execution as shown
in Figure 4(b). For fully pipelined execution, the results
of both the original order and the proposed order are
shown. Table 1 clearly shows that the proposed order out-
performs the original order when the full-pipeline is applied.

10 EURASIP Journal on Advances in Signal Processing

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
B

R
ch

an
ge

24 40 60 80 100 120 140 160 180

K

QP32
QP28
QP24

QP20
QP16

(a) CIF

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

B
R

ch
an

ge

24 40 60 80 100 120 140 160 180

K

QP32
QP28
QP24

QP20
QP16

(b) QCIF

Figure 8: Bit rate change averaged over 11 sequences.

Table 2: Number of nonpipelined blocks in a decoder.

Sequence Original order Proposed order

Foreman 6786 1535

Mother and daughter 5770 1302

Akiyo 4473 1087

Stefan 6879 1596

Rate-distortion performance is further improved by the
partial pipeline and the performance remains almost same
as that of the original algorithm without pipelining. With
this performance comparison, the partial pipeline is finally
chosen for hardware implementation presented in Section 6.

Table 2 shows the efficiency of the order selection algo-
rithm for a decoder presented in Section 4.2. The efficiency
is measured with the number of nonpipelined blocks. The
order selection algorithm decreases the number of blocks
that depend on their previous blocks, and consequently
decreases the number of nonpipelined blocks. For simula-
tion, the reference software version 7.3 is used with both of
the rate distortion optimization and Hadamard transform
for cost estimation turned off. The intraframe period is
chosen as 10, and QP is fixed as 28. The number of reference
frames is chosen as 1 for motion estimation. Four QCIF-
sized sequences, Foreman, Mother and daughter, Akiyo, and
Stefan, are used as test sequences. The number of 4× 4 blocks
that are prevented from the pipelined execution is given in
the table. On average, the number of nonpipelined blocks
is reduced to only 23.1% with the proposed order when
compared to the original order.

The next simulation results show the best constant K
in (1) when SAD is used to evaluate the cost of distortion
in I slices. Note that 24 is assigned to K in the original
H.264/AVC reference software, and experiments show that

this value is optimal when SATD is used. On the other hand,
24 is not the best value when SAD is used in an I slice as
explained next. The bit rate is measured with various values
of K. Eleven video sequences, Foreman, Akiyo, Coastguard,
Container, Hall monitor, Mother and daughter, News, Stefan,
Table tennis, and Weather are used. Both the CIF size and
the QCIF size (176 × 144 pixels) test vectors are used, and
the number of frames is 300 for all test vectors. Five QP
values, 16, 20, 24, 28, and 32 are used, and SAD is used
instead of SATD. As the optimal constant K for only I slices
is examined in these simulations, frames are encoded in the
intraprediction mode. For the evaluation criterion, the bit
rate change is defined as

BRchange =
BRorig − BRnew

BRorig
× 100, (11)

where BRorig denotes the bit rate of the reference software,
and BRnew is the bit rate with a new constant K ranging
from 24 to 180. Figure 8 shows the bit rate changes averaged
over 11 CIF-sized and QCIF-sized test sequences. In Figure 8,
value 80 achieves the best BRchange for QP equal to 32 while
100 generates a reasonably good result for other QP values.
The PSNR variation depending on the value of K is also
measured by experiments which show that the effect of K
on the PSNR variation is negligible. As a result, the PSNR
variation is not considered for the selection of K. From the
results shown in Figure 8, 80 is chosen as the constant K for
QP greater than 28 while 100 is chosen as K for QP less than
or equal to 28. Note that the value of K is changed only for
the case when SAD is used for cost evaluation. The value of
K remains 24 when SATD is used for cost evaluation.

The next simulation is performed to find the optimal
value of M(1) in (6). With simulations with 11 video
sequences, the value of M(1) for the early termination of 4 ×
4 and 16× 16 intrapredictions in P slices is chosen as 2 and 0,

Jin-Su Jung et al. 11

Table 3: Skipped block ratio [%].

Early termination
type

4 × 4 in P 16 × 16 in P 4 × 4 in I

(M(1) = 2) (M(1) = 0) (M(1) = 2.5)

Foreman 79.53 91.25 11.16

Akiyo 85.66 92.38 40.61

Coastguard 82.2 93.26 1.57

Container 82.51 91.77 20.82

Hall monitor 83.47 92.31 27.68

Mobile 85.08 91.42 1.75

Mother and
daughter

83.42 91.66 32.3

News 83.38 91.88 30.31

Stefan 81.96 90.05 17.1

Table tennis 81.55 92.57 11.87

Weather 86.81 88.18 15

Average 83.23 91.52 19.11

respectively, because the numbers make a reasonable tradeoff
between computational reduction and prediction accuracy.
For the early termination of 4 × 4 intraprediction in I slices,
the value of M(1) is chosen as 2.5.

For evaluation of the computation savings by early
termination, the number of early terminated 4 × 4 blocks
is counted. Table 3 shows the ratio of the early terminated
blocks against the total number of blocks. The simulation
options are mostly same as the ones used for Table 1 except
that QP is fixed as 28, and the intraframe period is chosen
as 5 when evaluating early termination of 4 × 4 and 16 ×
16 intrapredictions in P slices. For mode decision, the cost
derived from SAD, instead of SATD, is used in the simulation.
Eleven video sequences are simulated for this evaluation. The
second column (4× 4 in P) shows the early termination ratio
for 4 × 4 intraprediction in P slices, and the third column
shows the ratio for 16 × 16 intraprediction in P slices. The
last column shows the early termination ratio for 4 × 4
intraprediction in I slices. A great amount of computation
is saved in P slices as shown in the table. On average, 19.11%
and 83.23% of 4 × 4 intrapredictions are terminated early
in I and P slices, respectively. For 16 × 16 intraprediction,
91.52% of 4 × 4 blocks are early terminated in P slices. The
overhead of early termination is the calculation of threshold
in (4) and comparison of the threshold with the cost. Thus,
the overhead is negligible compared to the amount of saved
calculation for intra prediction.

Both pipelined execution and early termination are
employed by the H.264/AVC encoder, and the combined
effect is evaluated. Table 4 shows the early termination ratios
for which the simulation options are same as the ones used
for Table 3. Only the average of eleven sequences is shown in
this table. The early termination ratios are slightly different
from those in Table 3 as they are affected by the execution
order of the 4 × 4 intraprediction optimized for pipelining.
Although the early termination ratios are slightly reduced
with the new order, the difference is negligibly small, and the
ratios of early termination are still very large; consequently,

Table 4: Skipped block ratio [%] with the new order shown in
Figure 3(b).

4 × 4 in P 16 × 16 in P 4 × 4 in I

(M(1) = 2) (M(1) = 0) (M(1) = 2.5)

Average 81.85 91.53 19.09

Table 5: Skipped block ratio [%] with integer motion estimation
results.

4 × 4 in P slices 16 × 16 in P slices

(M(1) = 2) (M(1) = 0)

Average 78.55 80.71

the amount of computation is significantly reduced by early
termination.

The hardware implementation in this paper employs
pipelined execution in such a way that integer motion esti-
mation is performed one stage earlier than intraprediction
while fractional motion estimation is performed in the same
pipeline stage as intraprediction. Therefore, by the time
when intraprediction begins, the result of fractional motion
estimation is not available, but only the integer motion
estimation is available. In this case, the cost of integer motion
estimation is used for the threshold function of (4). Table 5
shows the skipped block ratio using the cost of integer
motion estimation. The simulation options are same as the
ones used for Table 3. The average skipped block ratio of 4 ×
4 intraprediction in P slices is 78.55 percent. When compared
with the fractional motion estimation (i.e., the result with
Table 3), the ratios are reduced by 4.68 percent. For the early
termination of 16 × 16 prediction, the skipped block ratio is
reduced to 80.71 percent. Although the skipped block ratio
is reduced by using the cost of integer motion estimation,
it is still large enough to be used effectively for the early
termination criterion of intraprediction.

As early termination is determined by comparing the
cost of intraprediction with that of motion estimation,
the skipped ratio is affected by the accuracy of motion
estimation. A practical H.264 encoder often adopts a motion
estimation with reduced complexity in order to reduce the
hardware cost at the sacrifice of the accuracy. As a result,
the skipped block ratio in a practical H.264 encoder may
be not as large as that shown in Tables 3 or 4. However, to
maintain a reasonably efficient compression, most practical
H.264 encoders employ a motion estimation engine with a
reasonably good accuracy. Then, the skipped block ratio is
still pretty large as far as the accuracy of motion estimation is
reasonably good. Therefore, the proposed early termination
is effective for most practical H.264 encoders.

The bit rate and PSNR changes, by the proposed
intraprediction, are measured and shown in Tables 6 and
7. These values are obtained by Bjontegaard’s method
presented in [34]. Table 6 shows the bit rate and PSNR
changes for I slices when the 4 × 4 intraprediction is
partially pipelined with the proposed processing order and
also early terminated with the proposed threshold function.
The simulation options are same as those for Table 1.

12 EURASIP Journal on Advances in Signal Processing

Table 6: Bit rate and PSNR change by pipeline and early termination in I slices.

Sequence
Pipeline Early termination Pipeline + early

termination
Pipeline Early termination Pipeline + early

termination

Bit rate change [%] PSNR change [dB]

Foreman 0.2967 0.0105 0.336 −0.0236 −0.0006 −0.026

Akiyo 1.1516 −0.0749 1.155 −0.0741 0.0045 −0.0741

Coastguard 0.0846 0.0203 0.0964 −0.0087 −0.0021 −0.0099

Container 0.0872 −0.0071 0.0827 −0.0078 0.0008 −0.0072

Hall monitor 0.3597 0.0103 0.3554 −0.0225 0.0004 −0.0213

Mobile 0.1958 0.0068 0.209 −0.0281 −0.001 −0.0301

Mother and daughter 1.5653 0.5831 1.7049 −0.0983 −0.0365 −0.107

News 0.5627 0.1192 0.5662 −0.0455 −0.0097 −0.0459

Stefan 0.1607 0.0589 0.2198 −0.0195 −0.007 −0.0265

Table tennis 0.1629 0.029 0.1869 −0.015 −0.0026 −0.0171

Weather 0.6654 0.1395 0.7951 −0.0926 −0.0203 −0.1113

Average 0.4812 0.0814 0.5188 −0.0396 −0.0067 −0.0433

Table 7: Bit rate and PSNR change by pipeline and early termination in I and P slices.

Sequence
Early termination Pipeline + early termination Early termination Pipeline + early termination

Bit rate change [%] PSNR change [dB]

Foreman 0.1123 0.2695 −0.0055 −0.0135

Akiyo −0.0505 0.8769 0.0021 −0.0427

Coastguard 0.052 0.0752 −0.0034 −0.0047

Container −0.0258 0.0404 0.0014 −0.0024

Hall monitor −0.0237 0.2848 0.0005 −0.0097

Mobile −0.0096 0.0998 0.0006 −0.0092

Mother and daughter 0.5203 1.1445 −0.0215 −0.0467

News 0.1012 0.5277 −0.0061 −0.0316

Stefan 0.3991 0.4509 −0.03 −0.032

Table tennis 0.0697 0.1552 −0.0045 −0.0098

Weather 0.1729 0.7112 −0.0198 −0.0805

Average 0.1198 0.4215 −0.0078 −0.0257

The column, named as “Early Termination,” shows the
simulation results when only early termination is employed
while the column named as “Pipeline” represents the results
with only pipelined execution. The column “Pipeline + early
termination” shows the results when both early termination
and pipelined execution are employed. As shown in the
table, the bit rate and PSNR changes are negligible for all
test sequences. Table 7 shows the bit rate change and the
PSNR change for both I and P slices when both 4 × 4
and 16 × 16 intrapredictions are terminated early, and the
partial pipelined execution of 4 × 4 intraprediction is also
employed. In this simulation, the I frame period is set to 5, so
that frames are encoded as both I and P slices. Other simula-
tion options are same as those for Table 6. The bit rate change
by early termination is very small, even smaller than that
in Table 6 because very small percentage (between 1% and
1.24%) of macroblocks is encoded as intramode in P slices
[35]. As shown in Tables 6 and 7, the proposed algorithm
suffers little degradationof either compression efficiency or

image quality. These simulation results show that dramatic
computation savings are achieved with little degradation in
coding performance by the proposed pipelining and early
termination.

All previous simulations are performed again with
SATD-based mode decision instead of SAD-based decision.
The result is similar to that obtained with SAD except that the
early termination results in a slightly larger bit rate increase.
It is because the SATD-based mode decision finds the best
candidate more accurately than the SAD-based decision, and
the penalty of wrong early termination becomes relatively
expensive. However, thanks to the modification for the SAD-
based cost evaluation proposed by this paper, the bit-rate
increase by SAD-based decision is reduced, so that the bit
rate is not significantly larger than that with SATD-based
cost evaluation. Moreover, the selection of cost evaluation
between SAD or SATD is not a main topic of this paper.
Therefore, this paper employs a simple SAD-based cost
evaluation.

Jin-Su Jung et al. 13

Upper line buffer

4×4
reconstructed
macroblock

buffer

16×16
reconstructed
macroblock

buffer IDCT
IDHT

IDC
reg.

IQ

Reconstructed residual
+ predictor Best predictor

buffer

Coded block pattern

Reconstruction phase

Coefficient
buffer

Q
CBP DC

reg.

DCT
DHT

DCTQ phase

Boundary
registers

Intra prediction
generator

Intra prediction
generator

Source buffer

4×4 cost
calculation

16×16 cost
calculation

Mode decision

Most pb. reg.
Prediction phase

Figure 9: Block diagram of hardware implementation.

Table 8: Execution time comparison.

Method Proposed Huang et al. [1] Li et al. [29]

Slice/mode I and P slice I slice P slice I and P slice I and P slice

Processing
option

No early
termination

19.09% early
termination

78.55% early
termination

4 × 4 mode 16× 16 mode
Average
(2.54% in 16
× 16 mode)

—

cycles 624 497 143 544 612 546 <560

6. HARDWARE IMPLEMENTATION

This section presents the hardware implementation of
the proposed pipelined execution and early termination.
Figure 9 shows a block diagram of the hardware imple-
mentation which is similar to that presented in [29]. As
shown in the figure, two separate prediction modules are
implemented to simultaneously process Luma 4 × 4 and
16 × 16 predictions. The Luma 16 × 16 prediction module
is shared by the Chroma 8 × 8 prediction because Luma
16 × 16 prediction requires a less amount of computation
than Luma 4 × 4 prediction. Single hardware modules are
implemented for DCT, quantization, inverse Quantization,
and inverse DCT, each, as shown in Figure 9. To achieve
the maximum throughput, these modules are pipelined.
Hadamard transform is not implemented in the mode
decision module because the cost of intraprediction is
estimated not with SATD but with SAD.

Figure 10(a) shows the proposed processing schedule
that adopts the early termination and pipeline schedule
presented in Sections 2 and 4.1, respectively. The hardware

in Figure 9 is similar to that in [29], but the schedule shown
in Figure 10(a) shows how the proposed early termination
and pipeline schedule can efficiently utilize the hardware
shown in Figure 9. The Luma 4 × 4 prediction and 4 × 4
reconstruction (T, Q, Q−1, and T−1 operations) are partially
pipelined as explained in Section 4.1, so that all predictions
are overlapped with reconstructions of the previous blocks
except block 1 and block 15 which are not pipelined due
to the data dependence with the previous blocks. Luma
16 × 16 prediction is performed in parallel with Luma
4 × 4 prediction. After the execution of Luma 16 × 16
prediction, Chroma 8 × 8 prediction is executed by the
same prediction module as Luma 16 × 16 prediction. The
reconstruction operations for 16 × 16 Luma and 8 × 8
Chroma blocks are performed as soon as their predictions
are completed. Although the reconstruction operations for
16 × 16 Luma and 8 × 8 Chroma blocks are shown
below the 16 × 16 intrapredictions in this figure, these
operations are executed by the same hardware module for
the reconstruction of 4 × 4 block. As Luma 4 × 4 prediction

14 EURASIP Journal on Advances in Signal Processing

Luma 4×4 prediction B0
(36 cycles)

B1
(36)

B2
(36)

B3
(36) · · ·

B14
(36)

B15
(36)

Luma 4×4 TQQ−1T−1 B0
(16)

B1
(16)

B2
(16)

B13
(16)

B14
(16)

B15
(16)

Luma 16×16/Chroma
prediction

Luma
(256)

Chroma
(128)

Luma 16×16/Chroma
TQQ−1T−1

Luma 16×16
(68)

Chroma
(36)

624 cycles

(a) Proposed intraprediction and reconstruction scheduling of Figure 9

Luma/Chroma
prediction

B0
(36 cycles)

L0
(16)

B1
(36) · · ·

B15
(36)

L15
(16)

Chroma
(128)

Luma/Chroma
TQQ−1T−1

DCT based mode decision
Luma 16×16

(68)
Chroma

(32)

1060 cycles

(b) Intraprediction and reconstruction scheduling in [1]

Luma/Chroma
prediction

B0
(18 cycles)

L0+C0
(8 + 8) · · ·

B7
(18)

L7+C7
(8 + 8)

B8
(18)

L8
(8) · · ·

B15
(18)

L15
(8)

Luma/Chroma
TQQ−1T−1

B0
(16)

B7
(16)

Chroma B8
(16)

B15
(16)

Luma 16×16
(68)

612 cycles

(c) Modified scheduling of (b) for a prediction module with eight-pixel parallelism

Figure 10: Comparison of intraprediction and reconstruction scheduling.

is the performance bottleneck, a higher priority is given to
Luma 4 × 4 reconstruction than Luma 16 × 16/Chroma
8 × 8 reconstruction. Thus, the reconstruction of Luma
16 × 16/Chroma 8 × 8 is performed when Luma 4 × 4
reconstruction is not performed. A single hardware module
is enough to process all Luma 4 × 4, Luma 16 × 16,
and Chroma 8 × 8 because the computation amount for
reconstruction operations is relatively small when compared
with prediction operations.

In order to compare the efficiency of the proposed
processing schedule with the previous work proposed in
[1], the processing schedule presented in [1] is shown
in Figure 10(b). The hardware in [1] uses only a single
prediction module that performs Luma 4 × 4 and 16
× 16 predictions in an interleaved manner as shown in
Figure 10(b). During the idle time between consecutive
Luma 4× 4 blocks, Luma 16× 16 prediction is performed so
that the prediction module is fully utilized. The prediction
module is designed to exploit four-pixel parallelism and
consequently process 4 pixels at every cycle. For Luma 4
× 4 prediction, each 4 × 4 block requires to process 16

pixels and 9 prediction modes. As a result, 126 pixels need
to be processed for a single 4 × 4 block which consumes
36 cycles with the module with four-pixel parallelism. The
execution time is shown in Figure 10(b) as the number inside
parenthesis of each box. For the Luma prediction of each 4 ×
4 block, 36 is assigned. Each 4 × 4 block for a Luma 16 ×
16 prediction requires 16 cycles because 16 × 16 prediction
requires 4 prediction modes. The same prediction module
performs Chroma 8 × 8 prediction which is followed by
Luma prediction and executed in 128 cycles. The DCT and
quantization are followed by Chroma 8 × 8 prediction. The
hardware module for DCT and quantization also exploits
four-pixel parallelism so that it processes four pixels per a
single cycle. As a result, four cycles are required to process
a single 4 × 4 block. A Luma macroblock requires 16 4 × 4
DCT operations followed by 1 4× 4 Hadamard transform for
the 4× 4 DC coefficients. Thus, a Luma macroblock requires
17 4× 4 transforms which consume 68 cycles. For Chroma, 8
4 × 4 DCT operations and 2 2 × 2 Hadamard transforms are
required. The 2× 2 Hadamard operation is relatively simple,
and its execution time is ignored. Then, 32 cycles are required

Jin-Su Jung et al. 15

39.5

40.5

41.5

42.5

43.5

44.5

45.5

46.5

47.5

P
SN

R
(d

B
)

1000 1500 2000 2500 3000 3500 4000 4500 5000

Bit rate (Kbps)

(a) Akiyo

39

40

41

42

43

44

45

46

47

48

P
SN

R
(d

B
)

1000 1500 2000 2500 3000 3500 4000 4500 5000

Bit rate (Kbps)

(b) Mother and daughter

36

38

40

42

44

46

P
SN

R
(d

B
)

4500 5500 6500 7500 8500 9500 10500 11500

Bit rate (Kbps)

Proposed order + partial pipeline + early termination
3-step prediction [29]
Original H.264 without pipeline

(c) Stefan

36

38

40

42

44

46

P
SN

R
(d

B
)

2400 3400 4400 5400 6400 7400 8400

Bit rate (Kbps)

Proposed order + partial pipeline + early termination
3-step prediction [29]
Original H.264 without pipeline

(d) Foreman

Figure 11: Rate distortion performance comparison.

to process for Chroma DCT operations. In total, 1060 cycles
are required to process a single macroblock. In [1], the total
execution time for a single macroblock is about 1300 cycles
which include initial data loading time. For fair comparison
with the proposed architecture, this initial loading time is
excluded in Figure 10(b).

For comparison, the execution time of the proposed
schedule shown in Figure 10(a) is estimated assuming that
the same hardware modules as [1] are used. Thus, 36 cycles
are required for a single 4× 4 block of Luma 4× 4 prediction
and 68 and 32 cycles are, respectively, required for Luma
16 × 16 and Chroma 8 × 8 predictions. These execution
cycles are given as the numbers inside the parentheses in
each box in Figure 10(a). For reconstruction operation, 16
cycles are assigned because it requires T, Q, Q−1, T−1,
operations, each of which requires to process 16 pixels with
four-pixel parallelism. Note that 4 cycles are assigned to a
single 4 × 4 block of T and Q operations in [1] because
these operations are performed for the entire macroblock
so that they can be pipelined and the throughput becomes
4 cycles per every 4 × 4 block. However, in this case, T,
Q, Q−1, T−1, operations are performed for a single 4 × 4
block, so that they cannot be pipelined for multiple 4 × 4
blocks. Thus, it is reasonable to assign 16 cycles for these

four operations. Then, total execution time is 624 cycles.
When early termination is applied, then the execution time
is reduced. Experimental results in Table 6 shows that 19.09
percent of 4 × 4 intraprediction is terminated early in I
slices. Then, the three last 4 × 4 blocks (blocks 13, 14, and
15) are expected to be not performed by early termination
while the probability of the fourth last 4 × 4 block (block
12) to be processed is 95%. All other blocks (from block
0 to 11) are expected to be processed. With the pipelined
execution as shown in Figure 10(a), the processing time of
the first 12 blocks is 448 cycles. The expected cycles of the
13th block are 49 cycles (= (36 + 16) × (0.95)). Thus, the
expected execution time with 19.09% early termination is
497 cycles. In P slices, 78.55 percent of 4 × 4 intraprediction
is terminated early by the cost derived from the result of the
integer motion estimation as shown in Table 5. Thus, the
expected processing time is 143 (= 52 + 36 + 36 + 52 × 0.43)
cycles. As 4× 4 intraprediction requires the longer time than
16 × 16 prediction, 143 is the expected execution cycles of
intraprediction.

The direct comparison of the execution times of the
schedules given in Figures 10(a) and 10(b) is not fair because
the hardware implementation in [1] employs four-pixel
parallelism for prediction modules while the implemented

16 EURASIP Journal on Advances in Signal Processing

Video input

ARM7TDMI Video input module

DMAC MEMC
External
SRAM

Intra prediction
reconstruction

AHB

Motion estimation

Deblocking filter

Variable length coder SPI Encoded
stream

AHB

Figure 12: H.264/AVC encoder block diagram.

architecture in this paper employs eight-pixel parallelism.
For fair comparison, the hardware implementation in [1] is
modified to exploit eight-pixel parallelism, so that the exe-
cution speed for prediction is doubled. Then, Figure 10(b)
is modified as Figure 10(c) in which a single 4 × 4 block
requires 18 and 8 cycles (i.e., halves of the execution
time in Figure 10(b)) for Luma 4 × 4 and 16 × 16
predictions, respectively. The DCT and quantization unit
remain unchanged, so that the execution time for DCT and
quantization is the same as that in Figures 10(a) and 10(b).
Thus, 16 cycles are assigned to the reconstruction operation.
In this case, the execution time for the reconstruction is
larger than that of Luma 16 × 16 prediction for a single 4
× 4 block. Then, the execution time for the reconstruction
cannot be hided by the overlapped execution of a single 4 ×
4 block of 16 × 16 Luma prediction. To avoid bubble cycles,
it is necessary to interleave Chroma prediction as shown in
Figure 10(c). Thus, from block B0 to B7, Luma 4 × 4, Luma
16× 16, and Chroma 8× 8 predictions are interleaved. Then,
the execution of reconstruction operations is completely
overlapped with Luma 16 × 16 and Chroma 8 × 8
predictions so that there exist no bubble cycles. As there are
only eight 4 × 4 blocks for Chroma 8 × 8 prediction, there
exist no Chroma 8 × 8 predictions from block B8 to B15.
Thus, bubble cycles are unavoidable. The total execution time
of intra predictions is 544 cycles. After intrapredictions are
completed, then the DCT and quantization are performed.
As Chroma 8 × 8 predictions are finished early, the DCT
and quantization for Chroma pixels also begin righter after
the completion of Chroma prediction so that they can be
interleaved with the reconstruction operation for 4× 4 Luma
prediction. The DCT and quantization for Luma 16 × 16
begin after the completion of Luma 16 × 16 prediction, and
this operation requires 68 cycles. Thus, the total execution
time is 612 cycles. Note that DCT and quantization for Luma
16 × 16 need to be performed only for the case when Luma
16 × 16 mode is selected. With experiments, it is observed
that 16 × 16 mode is selected over 4 × 4 mode for about
2.54 percent when K in (1) is 24. If K is chosen as 100 from
the results of Figure 8, the percentage of 16 × 16 mode is
23.65. Thus, K = 24 is the better choice than K=100 for this
architecture because the selection of K = 24 decreases the
probability to compute the extra DCT and quantization for

the 16 × 16 prediction mode. The average execution cycles
with K = 24 for the DCT and quantization for 16 × 16 mode
are 2 (= 68 × 0.0254). Thus, the average execution time of
the process schedule shown in Figure 10(c) is 546 (= 544 +
2) cycles.

Other efficient hardware implementations are presented
in [29, 36]. The implementation in [29] is an improvement of
[36] and adopts eight-pixel parallelism for prediction mod-
ules and four-pixel parallelism for reconstruction operation.
Thus, the hardware complexity is about the same as that used
for Figures 10(a) and 10(c). In addition, this implementation
employs a fast three-step algorithm for intraprediction to
speedup the computation at the sacrifice of the compression
efficiency. As a result, the execution cycles for a single 4 × 4
block operation of Luma 4 × 4 prediction are reduced to 20
cycles, and the total execution time is less than 560 cycles.

The rate-distortion performances of JM H.264 reference
software version 7.3 [30] and the three step mode decision
algorithm in [29] are compared with the partial pipeline
with early termination proposed in this paper. Four video
sequences, Akiyo, Mother and daughter, Stefan, and Foreman
are used for the comparison, and the results are shown
Figure 11. All frames are encoded as I slices and four QP
values, 16, 20, 24, and 28 are used. Other simulation options
are same as those for Table 1. The value of K in (1) is chosen
as 100 for all three methods according to the experimental
results shown in Figure 8. As shown in these four figures, the
performance of the proposed intraprediction is slightly worse
than the original H.264 reference software while it achieves
the better performance than the algorithm in [29] for all four
test sequences. On average, the proposed methods are 4.6%
better than [29] in terms of bit rate.

Table 8 summarizes the execution time of the three
implementations, the one proposed in this paper, another
one proposed in [1] with its prediction module modified
to exploit eight-pixel parallelism as shown in Figure 10(c),
and the other one proposed in [29]. Note that the exe-
cution cycle is obtained with the hardware of the same
complexity (eight-pixel parallelism for intraprediction and
four-pixel parallelism for DCT and quantization) for all
three implementations. The proposed architecture requires
the least execution time with early termination employed.
For I slices, the proposed architecture requires about 49 and

Jin-Su Jung et al. 17

QME
IPDCTQ

VLC
D

M
A

C

A
D

F

IME

Figure 13: Chip layout and photograph.

63 cycles less than the other two architectures in [1, 29],
respectively. For P slices, the proposed methods dramatically
speedup the processing time with the high probability of
early termination, so that it requires about 400 cycles less
than the other two architectures.

The intraprediction and reconstruction modules are
implemented in VHDL and integrated with the other
computation units for an H.264/AVC encoder to constitute
a hardware-based encoder chip. Figure 12 shows a block
diagram of the encoder. In addition to the intraprediction
and reconstruction modules, motion estimation, deblocking
filter, and variable length coder are also implemented in
hardware, and the remaining part of computation is pro-
cessed by the ARM7TDMI processor. Video input module
(VIM) accepts image data from an image sensor and SPI
interface outputs the encoded stream. Direct memory access
controller (DMAC) and memory controller (MEMC) are
designed for efficient data communication with an external
SRAM. Two AMBA AHB buses are used for the communica-
tion between modules. One AHB bus is mainly used for the
control of the hardware modules by ARM7TDMI processor,
and the other AHB bus is mainly used for data commu-
nication between hardware modules and external memory.
Figure 13 shows the layout and the chip photograph of the
H.264/AVC encoder shown in Figure 12. The die area of
the H.264/AVC encoder is 5 mm × 5 mm using the Dongbu
1P6M 0.13 μm CMOS technology.

For the proposed processing sequence shown in
Figure 10(a), the best hardware utilization is achieved when
the execution time of Luma 4 × 4 prediction and recon-
struction (T, Q, Q−1, and T−1 operations) is the same. In
the chip shown in Figure 13, the intraprediction hardware
modules are designed such that a single 4 × 4 block requires
25 cycles for Luma 4 × 4 prediction while the 16 × 16 Luma
prediction and 8 × 8 Chroma prediction require 95 and 84
cycles, respectively. The reconstruction unit processes one 4
× 4 block in 28 cycles while three kinds of reconstructions,

the 4 × 4 reconstruction and two 16 × 16 or Chroma
reconstructions, can be overlapped so that the reconstruction
unit can start reconstruction of another 4× 4 block for every
eight cycles because T, Q, Q−1, and T−1 operations require
eight execution cycles each. The cost evaluation is made with
SAD, not SATD, and the 4× 4 Luma prediction is performed
in the order as shown in Figure 3(b). As a result, 532 cycles
are required to complete all sixteen blocks without any
early termination. The intraprediction and reconstruction
modules are synthesized by Synopsys Design Compiler and
the gate count of the proposed intraprediction and recon-
struction logic is 126 617. These modules also require 4992
bytes of SRAM. This hardware size is relatively large when
compared with the previous work (e.g., the previous work
in [29] which requires 72 K gates with 1632 bytes of SRAM).
The intraprediction module in the chip shown in Figure 13
is designed to perform not only for intraframe encoding but
also for interframe encoding. For example, the cost evalua-
tion of the DCT and quantization outcome for interframe
encoding is also performed by the intraprediction module,
and additional buffer to store the result of interframe DCTQ
for ADF is also included. Therefore, direct comparison of
the gate counts of the intraprediction module in Figure 13
with a previous intraprediction module designed only for
intraframe encoding is not appropriate, and therefore it
is not presented in this paper. Note that the additional
hardware cost to implement the proposed early termination
is negligible because only simple logics for comparison of
two values and derivation of the threshold function are
necessary for early termination while no additional hardware
is necessary for pipeline schedule because it is fixed when the
chip is implemented.

7. CONCLUSIONS

This paper proposes an early termination and pipelined
execution of H.264/AVC intraframe processing. The early

18 EURASIP Journal on Advances in Signal Processing

termination saves over 19 and 81 percent of computation
for 4 × 4 intraprediction in I and P slices, respectively. For
16 × 16 intraprediction, about 91 percent of computation
is saved by the early termination in P slices. Through
pipelined execution, the computation time is reduced by 41
percent when the execution time of 4 × 4 intraprediction
and reconstruction is about the same. The speedup by the
proposed algorithm is achieved at the sacrifice of the R-D
performance although the degradation of the performance
is not significant as shown in the experimental results.

The proposed early termination and pipelined execution
do not adopt a complex control flow or data structure which
is often difficult to implement in hardware. Thus, they are
suitable for hardware implementation. Table 8 shows that the
proposed early termination and pipelining make it possible
to design a hardware intraprediction module that processes
a single macroblock in an average of 497 cycles. With
this processing speed, HD-size video can be processed in
30 fps with a low operating frequency of 54 MHz. Thus, the
proposed early termination and pipelining can be efficiently
used for an H.264/AVC encoder targeting Mobile HD (1280
× 720) size video applications, such as HD-size camcorder
and notebook camera.

ACKNOWLEDGMENTS

This work was funded by Seoul R&BD Program (BU070067)
of Seoul Development Institute, and CAD tools were sup-
ported by IDEC (in South Korea).

REFERENCES

[1] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L.-G. Chen,
“Analysis, fast algorithm, and VLSI architecture design for
H.264/AVC intra frame coder,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 15, no. 3, pp. 378–401,
2005.

[2] F. Pan, X. Lin, S. Rahardja, et al., “Fast mode decision
algorithm for intraprediction in H.264/AVC video coding,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 15, no. 7, pp. 813–822, 2005.

[3] B. Meng, O. C. Au, C.-W. Wong, and H.-K. Lam, “Efficient
intra-prediction mode selection for 4 × 4 blocks in H.264,” in
Proceedings of the IEEE International Conference onMultimedia
and Expo (ICME ’03), vol. 3, pp. 521–524, Baltimore, Md,
USA, July 2003.

[4] K. Suh, S. Park, and H. Cho, “An efficient hardware archi-
tecture of intra prediction and TQ/IQIT module for H.264
encoder,” ETRI Journal, vol. 27, no. 5, pp. 511–524, 2005.

[5] B. Meng, O. C. Au, C.-W. Wong, and H.-K. Lam, “Efficient
intra-prediction algorithm in H.264,” in Proceedings of the
IEEE International Conference on Image Processing (ICIP ’03),
vol. 3, pp. 837–840, Barcelona, Spain, September 2003.

[6] Y.-K. Lin and T.-S. Chang, “Fast block type decision algorithm
for intra prediction in H.264 FRext,” in Proceedings of the IEEE
International Conference on Image Processing (ICIP ’05), vol. 1,
pp. 585–588, Genoa, Italy, September 2005.

[7] T.-C. Wang, Y.-W. Huang, H.-C. Fang, and L.-G. Chen,
“Performance analysis of hardware oriented algorithm mod-
ifications in H.264,” in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP
’03), vol. 2, pp. 493–496, Hong Kong, April 2003.

[8] F. Fu, X. Lin, and L. Xu, “Fast intra prediction algorithm in
H.264/AVC,” in Proceedings of the 7th International Conference
on Signal Processing (ICSP ’04), vol. 2, pp. 1191–1194, Beijing,
China, August-September 2004.

[9] A.-C. Tsai, J.-F. Wang, W.-G. Lin, and J.-F. Yang, “A simple
and robust direction detection algorithm for fast H.264 intra
prediction,” in Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME ’07), pp. 1587–1590, Beijing,
China, July 2007.

[10] J. Jung and D. N. Kwon, “DCT based fast 4 × 4 intra-
prediction mode selection,” in Proceedings of the 4th Annual
IEEE Consumer Communications and Networking Conference
(CCNC ’07), pp. 332–335, Las Vegas, Nev, USA, January 2007.

[11] C.-L. Lim, K.-H. Thung, and P. Raveendran, “Edge vector
based mode decision for H.264/AVC intra prediction,” in Pro-
ceedings of the 1st Asia International Conference onModelling &
Simulation (AMS ’07), pp. 308–312, Phuket, Thailand, March
2007.

[12] G. Hwang, J. Park, B. Jung, et al., “Efficient fast intra mode
decision using transform coefficients,” in Proceedings of the
9th International Conference on Advanced Communication
Technology (ICACT ’07), vol. 1, pp. 399–402, Gangwon-Do,
Korea, February 2007.

[13] A.-C. Tsai, A. Paul, J.-C. Wang, and J.-F. Wang, “Efficient intra
prediction in H.264 based on intensity gradient approach,” in
Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS ’07), pp. 3952–3955, New Orleans, La,
USA, May 2007.

[14] Z. Wang, J. Yang, Q. Peng, Z. Ma, and C. Zhu, “A fast
transform domain based algorithm for H.264/AVC intra
prediction,” in Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME ’07), pp. 1563–1566, Beijing,
China, July 2007.

[15] J.-F. Wang, J.-C. Wang, J.-T. Chen, A.-C. Tsai, and A. Paul, “A
novel fast algorithm for intra mode decision in H.264/AVC
encoders,” in Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS ’06), pp. 3498–3501, Island of
Kos, Greece, May 2006.

[16] R. Su, G. Liu, and T. Zhang, “Fast mode decision algorithm
for intra prediction in H.264/AVC,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’06), vol. 2, pp. 921–924, Toulouse, France,
May 2006.

[17] Z. Yong, D. Feng, and L. Shou, “Fast 4 × 4 intra-prediction
mode selection for H.264,” in Proceedings of the IEEE Interna-
tional Conference on Multimedia and Expo (ICME ’04), vol. 2,
pp. 1151–1154, Taipei, Taiwan, June 2004.

[18] Z. Wei, H. Li, and K. N. Ngan, “An efficient intra mode selec-
tion algorithm for H.264 based on fast edge classification,” in
Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS ’07), pp. 3630–3633, New Orleans, La,
USA, May 2007.

[19] C.-C. Wang, T.-S. Chen, and C.-W. Tung, “Fast intra-mode
decision in H.264 using interblock correlation,” in Proceedings
of the IEEE International Conference on Image Processing (ICIP
’06), pp. 1345–1348, Atlanta, Ga, USA, October 2006.

[20] Z. Kun, Y. Chun, L. Qiang, and Z. Yuzhou, “A fast block
type decision method for H.264/AVC intra prediction,” in
Proceedings of the 9th International Conference on Advanced
Communication Technology (ICACT ’07), vol. 1, pp. 673–676,
Gangwon-Do, Korea, February 2007.

Jin-Su Jung et al. 19

[21] J. B. Song, B. Li, W. Li, and L. Jiang, “A novel fast intra
prediction algorithm applied in H.264/AVC,” in Proceedings
of the 8th International Conference on Signal Processing (ICSP
’06), vol. 1, pp. 16–20, Beijing, China, November 2006.

[22] C.-L. Yang, P. Lai-Man, and W.-H. Lam, “A fast H.264
intra prediction algorithm using macroblock properties,” in
Proceedings of the IEEE International Conference on Image
Processing (ICIP ’04), vol. 1, pp. 461–464, Singapore, October
2004.

[23] R. Yang, H. Lu, X. Xue, and Y.-P. Tan, “An efficient early
termination algorithm of intra prediction for H.264/AVC,”
in Proceedings of the 9th International Conference on Control,
Automation, Robotics and Vision (ICARCV ’06), pp. 1–4,
Singapore, December 2006.

[24] U. Mithun and P. S. S. B. K. Gupta, “An early intra mode
skipping technique for inter frame coding in H.264 BP,” in
Proceedings of the IEEE International Conference on Consumer
Electronics (ICCE ’07), pp. 1–2, Las Vegas, Nev, USA, January
2007.

[25] Z. Wei and K. N. Ngan, “A fast macroblock mode decision
algorithm for H.264,” in Proceedings of the IEEE Asia Pacific
Conference on Circuits and Systems (APCCAS ’06), pp. 772–
775, Singapore, December 2006.

[26] E. Arsura, L. Del Vecchio, R. Lancini, and L. Nisti, “Fast
macroblock intra and inter modes selection for H.264/AVC,”
in Proceedings of the IEEE International Conference on Multi-
media and Expo (ICME ’05), pp. 378–381, Amsterdam, The
Netherlands, July 2005.

[27] Y.-C. Kao, H.-C. Kuo, Y.-T. Lin, et al., “A high-performance
VLSI architecture for intra prediction and mode decision in
H.264/AVC video encoding,” in Proceedings of the IEEE Asia
Pacific Conference on Circuits and Systems (APCCAS ’06), pp.
562–565, Singapore, December 2006.

[28] E. Sahin and I. Hamzaoglu, “An efficient hardware architecture
for H.264 intra prediction algorithm,” in Proceedings of the
Conference on Design, Automation & Test in Europe (DATE
’07), pp. 1–6, Nice, France, April 2007.

[29] D.-W. Li, C.-W. Ku, C.-C. Cheng, Y.-K. Lin, and T.-S.
Chang, “A 61 MHz 72 K gates 1280 × 720 30FPS H.264 intra
encoder,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’07), vol.
2, pp. 801–804, Honolulu, Hawaii, USA, April 2007.

[30] JVT Reference Software Version 7.3, http://iphome.hhi.de/
suehring/tml/download/old jm.

[31] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, et al., “Analysis and
architecture design of an HDTV720p 30 frames/s H.264/AVC
encoder,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 6, pp. 673–688, 2006.

[32] Z. Liu, L. Li, Y. Song, T. Ikenaga, and S. Goto, “VLSI oriented
fast multiple reference frame motion estimation algorithm
for H.264/AVC,” in Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME ’07), pp. 1902–
1905, Beijing, China, July 2007.

[33] Y.-H. Chen, T.-C. Chen, and L.-G. Chen, “Power-scalable algo-
rithm and reconfigurable macro-block pipelining architecture
of H.264 encoder for mobile application,” in Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME
’06), pp. 281–284, Toronto, Canada, July 2006.

[34] G. Bjontegaard, “Calculation of average PSNR differences
between RD-curves,” in Proceedings of the 13th Video Coding
Experts Group Meeting (VCEG-M33 ’01), Austin, Tex, USA,
April 2001.

[35] I. Choi, J. Lee, and B. Jeon, “Fast coding mode selec-
tion with rate-distortion optimization for MPEG-4 Part-10
AVC/H.264,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 16, no. 12, pp. 1557–1561, 2006.

[36] C.-W. Ku, C.-C. Cheng, G.-S. Yu, M.-C. Tsai, and T.-S. Chang,
“A high-definition H.264/AVC intra-frame codec IP for digital
video and still camera applications,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 16, no. 8, pp.
917–928, 2006.

	1. INTRODUCTION
	2. VARIABLE THRESHOLD EARLY TERMINATION
	2.1. Early termination of 4 × 4 intra prediction
	2.2. Early termination of 16 × 16 intra prediction
	2.3. Variable threshold

	3. PIPELINED EXECUTION OF INTRAPREDICTION AND RECONSTRUCTION FOR 4 × 4 LUMA BLOCKS
	4. OPTIMAL PROCESSING ORDER AND PARTIALLY PIPELINED EXECUTION
	4.1. The optimal order for encoding intra 4 × 4 blocks
	4.2. The optimal order for decoding intra 4 × 4 blocks

	5. EXPERIMENTAL RESULTS
	6. HARDWARE IMPLEMENTATION
	7. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

