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1. INTRODUCTION

Retrieval tools have proven to be indispensable for searching
and locating relevant information in large repositories. A
plethora of solutions has been proposed and successfully
applied to document, image, video, and audio collections.
Despite this success, bridging the so-called semantic gap still
remains a key challenge in developing retrieval techniques.
This semantic gap refers to the incongruity between the
subjective and context-dependent human interpretation of
semantic concepts and their low-level machine representa-
tions. The ambiguities resulting from the semantic gap can
be partially resolved if the application domain is restricted to
particular types of repositories (e.g., fingerprint databases,
news clips, soccer videos, etc.). In such restricted environ-
ments, application-specific knowledge can be utilized to
develop custom retrieval solutions. In this paper, we restrict
the problem domain to slide presentation repositories and
exploit the specific characteristics of slide presentations to
propose a retrieval tool geared toward such collections. This
tool is developed to provide efficient access to the increasing
volumes of slides for the purposes of data mining in scholarly
and educational settings, where a large number of slide

presentations are archived, processed, and browsed [1, 2].
Compared to traditional text and multimedia retrieval, the
slide retrieval problem offers unique opportunities and chal-
lenges. First, slides generally contain multimodal content;
that is, in addition to text information, images, video, and
audio clips may be embedded into a slide. We, thus, need
a procedure to extract, process, and combine information
from various modalities during retrieval. Second, since slides
generally contain summarized points, as opposed to full
sentences in traditional document retrieval, the occurrence
frequency of a term in a slide is not a direct indication of
the slide relevance to the query [3]. Third, slide contents
are naturally structured; they consist of various levels of
nesting delineated by titles and bullet levels. Thus, the relative
positioning of text in this structure can provide hints about
the degree of relevance of each term as perceived by the
author. Such information can be used in combination with
traditional keyword matching to improve retrieval perfor-
mance [3, 4]. The direct availability of structural information
in slides should be contrasted to other multimedia, such
as images and video, where the determination of structure
(e.g., position of objects and division into shots and scenes)
requires significant processing effort.
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In this paper, we propose a tool for retrieval of slides
from a presentation repository. An outline of the proposed
system is depicted in Figure 1. Upon receiving a textual user
query term, binary keyword matching is applied to parsed
presentation content to generate a subset of candidate slides
using the XML representation. The proposed system uses
structural and text formatting attributes, such as indentation
level, font size, and typeface, to calculate a relevance score
for occurrences of the query term on each slide. Slides are
then ranked and returned to the user in order of descending
relevance.

The contributions of this work are threefold. First, the
Extensible Markup Language (XML) [5] representation of
presentations, based on the standard open format OpenXML
[6], is used here for the first time to provide direct access
to slide contents. XML tags are used to obtain semantic
and contextual information, such as typeface and level
of nesting, about the prominence of their enclosed text
in addition to slide text. These tags also readily iden-
tify nontext components of slides including tables and
figures. Lastly, multimedia objects augmented with XML-
compatible metadata, such as Exif metadata provided by
most digital cameras, can be processed and associated with
semantic information. The second contribution of this
paper lies in the use of contextual information supplied
by XML tags to judge the relevance of each slide to the
user query. A novel solution is proposed to model the
naturally structured contents of slides and their context
by constructing a feature hierarchy from the available
XML tags. Slide relevance with respect to a given user
query is then calculated based on leaf nodes (keywords
and their context) and the scores are propagated through
the hierarchy to obtain the overall slide relevance score.
The slide scores are computed through a fuzzy framework
to model the inherent vagueness and subjectivity of the
concept of relevance. The third contribution of this paper
is the examination of various fuzzy operators for combining
feature level scores. The proposed score combination scheme
provides a flexible framework to model the subjective nature
of the concept of term relevance in varying slide authoring
styles.

The rest of this paper is organized as follows. Section 2
outlines the prior art and contributions of this work,
Section 3 provides the details of the features used in the
proposed system, Sections 4 and 5 present the details of
the proposed fuzzy score calculation framework, Section 6
outlines the experiments and results, and Section 7 concludes
the paper and provides directions for future work.

2. OVERVIEWOF CONTRIBUTIONS
AND RELATEDWORK

Figure 2 shows the typical components of a slide retrieval
system. The first step is to extract text and multimedia
content from slides. This is followed by extraction of features
from this content for the purpose of retrieval. Lastly, the
extracted features are used to determine relevant slides in
response to a user query specified as a textual keyword. The

rest of this section outlines the existing efforts with respect to
each of these three components.

Direct access to slide contents has traditionally posed
a significant challenge because slides generated by popular
software applications are generally stored in proprietary
formats, such as Microsoft PowerPoint or Adobe Portable
Document Format (PDF), and not in plain text. Con-
sequently, an application programming interface (API) is
needed for extraction of slide contents [7–9]. For example,
the work of [9] translates the Microsoft PowerPoint (PPT)
format into an XML file that can then be used for feature
extraction. Such APIs, however, may be expensive and must
be updated regularly to maintain conformance to these
formats. An alternative method of accessing slide content is
to rely on additional presentation media, such as audio and
video, and to extract slide content using automatic speed
recognition (ASR) [7, 10] and optical character recognition
(OCR) [4, 11] techniques. While these methods provide a
format-independent solution for slide retrieval, their inher-
ent reliance on the existence of additional media limits their
utility in existing slide repositories as capturing video and
audio recordings requires additional effort and equipment
and is not yet common practice in current classrooms,
conferences, and business venues. Moreover, transcription
errors resulting from the inaccuracy of ASR and OCR are
propagated to the retrieval stages, degrading the retrieval
effectiveness of the system [11]. Lastly, although OCR can
be used to access the text in images, detection of objects
on a slide, such as tables, figures, and multimedia clips, and
extraction of text features, such as size and indentation level,
require further processing.

This paper utilizes the recently standardized open file
formats for exchanging and storing documents, such as
Microsoft’s OpenXML and OASIS’ OpenDocument, to
overcome the limitations of previous methods in content
extraction from slides. In particular, we propose a novel
XML-based slide retrieval solution based on the OpenXML
format used by Microsoft PowerPoint 2007 to store slide
presentations. In contrast to API-based methods discussed
previously, the XML method presented herein does not
require any proprietary information since OpenXML is an
open file format and an Ecma international standard [6].
Since the OpenXML format contains information extrane-
ous to the retrieval process, we have developed a lightweight
XML parser to generate a custom XML representation
to improve readability and improve efficiency of feature
parsing.

As shown in Figure 2, the second step is extraction
of features for use during retrieval. Most existing slide
retrieval solutions rely on the assumption that the number
of occurrences of a keyword in a document is directly
proportional to that document relevancy [11, 12]. This leads
to the use of term frequency as the primary feature used
for retrieval. Such an approach is, however, adopted from
traditional document retrieval and does not fully utilize the
specific characteristics of slides. In particular, slides generally
contain a set of brief points and not complete sentences.
Therefore, relevant terms may not appear more than once
as authors use other techniques to indicate higher degrees
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Figure 2: Components of a typical slide retrieval solution.

of relevance, for example, typeface [3]. In this light, recent
slide retrieval techniques employ additional hints to calculate
a score indicating the degree of relevance of each slide to the
user query. For example, UPRISE [9] uses indentation level
and slide duration in combination with term frequency.

Extraction of text-related information, such as nesting
level, is especially convenient in XML-based formats as
such information can readily be obtained from XML tags.
The pervasive use of the XML format on the World Wide
Web has motivated much research in the area of XML
document retrieval, considering both content and structure
of documents leading to structure-aware retrieval [13, 14].
The nesting level in an XML tree is an example of a structural
feature used to express the degree of relevance of a keyword
[15, 16]. While the efforts in the area of XML document
retrieval do not deal with the unique characteristics of
presentation slides, they motivate the incorporation of struc-
tural features, such as indentation depth, in slide retrieval.
In addition to the use of structural features, we propose the
utilization of contextual features that may be used by authors
to indicate the degree of relevance of keywords. Contextual
features, such as font size and typeface characteristics, are
easily extractable from the XML representation of slides and
can be used to provide hints as to the perceived degree of
relevance of a keyword by the presentation author. Moreover,
we propose a hierarchical feature representation to mirror
the nested structure of slides and their XML representations.

Once the features have been extracted, they are used to
generate a score indicating the degree of relevance of each
slide to the user query. In text-based approaches, the vector
space model [11, 12] is utilized to compute such a relevance
score. For the problem of slide retrieval, however, the
incorporation of structural and contextual features requires
the development of methods for generating a relevance score
based on multiple features. In UPRISE [9], a term score
is in turn computed as the geometric mean of a position
indicator (indentation level), slide duration, and number

of query term occurrences. The contribution of adjacent
slides is weighed into the slide score through the use of an
exponential window and the overall score is the average of
scores obtained for each occurrence of the query term in a
slide. This work, however, does not provide any justification
for the use of the geometric mean for feature combination.
We propose a flexible framework based on fuzzy operators
to model the subjective human perception of slide relevance
based on the combination of term frequency, structural, and
contextual features.

3. RETRIEVAL FEATURES

A slide consists of various text lines and possibly other
objects, such as tables and figures. Each text line in turn
contains multiple terms, a table contains rows, and multi-
media objects are comprised of metadata as well as media
content. Figure 3 depicts the decomposition of a slide into its
constituent components using such a nested structure.

The corresponding XML representation of a slide is also a
series of nested tags and each element in this nested structure
describes the features of a slide component. An example slide
and its XML representation, generated by our custom parser
from the OpenXML representation, are shown Figure 4.

Using the given XML representation, slide text is easily
accessible and a term frequency-based method can be used
for retrieval. As previously discussed, however, such an
approach is not sufficient in the case of slides due to the
weaker correlation between a term occurrence frequency
and its perceived relevance. In this light, the context of a
keyword can be used to judge its prominence in a slide [9].
We use the term context to refer to text formatting features
including font attributes and size as well as structural features
such as indentation level. The XML representation of a slide
provides a natural means for extracting such context-related
features through tags which describe the various elements. In
Figure 4, for example, the level and attr attributes appearing
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Figure 4: Example slides and their simplified XML representation.

within the bullet and w tags describe the indentation level
and text formatting features. This section describes the
details of the structural and contextual features used for score
calculation.

3.1. Feature hierarchy

This work proposes the modeling of the nested structure of a
slide and its XML representation through a feature hierarchy.
At the lowest level of this hierarchy reside term specific
features such as font typeface characteristics (bold, italics,
underline). The next level includes features that describe an
entire line of text, that is, a group of terms, as opposed to an
individual term. An example of a line feature is indentation
level which provides information on the relative placement of
a group of terms with respect to the rest of the slide content.
The highest level in the hierarchy is used for features that
describe a slide as a whole; term frequency, for example, is a
slide-level feature as it considers the number of occurrences
of a term on a slide and not features of any individual

occurrence. We limit the scope of this work to text-based
content and structural features, and note that additional
feature levels can readily be added to include multimedia
metadata and content features.

3.2. Word level features

The features residing on the lowest level of the hierarchy
describe the formatting attributes of individual textual terms.
The main motivation for the use of these formatting features
is that these text effects are often used to add emphasis and
distinguish relevant terms from the rest of the text. Typeface
features used in this work are boldface, italics, and underline,
denoted as B(t), I(t), and U(t) for a term t, respectively.
These features are binary in nature, that is, B(t),I(t),U(t) ∈
{0, 1}. Mathematically, we define these features as

B(t) =
{

1, if t appears in bold,

0, otherwise.
(1)
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The italic and underline features, I(t) and U(t), are
defined similarly.

3.3. Line level features

The second level in the feature hierarchy is comprised of
those features that describe a group of terms appearing at
the same bullet level. We consider indentation level and
font size as line features here. Note that font size can
also be considered as a word-level feature. The decision to
include this feature as a line-level feature was a result of the
observation that font size changes are generally applied at the
bullet level and not to isolated terms within a sentence.

Since slide contents are generally presented in point
form, the indentation or bullet level of a point can be used to
indicate the degree of relevance of a group of terms. For this
reason, we consider indentation depth, denoted as ind(t), as
a line feature:

ind(t) = d, 0 ≤ d ≤ D, (2)

where the integer d corresponds to the depth of the slide
title and D is the maximum indentation level in the slide
(in our experiments D = 5). Note that while indentation is
considered as a line feature, ind(t) is defined for an individual
term t for notational convenience.

The size feature indicates the font size of a term t and
is denoted as sz(t). Font size is related to perceived degree
of relevance as prominent terms, such as slide titles, are
generally marked by an increase in font size. Font size for a
term t is defined as

sz(t) = s, for s ∈ N, (3)

where N is the set of positive integers. In practice, s is
bounded by the minimum and maximum font sizes allow-
able by the presentation software. Similar to the indentation
feature, the size is defined for an individual term t for
notational convenience.

Note that for many presentation templates, such as those
provided by PowerPoint, the font size decreases with an
increase in indentation depth. In this sense, the two line-level
features are correlated.

3.4. Slide level features

Slide features are those that describe the slide as a whole and
reside on the top-most level of the hierarchy. Term frequency,
defined as the number of occurrences of a term within a
slide, is used as slide-level feature in this work. We define this
feature mathematically as

TF(t) = n, 0 ≤ n ≤ Nsi , (4)

where n is the number of times term t appears on the given
slide and Nsi is the total number of terms on slide si.

4. RELEVANCE CALCULATION

Having described the features used in retrieval, we proceed
to present a framework for the calculation of relevance

scores based on these features. The objective is to calculate
a single score for each slide based on the multiple features
in the previously discussed hierarchy. To do this, we must
consider how the individual features are to be combined to
produce such a score [17, 18]. One avenue is to combine the
features directly. For example, in the text-based methods the,
features of term frequency and inverse document frequency
are combined using the product operator to generate a single
score. Such a feature-level combination approach, however,
is not suitable for use with the proposed feature hierarchy.
The difficulty arises from two sources: (1) the proposed
features provide values that are on different mathematical
scales and quantization levels and (2) features on different
levels of hierarchy report on attributes at different resolutions
and levels of granularity.

For these reasons, we propose the combination of
decisions or opinions formed based on feature values instead
of direct combination of features [17, 18]. This approach
eliminates the difficulties associated with fusion of features
with different dynamic ranges (scales). Secondly, we propose
a hierarchical decision combination structure to ensure that
decisions are combined at the same granularity level, in this
case, word, line, and slide level. The idea of this combination
scheme is illustrated graphically in Figure 5. In this section,
we detail the calculation of scores on each feature level and
dedicate Section 5 to the discussion of decision combination
methods.

Since relevance is a subjective human concept, we pro-
pose to calculate relevance scores through the framework of
fuzzy sets [19]. This choice is motivated by the effectiveness
of fuzzy sets in modeling vague human concepts and
their success in multicriteria decision making applications
[18, 20–23]. In [20], for example, the so-called concept
hierarchy is used to model a complex human concept, such
as creditworthiness, through various and possibly correlated
low-level concepts. A similar methodology has been applied
to the problem of content-based image retrieval in [18]
to model the high-level concept of similarity between two
images in terms of low-level machine features such as color
and texture. In a similar manner, we model the high-level
concept of term relevance based on the lower level features
in the proposed feature hierarchy.

Fuzzy sets provide a way for mathematically representing
concepts with imprecisely defined criteria of membership
[19]. In contrast to a crisp set with binary membership, the
grade of membership to a fuzzy set is gradual and takes on
values in the [0, 1] continuum. Formally, a fuzzy set A on a
domain χ is defined as the set of ordered pairs {(x,μA(x)},
where x ∈ χ and μA : χ → [0, 1] associates each x ∈ χ with a
grade of membership to the set A [23].

In order to develop our scoring system, we begin by
defining a fuzzy set (or fuzzy goal [23]) relevant term denoted
as T . A feature score is then the grade of membership of a
term t to the fuzzy set T based on a given feature on a given
slide si, indicating the degree to which the given feature value
satisfies the goal of relevance. Denote the kth feature used in
retrieval as Fk and the value of this feature for term t as Fk(t).
Then, the membership function μT ,Fk ,si(Fk(t)) maps a feature
value Fk(t) into a score or grade of membership to the set T
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Figure 6: The generalized membership function for different parameter values.

for a slide si. This grade of membership can then be viewed
as the feature score, decision, or opinion formed based on the
value of Fk(t). To increase readability, the dependence on the
set T and slide si is dropped for the rest of the discussion and
μT ,Fk ,si(Fk(t)) is denoted as μFk (t).

The main challenge in developing the fuzzy scoring
scheme is the determination of the membership functions
that map a feature value to a score value in [0, 1]. This
corresponds to the modeling step in multicriteria decision
making [24]. Formally, we seek a membership function
μT ,Fk ,si : Fk → [0, 1]. In the simplest case, the membership
function normalizes the feature values to lie in the range
[0, 1]:

μFk (t) =
Fk(t)

max∀tFk(t)
. (5)

Membership functions can be interpreted in several other
ways [25]. Among these is the likelihood view, where the
membership grade of a term t to a set T is interpreted as
a conditional probability μFk (t) = P(T |Fk(t)). Here, it is
assumed that the meaning of T is objective and fuzziness is a
result of error or inconsistency. Experiments, such as polling,
can be used to capture the view of fuzziness in such cases
[25]. For the intended application, the meaning of T , the
set of relevant terms, is subjective and context dependent.
This renders the likelihood view inappropriate for the slide
retrieval problem.

Fuzzy membership to a set T can also be viewed as the
degree of similarity between t and an ideal or prototype
object of T denoted as t0 [26]. This membership is a
function of the distance between the features of t and those
of t0, denoted as d(Fk(t),Fk(t0)). The following form for the
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function has been proposed [27–29]:

μFk (t) = 1
1 + d

(
Fk(t),Fk

(
t0
)) . (6)

This view requires the existence of an ideal prototype t0
and the definition of a metric space, where similarity between
the features Fk(t) and Fk(t0) is measured. In [29], a context-
dependent standard b is used for a quick evaluation of the
above function. Noting the exponential relationship between
physical units and perception, the following membership
function is then proposed:

μ
(
Fk(t)

) = 1
1 + exp

(− a
(
Fk(t)− b

)) . (7)

Equation (7) defines an S-shaped function with the
context-dependent standard b and evaluation unit a.

As an alternative to the above approaches, the work
of [22] provides a theoretical basis for design of the
membership functions. This is done by an examination
of previous approaches to membership construction and
the consequent postulation of five axioms that lead to the
derivation of a general form for membership function. The
effectiveness of this form is then verified against the empirical
data in [29]. The generalized membership function is as
follows [22]:

μFk (t) =
(1− ν)λ−1(Fk(t)− a

)λ
(1− ν)λ−1(Fk(t)− a

)λ
+ νλ−1

(
b − Fk(t)

)λ . (8)

Equation (8) defines a parameterized family of S-shaped,
monotonically increasing functions with μ(a) = 0 and
μ(b) = 1, where a and b represent the range of Fk(t). The
parameters λ and ν determine the sharpness and inflection
point of the function. Figure 6 shows this function for
different values of ν and λ. For the case of λ = 1, the
membership function of (8) reduces to a linear function:

μFk (t) = Fk(t)− a

b − a
. (9)

The monotonically decreasing version of the above
membership function can be defined through a linear
transformation [22]:

μFk (t) =
(1− ν)λ−1(b − Fk(t)

)λ
(1− ν)λ−1(b − Fk(t)

)λ
+ νλ−1

(
Fk(t)− a

)λ . (10)

An important consideration in developing membership
functions for the application of slide retrieval is the subjec-
tivity and context dependence of the concept of relevant term.
This is especially evident in slide repositories that include
presentations with numerous authoring styles, where each
author uses different means to indicate varying degrees of
relevance for each term. While some authors use indentation
level to indicate the relevance of terms, some vary the type-
face or change the font features to achieve the same effect.
For the proposed application, therefore, the membership
functions are functions not only of the feature Fk(t) but

also of the context in which the term appears. We use
this observation to generate context-dependent membership
functions for slide features. In particular, context dependence
is achieved by contextualizing the model parameters, a and
b, to indicate the context of a term within a slide. Recall
that the parameters a and b indicate the range of values for
the particular feature. Instead of using global extremities,
obtained over the entire database, we consider the range
of feature values over a localized context such as a single
presentation or a slide. Such localized determination of
the feature domain aims to capture the varying author
styles among the different presentations. In the rest of
this section, this context-dependent formulation is used
to develop membership functions for features discussed in
Section 3.

4.1. Word-level scores

The typeface features, B(t), I(t), and U(t), are binary in
nature. A simple context-independent membership then
assigns the highest membership grade to a term when it
appears in bold, italics, or is underlined, respectively, and
the lowest grade of zero otherwise. The membership function
then becomes the identity function

μB(t) = B(t), μI(t) = I(t), μU(t) = U(t). (11)

Note that the above can be obtained from (9) with
a = 0 and b = 1 for the binary features. The main
disadvantage of this formulation is the assumption that
changes in typeface always indicate changes in degrees of
relevance. This, however, is a serious limitation in the
slide retrieval application as various authoring styles may
use typeface changes for different purposes. Consider, for
example, the scenario when the entire presentation is written
in italics. In this case, italicizing a term does not add any
emphasis and is, therefore, not an indication of the degree of
relevance of the term. In order to incorporate the context of
a query keyword into the membership function, we propose
to use (8) with contextual parameters aC and bC , where the
parameter C denotes a context unit, corresponding to either
a slide or an entire presentation. The contextual parameters
will be used to indicate the rarity of a given feature, utilizing
the intuitive notion that rarely used typeface features carry
more information than those that are frequently used. For
this purpose, the context parameters are defined as bC =∑

ti∈CB(ti) and aC = 0, where ti denotes the ith term in
context unit C. These parameters are used in (8) to obtain

μB(t) = (1− ν)λ−1B(t)

(1− ν)λ−1B(t) + νλ−1
(∑

ti∈CB
(
ti
)− B(t)

)λ , (12)

where we have noted that B(t)λ = B(t) since B(t) is a binary
feature. This membership function is consistent with the
above discussion since μ(B(t)) = 0 when B(t) = 0, μ(B(t)) =
1 if B(t) = 1 and t is the only bold term on the slide,
and μ(B(t)) is a decreasing function with respect to bold
terms on the slide. That is, if the query term appears in bold
in two different contexts with parameters

∑
ti∈CB(ti) and∑

ti∈C′B(ti), then μB(t) ≥ μ′B(t) if
∑

ti∈CB(ti) ≤
∑

ti∈C′B(ti).
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Membership functions of I(t) and U(t) are derived in a
similar manner.

4.2. Line-level scores

4.2.1. Indentation

Intuitively, as apparent, relevance of a term decreases as
its bullet level on the slide increases. We again consider
the context of indentation by taking into account the
minimum and maximum indentation depths in the slide
and presentation through the context parameters bC =
maxti∈Cind(ti) and aC = minti∈Cind(ti), where ti is ith term
in context unit C. Section 6 reports on the effectiveness of
each of these in terms of retrieval performance.

Noting that the indentation score is inversely propor-
tional to indentation depth, (10) is used to obtain the
membership function for this feature:

μind(t) = (1− ν)λ−1(bC − ind(t)
)λ

(1− ν)λ−1(bC − ind(t)
)λ

+ νλ−1
(
ind(t)− aC

)λ .
(13)

In (13), μind(t)=0 if ind(t)=maxti∈Cind(ti) and μind(t)=
1 if ind(t) = minti∈Cind(ti), as required.

4.2.2. Size

In deriving the membership function for the size feature, we
note that an increase in font size can be used to indicate
relevance of text segments on a slide. Font size, however, is
not absolute and its correlation with perceived relevance is
context dependent in the sense that term t is deemed relevant
if its font size is larger than that of the surrounding text.
The membership function, therefore, must consider sz(t) in
relation to the rest of the slide contents. This naturally lends
itself to the context parameters bC = maxti∈Csz(ti) and aC =
minti∈Csz(ti), corresponding to the minimum and maximum
font sizes in context unit C. Using these parameters, the
following membership function is obtained:

μsz(t) =
(1− ν)λ−1(sz(t)− aC

)λ
(1− ν)λ−1(sz(t)− aC

)λ
+ νλ−1

(
bC − sz(t)

)λ .
(14)

As expected, μsz(t) = 0 if sz(t) = minti∈Csz(ti) and
μsz(t) = 1 for sz(t) = maxti∈Csz(ti).

4.3. Slide-level scores

In traditional text retrieval techniques, the term frequency-
inverse document frequency (TD-IDF) weight is used to
evaluate the relevance of a document in a collection to a
query term. This weight indicates that the relevance of a
document is directly proportional to the number of times
the query term appears within that document, and inversely
proportional to the number of occurrences of the term in
the collection. Term frequency is generally normalized by the
length of the document to avoid any bias. In the interest

of space and for reasons discussed in Section 5, we limit
the scope of this work to single-term queries. Consequently,
inverse document frequency remains constant for a given
query and is ignored.

In an approach analogous to the normalized TD scheme,
we define the context of term frequency to be the total
number of words in a context unit C. Consequently, bC = NC

and aC = 0, where NC denotes the number of terms in C, and
the membership function can be written as

μt f (t) = (1− ν)λ−1t f (t)λ

(1− ν)λ−1t f (t)λ + νλ−1
(
NC − t f (t)

)λ . (15)

It can be seen from (15) that μt f (t) = 0 when t f (t) = 0
and μt f (t) = 1 when t f (t) = bC . At the same time, for two
documents with the same query term frequency but different
lengths bC and b′C , μt f (t) ≥ μ′t f (t) if bC ≤ b′C . Lastly, note that
this formulation of the membership function is equivalent to
the application of (8) to term frequency normalized by the
length of the context unit C.

5. RELEVANCE AGGREGATION

The aim of the aggregation process is to combine informa-
tion from the various features to increase completeness and
make a more accurate decision regarding the relevance of
each term [30]. This step is referred to as aggregation in mul-
ticriteria decision making [24]. As previously mentioned, the
proposed scheme combines feature scores, obtained in the
Section 4, instead of feature values directly. In doing so, two
issues must be addressed, namely, the aggregation structure
or the order in which the feature scores are combined, and
the choice of aggregation operators used to form a single
score from multiple feature scores.

To address the first issue, we propose a hierarchical
aggregation scheme, shown in Figure 5, to exploit the char-
acteristics specific to each feature granularity. An example
of such a characteristic is complementarity of the typeface
attributes in the sense that a high score in one of the bold,
italic, and underline features is sufficient to indicate a high
word-level score. In contrast, the line-level features, size and
indentation, are correlated as previously noted. Such feature
characteristics are important in the choice of the aggregation
operators used to combine the scores. While the scope of
the aggregation scheme presented in this section is limited
to text-related features on a slide, scores obtained from
multimedia objects and their metadata on a given slide can
be combined with text-related scores at the slide level.

As previously mentioned, we have limited the scope of
this paper to single-word queries. We note here that the
well-known standard technique of combining multiple-word
queries using the logical connectives AND, OR, and NOT can
be used to extend the proposed methodology to multiple-
term queries. Since such an extension does not provide any
novel contributions, the rest of the manuscript focuses on
single-term queries to highlight the novel aspects of this
work with respect to the XML-based features and the fuzzy
aggregation framework.
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Before presenting the details of the proposed aggregation
scheme, we briefly discuss relevant examples and properties
of aggregation operators. These properties are then used to
guide our choices for feature score combination.

5.1. Aggregation operators: overview

An aggregation operator is a mapping A : [0, 1]n →
[0, 1], where n is the number of elements being combined.
The choice of aggregation operators is dependent on the
application and the nature of the values to be combined.

The well-known operation of AND and OR in bivariate
logic is extended to fuzzy theory to result in two classes
of operators known as triangular norms (t-norms) and
triangular conorms (t-conorms), respectively [31, 32]. The
min operator is an example of a t-norm and the max
operator belongs to the class of t-conorms. Further examples
of aggregation operators include the various mean operators,
ordered weighted averages [33], and Gamma operators [29,
34]. While weighting schemes can be used to indicate the
relative relevance of each features, the determination of
weights is not trivial and is beyond the scope of this work.

Aggregation operators can be classified with respect to
their attitudes in aggregating various criteria as conjunctions,
means, and disjunctions [30, 31], as discussed below.

5.1.1. Conjunctive operators

An operator A(μi,μj) is conjunctive if A(μi,μj) ≤
min(μi,μj). The aggregation result is dominated by the worst
feature score, and in this sense, a conjunction provides a
pessimistic or severe behavior, requiring the simultaneous
satisfaction of all criteria [30]. The family of t-norms is an
example of conjunctive operators. Conjunctive operators do
not allow for any compensation among the criteria.

5.1.2. Mean operators

An operator A(μi,μj) is a compromise if min(μi,μj) ≤
A(μi,μj) ≤ max(μi,μj). Mean-type operators exhibit a
compromising behavior, where the aggregation result is a
tradeoff between various criteria (feature scores, in this case).
In other words, mean operators are compensative in that
they allow for the compensation of one low feature score
with a high score in another feature. An example of mean
operators is the family of quasilinear means, A(x, y) =
((xα + yα)/2)1/α [31]. For α → −∞, α = −1, α = 0, α = 1,
and α → ∞, the min operator, harmonic mean, geometric
mean, arithmetic mean, and the max operator are obtained.
Another example of mean operators is the symmetric sums
[31]. Examples of mean operators and symmetric sums are
shown in Table 1.

5.1.3. Disjunctive operators

An operator A(μi,μj) is disjunctive if A(μi,μj) ≥
max(μi,μj). Consequently, the aggregation of two feature
scores results in a score that is at least as high as the highest
of the two scores. Disjunctive operators, therefore, exhibit an

Table 1: Example of quasilinear means and symmetric sums. HM:
harmonic mean, GM: geometric mean, AM: arithmetic mean.

Quasilinear means Symmetric sums

HM(x, y) = 2xy
x + y

σ0(x, y) = xy

1− x − y + 2xy

GM(x, y) = √xy σmin(x, y) = min(x, y)
1− |x − y|

AM(x, y) = x + y

2
σmax(x, y) = max(x, y)

1 + |x − y|

And Or

min(x, y) 2xy
x + y

√
xy x + y

2
max(x, y)

min(x, y)
1− |x − y|

max(x, y)
1 + |x − y|

Figure 7: Ordering of aggregation operators adopted from [30].

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pe
rc

en
ta

ge
of

re
le

va
n

t
sl

id
es

5 10 15 20 25 30 35 40 45

Query number

Figure 8: Percentage of the slides relevant to each query with
respect to the database size.

optimistic or indulgent behavior, requiring satisfaction of at
least one goal [30]. T-conorms are examples of disjunctive
operators. These operators allow for full compensation
among criteria.

An aggregation operator may have a constant character-
ization as a disjunction, mean, or conjunction for all values
of its arguments or express hybrid attitudes depending on
the values of its arguments and operator parameters [30,
31]. For example, t-norms always behave as conjunctions
whereas symmetric sums act as conjunctions, means, or
disjunctions based on the values being combined. The work
of [30] provides an ordering of the above aggregation oper-
ators. Such an ordering is shown in Figure 7 and provides
a guideline for choice of aggregation operators in what
follows.

In selecting appropriate aggregation operators for each
feature level, we consider mathematical properties of aggre-
gation operators in addition to the aggregation attitude
discussed above. Some of the properties of aggregation
operators pertinent to the problem of slide retrieval are
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Figure 9: Precision-recall curves for the proposed features: size, indentation, typeface, and term frequency.

briefly reviewed below and subsequently used for operator
selection. For brevity, the properties are presented for
aggregation of two values only, but these can be extended to
the general case with n arguments [34].

(i) Continuity: this property requires the operator to
be continuous with respect to each of its arguments
to ensure that the aggregation does not respond
chaotically to small changes in its arguments.

(ii) Monotonicity: mathematically, we require that
A(a, b) ≥ A(c,d) if a ≥ c and b ≥ d. This property
is needed to ensure that a slide receives a higher
score than any other slide with lower scores in the
individual features.

(iii) Commutativity: this property states that A(a, b) =
A(b, a), ensuring that the ordering of feature scores
does not change the result of aggregation.

(iv) Associativity: this property requires that A(x,A(y,
z)) = A(A(x, y), z), ensuring the order in which
multiple features are aggregated does not affect the
aggregation results.

(v) Neutral element: an operator has a neutral element e
if ∃e ∈ [0, 1] such that ∀a ∈ [0, 1],A(a, e) = a. The
neutral element does not affect the aggregation result.

(vi) Idempotency: this property states that the aggrega-
tion of identical elements results in the same element.
That is, A(x, x) = x.

We now proceed to select aggregation operators at each
feature level by stating the required properties for combing
each set of feature scores.

5.2. Aggregation of word-level scores

The objective of this section is to combine the scores
obtained from bold, italic, and underline features to obtain
a word-level score μword(ti, j), where ti, j corresponds to the ith
term on slide s j . As previously noted, the typeface features are
complementary and a high score in either of the bold, italic,
or underline features should result in a high word-level score.
This observation indicates a need for a disjunctive operator.
The operator must also be commutative and associative as
the order of combination of the three features should not
influence the word-level score. In addition, the operator
must be idempotent, as having two typeface features does not
increase the relevance of a term. Lastly, the chosen operator
must have zero as a neutral element as a score of zero in the
typeface features is not an indication of irrelevance but rather
of absence of information regarding the relevance of the term
[30]. This neutral element requirement indicates the need
for a T-conorm. The max operator is the only idempotent
choice among the T-conorms [26]. Since the max operator
is also associative, it is chosen for combination of the word-
level features:

μword
(
ti, j
) = max

(
μB
(
ti, j
)
,μI
(
ti, j
)
,μU

(
ti, j
))
. (16)

5.3. Aggregation of line-level scores

We now turn the attention to combining the line-level score,
size, and indentation to obtain a line-level score μline(ti, j)
for a slide. As a result of the correlation between the two
line-level features, dissonant feature scores are indicative of
possible feature unreliability. A possible scenario for obtain-
ing conflicting size and indentation is when a nonbulleted
text box is used on a slide. In the absence of a bullet,
the indentation level is set to the default value of zero in
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Figure 10: Precision-recall curves for various membership functions and context units.

XML representation. In this case, a high-indentation score
should be offset by low-size score. While the operator is
required to be commutative, associativity is not an issue
here since only two values are combined. Lastly, a neutral
element is not needed in this case as both feature scores
influence the aggregation result. These requirements indicate
the need for a mean type or variable behavior operator
allowing for some compensation between the criteria, but do
not limit the choice among the operators listed in Table 1.
We denote the aggregation operator used for combination
of line-level features as Aline and examine the effectiveness
of the various means and symmetric sums listed in Table 1
in the experiments of Section 6. The line-level score is then
computed as

μline
(
ti, j
) =Aline

(
μsz
(
ti, j
)
,μsz

(
ti, j
))

, (17)

where Aline denotes an aggregation operator from Table 1.

5.4. Aggregation of slide-level scores

The top-most level of aggregation in the proposed hier-
archy is the combination of slide-level scores, where the
information obtained from all feature levels is combined
to result in an overall score for the given slide. Slide-level
combination, however, requires feature scores to be on a
slide-level granularity. We must, therefore, transform the
word-level and line-level scores into a global slide-level score.
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Figure 11: Typeface score distribution using no membership, generalized, and exponential memberships for user-labeled relevant and
irrelevant slides.

Word-level and line-level scores are local scores in
the sense that they report on the feature of particular
components of a slide, namely, words and lines. If a query
keyword occurs more than once on a slide, each occurrence
of the keyword will be associated with a word-level and line-
level scores. In order to compute a slide-level score for each
feature, the scores over multiple occurrences of the query
term must be aggregated. This aggregation naturally lends
itself to a disjunctive attitude as the occurrence of a single
high-scoring term is sufficient to indicate the relevance of a
particular slide. We further require the aggregation operator
to be idempotent since the term frequency feature already
reinforces the scores of slides with multiple occurrences of
a query term. The global word-level and line-level scores
for a slide s j are denoted as μ

g
word(s j) and μ

g
line(s j) and are

computed using the max operator

μ
g
word

(
s j
) = max

i
μword

(
ti, j
)
,

μ
g
line

(
s j
) = max

i
μline

(
ti, j
)
.

(18)

The last aggregation level combines the slide level scores
μ
g
word(s j), μ

g
line(s j), and μt f (ti, j) to obtain the score for slide

s j . An important issue to consider is the order of operations.

Recall that a low-word-level score is merely an indication of
lack information and not of lack of relevance and that the
aggregation operator applied to μ

g
word(s j) should have zero as

its neutral element, leading to the choice of the max operator.
Note also that word- and line-level features both report
on appearance-based text attributes whereas term frequency
reports a purely content-related feature. For this reason, we
have chosen to first combine the appearance-based features
and then aggregate the result with the term frequency
score. The final aggregation operator is expected to have a
disjunctive attitude to deal with the missing information in
the attributes score. In light of these observations, the final
slide score is computed as

μT
(
s j
) =Aslide

(
max

(
μ
g
word

(
s j
)
,μ

g
line

(
s j
))

,μt f
(
ti, j
)))

,
(19)

where Aslide denotes the operator used to combine feature
scores at the slide level. This above operation is clearly not
associative. The experiments of Section 6, however, indicate
that the order of operations does not significantly alter the
aggregation results. With respect to Figure 1, the slide-level
score, μT (s j), is used to rank the slides in the candidate set.
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Figure 12: Precision-recall curves for aggregation of size and indent features using various aggregation operators.

6. RESULTS

This section evaluates the retrieval effectiveness of the
proposed features, membership functions, and aggregation
scheme.

6.1. Experiment setup

6.1.1. Dataset

The evaluation dataset includes 142 presentations with a
total of 3087 slides. These presentations include lecture
material from undergraduate and graduate engineering

courses, engineering conference presentations, and other
engineering-related material.

A total of 47 single-term query keywords have been
manually extracted from the presentation set, corresponding
to key concepts in signal processing and pattern recogni-
tion courses taught at undergraduate and graduate levels.
Examples of query keywords include convolution, Kalman,
transcoding, wavelet, and encryption. For each of the query
keywords, the ground truth set is created and corroborated
by three users in a manner similar to that of [11]. Percentage
of the slides relevant to each queries with respect to the total
database size is shown in Figure 8.
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Figure 13: Precision-recall curves for aggregation of size, indent, and attribute features using various aggregation operators.

6.1.2. Figure of merit

Retrieval performance is measured through precision-recall
curves [11, 18]. Precision is defined as the ratio of relevant
retrieved slides to the total retrieved slides and is an
indication of the efficiency of the retrieval. Recall is the
proportion of desired results retrieved within the retrieved
set. Mathematically, precision and recall after k slides have
been retrieved is defined as

Recall(k) = RRk

N
, Precision(k) = RRk

k
, (20)

where RRk is the number of retrieved slides that are part of
the ground truth set, and N is the total number of slides

in the ground truth set. The results of this section report
precision and recall values averaged over the 45 query terms.

6.1.3. Comparison to other methods

The retrieval performance of the proposed method is com-
pared to the UPRISE method [9]. This method incorporates
indentation level as well as term frequency to compute slide
scores through a geometric mean. This method also proposes
the optional inclusion of slide duration as a feature. However,
the feature requires access to timing information which is not
available in the intended application. For this reason, a value
of θ = 0 is used to eliminate the effect of slide duration as
suggested in [9].
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Figure 14: Precision-recall curves for aggregation of size, indent, attribute, and term frequency features using various aggregation operators.

6.2. Choice of features

In this section, we report on the effectiveness of the proposed
features. To this end, precision-recall plots for the typeface
features, size, indentation, and term frequency are shown in
Figure 9.

The size, indentation, and term frequency perform
reasonably well when compared to UPRISE (note here that
UPRISE includes both structural and content features).
The aggregated typeface features, however, perform poorly.
Figure 9(b) shows the performance of bold and italic features
separately. The bold feature outperforms italic while the
aggregation of the two features using the max operator
improves the retrieval performance. Lastly, note that the

underline feature has not been included in these results to
the poor performance on the test set. This ineffectiveness
of typeface is partially because of the lack of knowledge of
relevance of a term in the absence of typeface features, as
previously noted.

6.3. Choice ofmembership functions

The precision-recall plots for three membership functions,
namely, simple normalization (5), exponential (7), and
generalized membership functions (8), applied to the four-
proposed features are depicted in Figure 10 for context units
of slide and presentation. For the generalized membership
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UPRISE.

function, the results are shown for the linear case γ = 1 as
well as for the manually optimized parameter choices. These
figures evaluate three issues with respect to precision-recall
performance: (1) the effect of addition of context-dependent
information, (2) the effect of the form of the membership
function (e.g., S-shape versus simple normalization), and (3)
the effect of membership function parameters.

The plots of Figure 10 indicate that the addition of
context information can improve the precision-recall perfor-
mance in all four features. The best-performing context unit
C, however, varies among the features. For the typeface and
term frequency features, a slide is the best performing context
unit whereas for indentation and size, a presentation unit
provides the best results. Intuitively, this can be attributed
to the fact that indentation and size styles generally remain
the same over a single presentation. In contrast, typeface and
term frequency vary within the same presentation depending
on the concepts presented on a given slide.

Figure 10 indicates that while the precision-recall perfor-
mance is affected by the choice of the context unit C, it is
relatively insensitive to the choice of membership functions
and their parameters. This is because the precision-recall
measure considers the slide rankings produced by the scores
and not numerical score values. However, since the feature
scores generated by the membership function are further
aggregated, it is important to consider not just the precision-
recall performance, but also the distribution of scores within
the interval [0, 1]. To illustrate this point, Figure 11 shows
the distribution of feature scores when different membership
functions are applied. In each case, the score distribution
for relevant and irrelevant slides as deemed by the user are
shown.

These results show that the generalized membership
function produces the best separation between relevant
and irrelevant classes. This is important as each feature

score is further combined with other scores through the
aggregation hierarchy. For example, the choice of the linear
version of the generalized membership function results in the
maximum score value of 0.5 for relevant slides. In contrast,
the maximum line-level score is unity. Thus, the typeface
scores inherently receive a lower weight once combined with
line-level scores. In light of this observation, membership
function parameters should be selected by considering the
score distribution as well as retrieval performance.

6.4. Choice of aggregation operators

This section examines the effectiveness of the aggregation
operators, quantified through precision-recall, in fusing the
features scores at various levels of the aggregation hierarchy.

Figure 12 depicts the PR curves obtained from aggrega-
tion of size and indentation features, using the generalized
membership function with λ = 1, for various classes
of aggregation operators. In particular, the precision-recall
plot of Figure 12(a) indicates that a compromise operator
outperforms both disjunctive max and conjunctive min
operators, as expected. Figures 12(b) and 12(c) show the
precision-recall performance of the various mean operators
and symmetric sums listed in Table 1. With reference to
the ordering of operators shown in Figure 7, compromise
operators closer to the middle and right extreme provide the
best performance. The variable behavior of symmetric sums
does not seem to provide an advantage over the constant
behavior quasilinear means in aggregating these correlated
features.

Figure 13 shows the PR curves when the combination
of size and indentation scores (using the AM operator) is
aggregated with the typeface score. The plots were generated
with parameter values of λ = 1 for size and indentation
features and λ = 15 and ν = 0.05 for the typeface features
as discussed previously. As expected, the max operator
provides the best performance due to the existence of the
neutral element of zero. In fact, as seen in this figure, the
min operator and those toward the conjunctive end of the
spectrum perform particularly poorly due to their severe
behavior emphasizing the cases, where the typeface score is
missing.

Figure 14 shows the PR curves when the result of
aggregation of size, indentation, and typeface features using
the max operator is aggregated with the term frequency
score. The parameters used for the membership functions
are selected by considering the score distributions for each
feature and are λ = 1 for size and indentation features, λ = 15
and ν = 0.05 for the typeface features, and λ = 2 and ν = 0.1
for the term frequency. It is seen from the plots of Figure 14
that the max operator provides the best retrieval results. Such
a behavior is expected again because of the existence of the
neutral element.

Lastly, Figure 15 compares the precision-recall perfor-
mance of the proposed method, using all four features,
with that of UPRISE [9]. The performance of the proposed
method is shown for both manually optimized membership
function parameters as well as the case where linear mem-
berships (λ = 1) are used for all features. It can be seen that
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(b) UPRISE

Figure 16: Example of retrieval results for the query term filtering: (a) the proposed method, (b) UPRISE.

the simple choice of λ = 1 does not significantly degrade
the retrieval performance. This insensitivity eliminates the
concerns of parameter selection for the membership func-
tions. The excellent performance of the proposed scheme
can be attributed to the additional features, namely, size and
typeface, and to the careful selection of aggregation operators
and membership functions.

To illustrate the effectiveness of the system visually,
the top 6 retrieval results for the query term filtering are
shown in Figure 16 for both the proposed method and the
UPRISE. The effect of typeface and size features is evident in
differences between the two methods in the fourth and sixth
retrieval positions.

7. CONCLUSION

The existence of large slide presentation repositories in
education and scholarly settings has necessitated the devel-
opment of effective search and retrieval tools. This paper has
examined the unique characteristics of slide presentations,
as compared to traditional text and multimedia documents,
and has proposed a retrieval tool geared specifically toward
such repositories. In particular, the recently standardized
XML open file format is used to extract content and
contextual features from slides. The traditional term fre-
quency feature used in document retrieval is combined
with contextual features, including the appearance-based
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attributes such as typeface, font size, and indentation levels,
to judge the relevance of each term as intended by the
presentation authors. The paper has proposed a feature
hierarchy to mirror the naturally nested nature of slides
and a hierarchical fuzzy scheme for the combination of
scores obtained from each feature. The hierarchical nature
of the proposed aggregation scheme allows for identification
and future incorporation of features extracted from slide
multimedia objects and their related metadata information.

An important avenue for future research is the incorpo-
ration of user feedback for the determination of member-
ship function parameters as well as aggregation operators.
An interactive design can be used to infer the required
aggregation attitude as well as feature weights used during
aggregation.
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