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age SNR conditions, the base station is able to update certain transmission parameters in order to maximize the sum-rate function.
On the other hand, the proposed sum-rate function provides a means of simple comparison between transmission schemes and
scalar feedback techniques. Particularly, the sum rate of SDMA and time division multiple access (TDMA) is compared in the
following extreme regimes: large number of users, high SNR, and low SNR. Simulations are provided to illustrate the performance
of various scalar feedback techniques based on the proposed design framework.
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1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems can sig-
nificantly increase the spectral efficiency by exploiting the
spatial degrees of freedom created by multiple antennas. In
point-to-point MIMO systems, the capacity increases lin-
early with the minimum of the number of transmit/receive
antennas, irrespective of the availability of channel state in-
formation (CSI) [1, 2]. In the MIMO broadcast channel, it
has recently been proven [3] that the sum capacity is achieved
by dirty paper coding (DPC) [4]. However, the applicability
of DPC is limited due to its computational complexity and
the need for full channel state information at the transmitter
(CSIT). Downlink techniques based on space division mul-
tiple access (SDMA) have been proposed [5], achieving the
same asymptotic sum rate as that of DPC.

The capacity gain of multiuser MIMO systems is highly
dependent on the available CSIT. While having full CSI at the
receiver can be assumed, this assumption is not reasonable
at the transmitter side. Several limited feedback approaches
have been considered in point-to-point systems [6–8], where

each user sends to the transmitter the index of a quantized
version of its channel vector from a codebook. An exten-
sion for MIMO broadcast channels is made in [9], in which
each mobile feeds back a finite number of bits regarding its
channel realization at the beginning of each block based on a
codebook.

Besides channel direction information (CDI), we con-
sider limited feedback scenarios in which each user conveys
channel quality information (CQI) to the base station for
the purpose of user scheduling. In [10], an SDMA extension
of opportunistic beamforming [11] using partial CSIT in
the form of individual signal-to-interference-plus-noise ra-
tio (SINR) is proposed, achieving optimum capacity scaling
for large number of users. A simple scheme for joint schedul-
ing and beamforming with limited feedback is proposed in
[12, 13]. The receivers compute and feed back a scalar metric
that can be interpreted as an upper bound on the SINR. Note
that a scheme with similar metric is also reported in [14].
Assuming certain orthogonality constraints between beam-
forming vectors, a lower bound on the instantaneous or av-
erage SINR can be computed as scalar feedback, as shown in
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[15, 16], respectively. The total amount of feedback overhead
in the system can be reduced by appropriately setting mini-
mum desired SINR thresholds while controlling each user’s
quality of service (QoS). A performance comparison of sev-
eral scalar metrics for scheduling is provided in [17] for sys-
tems with zero-forcing beamforming (ZFBF) transmission.

In this paper, we present a design framework for scalar
feedback in MIMO broadcast channels, which generalizes
previously proposed techniques. A family of metrics is pre-
sented based on individual SINRs, which are computed at the
receivers and fed back to the base station as channel quality
information. The framework here presented can be applied
to any system in which codebooks are employed for channel
direction quantization. Moreover, additional orthogonality
constraints between beamforming vectors may be considered
with the purpose of simplifying the task of user scheduling
and controlling the amount of multiuser interference.

An approximation on the ergodic sum rate is provided
for the proposed family of metrics. The resulting sum-rate
function fits well the simulated sum rate as shown through
simulations, even in cells with reduced number of active
users. This function, as we show, can be a powerful design
tool and at the same time it greatly simplifies system anal-
ysis. On the one hand, we can envisage a cellular system in
which, given certain average SNR conditions and number of
active users, the base station sets the different parameters so
as to maximize the sum-rate function. On the other hand,
as shown in the analysis, the sum-rate function provides a
means of simple comparison between different transmission
schemes and scalar feedback techniques in extreme regimes,
without the need of extreme value theory. Particularly, we
compare the sum rate of SDMA and TDMA approaches in
scenarios with large number of users, high SNR, and low
SNR regimes. Simulations are provided to illustrate the per-
formance of different scalar feedback techniques based on the
proposed design framework.

The paper is organized as follows. Section 2 introduces
the system model. Linear beamforming with limited feed-
back is introduced in Section 3, presenting system assump-
tions on codebook design, beamforming design, and user
scheduling. Design guidelines for scalar feedback are given
in Section 4 and the corresponding sum-rate function is pro-
vided in Section 5. Section 6 shows a comparison of SDMA
and TDMA in different extreme regimes, namely, large num-
ber of users, high SNR, and low SNR. Section 7 shows nu-
merical results and conclusions are drawn in Section 8.

2. SYSTEMMODEL

We consider a multiple antenna broadcast channel consisting
of M antennas at the transmitter and K ≥ M single-antenna
receivers. The received signal yk of the kth user is mathemat-
ically described as

yk = hHk x + nk, k = 1, . . . ,K , (1)

where x ∈ CM×1 is the transmitted signal, hk ∈ CM×1 is
an i.i.d. Rayleigh flat fading channel vector, and nk is addi-
tive white Gaussian noise at receiver k. We assume that each

of the receivers has perfect and instantaneous knowledge of
its own channel hk, and that nk is independent and identi-
cally distributed (i.i.d.) circularly symmetric complex Gaus-
sian with zero mean and variance σ2 = 1. The transmitted
signal is subject to an average transmit power constraint P,
that is, E{‖x‖2} = P. Note that, since unit-variance noise is
assumed, P takes on the meaning of average SNR. Let S de-
note the set of users selected for transmission at a given time
slot, with cardinality |S| = Mo, 1 ≤ Mo ≤ M. Let vk be the
unit-norm beamforming vector for user k. Assuming equal
power allocation to the Mo scheduled users, the received sig-
nal at the kth mobile is given by

yk =
√

P

Mo

∑
i∈S

hHk visi + nk, k = 1, . . . ,K. (2)

Hence, the SINR of user k is

SINRk =
∣∣hHk vk∣∣2

∑
i∈S,i �=k

∣∣hHk vi∣∣2
+ Mo/P

. (3)

We focus on the ergodic sum rate (SR) which, assuming
Gaussian inputs, is equal to

SR = E
{∑
k∈S

log
[
1 + SINRk

]}
. (4)

Notation: We use bold upper and lower case letters for ma-
trices and column vectors, respectively. (·)H stands for Her-
mitian transpose. E(·) denotes the expectation operator. The
notation ‖x‖ refers to the Euclidean norm of the vector x,
and ∠(x, y) refers to the angle between vectors x and y.

3. LINEAR BEAMFORMINGWITH LIMITED FEEDBACK

Joint linear beamforming and scheduling are performed in a
system where limited feedback is present at the transmitter
side. The feedback conveyed by each user to the base station
consists of channel direction information based on a prede-
termined codebook and a scalar metric with channel quality
information used to perform user scheduling.

In such systems, the design of appropriate scalar metrics
in scenarios with realistic number of users and average SNR
values remains a challenge. These metrics must contain in-
formation of the users’ channel gains as well as channel quan-
tization errors, as discussed in [18]. If the users have addi-
tional knowledge of the beamforming technique used at the
transmitter side, an estimate on the multiuser interference at
the receiver can be computed. This information can be en-
capsulated together with the channel gain, quantization er-
ror, and average noise power into a scalar metric ξ, which
consists of an estimate on the SINR. In our work, we con-
sider such scalar feedback strategies, as discussed in detail in
next section. User selection is carried out based on these met-
rics and the users’ spatial properties, obtained from channel
quantizations.

As simple transmission technique we consider transmit
matched filtering (TxMF) which consists of using as normal-
ized beamforming vectors the quantized channel directions
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MS
Compute & Feedback ξk

quantization index i ∈ {1, . . . ,L}
BS
Initialize Set S = ∅

Loop For i : 1, . . . ,Mo repeat
Set ξimax = 0
Loop For k : 1, . . . ,K , k �∈ S repeat

If ξk > ξimax and |vHk v j| ≤ ε ∀ j ∈ S

ξk→ξimax and ki = k
Select ki→S

Algorithm 1: Outline of scheduling algorithm.

of users scheduled for transmission. The normalized chan-
nel vector of user k to be quantized is hk = hk/‖hk‖, which
corresponds to the channel direction. A B-bit quantization
codebook Vk is considered, containing L = 2B unit norm
vectors in CM , which is assumed to be known to both the re-
ceiver and the transmitter. Similar to [7, 8], we assume that
each receiver quantizes its channel to the vector that maxi-
mizes the inner product

vk = arg max
v∈Vk

∣∣∣hHk v
∣∣∣2
= arg max

v∈Vk

cos2(∠(hk, v
))
. (5)

Each user sends the corresponding quantization index back
to the transmitter through an error-free and zero-delay feed-
back channel using B bits. Note that this model is equivalent
to the finite rate feedback model proposed by [7, 9].

The optimal vector quantizer is difficult to find and the
solution to this problem is not yet known. As codebook de-
sign goes beyond the scope of the paper, we adopt the ge-
ometrical framework presented in [8]. The resulting quan-
tization error is defined as sin2θk = sin2(∠

(
hk, vk)) = 1 −

|h
H

k vk|2 [8, 19], where vk is the quantized channel direction
of user k. Using this framework, the cumulative distribution
function (cdf) of the quantization error is given by [8, 19],

Fsin2θk (x) =
{
δ1−MxM−1, 0 ≤ x ≤ δ,

1, x > δ,
(6)

where δ = 2−B/(M−1).
Let the orthogonality factor ε denote the maximum de-

gree of nonorthogonality between two unit-norm vectors.
The columns of the normalized beamforming matrix V(S)
are constrained to be ε-orthogonal and thus

∣∣vHi v j∣∣ ≤ ε ∀ i, j ∈ S, i�= j. (7)

An outline of the proposed scheduling algorithm is shown
in Algorithm 1. In case Mo users with ε-orthogonality can-
not be found, the algorithm stops and distributes the power
equally among the scheduled users, setting Mo = |S|. Note
that this greedy algorithm is equivalent to the one proposed
in [5, 20, 21]. The first user is selected from the set Q0 =
{1, . . . ,K} as the one having the highest channel quality, that

is, k1 = arg maxk∈Q0ξk. For i = 1, . . . ,Mo − 1, the (i + 1)th
user is selected as ki+1 = arg maxk∈Qi ξk among the user set
Qi = {1 ≤ k ≤ K : |vHk vkj | ≤ ε, 1 ≤ j ≤ i}.

The number of active beams for transmission Mo and or-
thogonality factor ε is system parameters fixed by the base
station (BS) that can be adapted in order to maximize the
system sum rate.

4. SCALAR FEEDBACK DESIGN

In this section, we present design guidelines for scalar met-
rics based on signal-to-interference-plus-noise ratios, which
are computed at the receivers and fed back to the base station
as channel quality information. Complemented with channel
quantizations as CDI, user scheduling at the base station of
a MIMO broadcast channel is performed. The design frame-
work for scalar feedback here presented can be applied to any
system in which codebooks are employed for channel quan-
tization, known both to the base station and mobile users.

These metrics must contain information of different na-
ture in order to exploit the multiuser diversity of the MIMO
broadcast channel. Moreover, additional information on the
orthogonality constraints between beamforming vectors can
be taken into account, thus providing a QoS estimate at the
receiver side. The total amount of feedback overhead can
be reduced by appropriately setting minimum desired SINR
thresholds. Hence, in a practical system each user may send
feedback to the base station only if a minimal QoS can be
guaranteed.

Besides signal and noise power, the following informa-
tion may be encapsulated by each user in such scalar metrics:

(i) channel power gain: ‖hk‖2,
(ii) quantization error: sin2θk,

(iii) orthogonality factor: ε,
(iv) number of active beams: Mo.

As shown in [18], channel power gain and quantization er-
ror information are necessary in order to exploit the avail-
able multiuser diversity. The quantization error is a function
of the number of codebook bits, as shown in the previous
section. By increasing the codebook size, the multiplexing
gain of the system can be increased (better resolution) and
at the same time the multiuser diversity gets increased, due
to lower quantization error. The orthogonality factor ε can
be used to bound the amount of expected multiuser interfer-
ence, which in turn can be used to compute a lower bound
on the SINR. In our work, we assume that the number of ac-
tive beams (nonzero power) is a parameter appropriately set
by the base station to maximize the system sum rate.

Multiuser interference

For user k and index set S, the multiuser interference
can be expressed as Ik(S) = ∑

i∈S,i �=k(P/Mo)|hHk vi|2 =
(P/Mo)‖hk‖2Ik(S), where Ik(S) denotes the interference
over the normalized channel hk. Let Uk ∈ CM×(M−1) be an
orthonormal basis spanning the null space of vHk and de-
fine the matrix Ψk =

∑
i∈S,i �=kviv

H
i and the operator λmax{·},
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which returns the largest eigenvalue. Define IUBk as the upper
bound on Ik and θk = ∠(hk, vk). As proven in [18] for
systems with arbitrary orthogonality between beamforming
vectors, the multiuser interference of user k can be bounded
as follows:

IUBk = αkcos2θk + βksin2θk + 2γksin θkcos θk, (8)

where

αk = vHk Ψkvk,

βk = λmax
{
UH

k ΨkUk
}

,

γk =
∥∥UH

k Ψkvk
∥∥.

(9)

Family of metrics

In the proposed design framework, any scalar feedback met-
ric can be described as follows:

ξ =
∥∥hk∥∥2

cos2θk∥∥hk∥∥2(
α cos2θk + β sin2θk + 2γ sin θkcos θk

)
+ Mo/P

.

(10)

The numerator in the expression above reflects the effective
received power in a system with channel quantization. On the
other hand, the denominator accounts for the noise power
and provides a measure of the interference experienced by
the user, for instance, an upper or lower bound, by exploit-
ing the structure of the beamforming matrix. By choosing
different values for the parameters α, β, γ, and Mo, the mean-
ing of the proposed metric is modified, yielding different
SINR measures. In next section, a sum-rate function is de-
rived based on this metric structure, for arbitrary values of
these parameters. When setting these parameters as in (9),
the metric ξ becomes a lower bound for the SINR described
in (3). Note that, even though ε-orthogonality beamformers
are imposed at the transmitter, we may choose not to include
this information in the scalar feedback metric. In addition,
even though Mo is in principle a parameter that may be mod-
ified by the base station, a simplified case with Mo = M may
be considered for feedback design.

In the remainder of this section we present several scalar
metrics complying with this structure.

Metric 1. Let u jk be the jth column vector of the matrix
Uk. The vector u jk is isotropically distributed over an M −
1 dimensional hyperplane orthogonal to vk, under the as-
sumption that vk is isotropically distributed over the unit
norm hypersphere. Given a fixed unit-norm vector vi in

CM , the random variable |vHi u jk|2 follows a beta distribu-
tion with parameters (1,M − 2) [22]. The mean value of
this random variable is 1/(M − 1), and thus we have that
E[
∑Mo

i=1,i �=k|vHi u jk|2] = (Mo − 1)/(M − 1). Using this result
in (9) and the fact that nonorthogonality between pairs of

beamforming vectors is upper bounded by ε, we propose in
[18] the following values for this metric:

α =
(
Mo − 1

)2

M − 1
ε2, β =

(
Mo − 1

)
M − 1

[
1 +

(
Mo − 2

)
ε
]
,

γ =
(
Mo − 1

)2

M − 1
ε, 1 ≤Mo ≤M.

(11)

Note that averaging the inverse of the resulting metric yields
an upper bound on the average of the inverse SINR. Hence,
the average value of this metric tends to be a lower bound on
the average SINR.

Metric 2. As a particular case, we consider ε = 0 in the metric
computation and assume a fixed number of active beams

α = 0, β = 1,
γ = 0, Mo =M.

(12)

This metric can be interpreted as an upper bound on the
SINR when exactly Mo = M beams are used for transmis-
sion and equal power allocation is performed. Note that this
metric was proposed in parallel in [12–14].

Metric 3. Another option consists of computing a lower
bound on the instantaneous SINR [15]. As opposed to
Metric 1, no averaging over the distribution of |vHk uik| is per-
formed and thus this lower bound is less tight in average. The
metric parameters are given by

α = (Mo − 1
)
ε2,

β =
{

0, if Mo = 1,

1 +
(
Mo − 2

)
ε, otherwise,

γ = (Mo − 1
)
ε, 1 ≤Mo ≤M.

(13)

Taking into account ε in the SINR computation may mask
the contribution of the channel power gains in the SINR ex-
pression, hence reducing the benefits of multiuser diversity.
However, this approach offers the advantage of avoiding out-
age events in the communication link.

Metric 4. A straightforward improvement of Metric 2 can be
done by setting a variable number of active beams 1 ≤Mo ≤
M, keeping the same values for α, β, and γ.

Note that, for a given scenario and feedback metric, there
is an optimal pair of system parameters ε and Mo that max-
imizes the sum rate. Increasing the value of ε relaxes the
ε-orthogonality constraint and thus more users are taken
into account for scheduling, increasing the multiuser diver-
sity benefit. However, as ε increases, so does the multiuser
interference. On the other hand, increasing the number of
active beams Mo exploits the spatial multiplexing gain, at the
expense of increasing the interference. Hence, for a given av-
erage SNR and number of active users K in the cell, the base
station must appropriately set ε and Mo in order to balance
the multiuser diversity and multiplexing gains and to max-
imize the system sum rate. In practice, this may be carried
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Figure 1: Approximated lower bound on the sum rate using
Metric 1 versus the alignment cos θk) for M = 4 antennas, vari-
able number of active beams Mo, orthogonality factor ε = 0.1 and
SNR = 10 dB.

out by storing lookup tables at the base station, so that ε
and Mo can be quickly adapted whenever the average SNR
or the number of active users changes. If the system parame-
ters need to be updated, the base station broadcasts the new
values to the users, which are used to compute the feedback
metrics.

In Figure 1, an approximated lower bound on the sys-
tem sum rate is plotted as a function of the alignment cos θk,
computed as SR ≈Mo log (1+ξIk), where ξIk denotes the feed-
back Metric 1 of user k. This approximation assumes that
the Mo scheduled users have the same ξIk value and thus the
same estimated lower bound on the achievable rate. The sys-
tem under consideration is assumed to have M = 4 anten-
nas, ε = 0.1, and average SNR = 10 dB. The sum rate is
evaluated for different number of active beams to observe
the impact of appropriately choosing Mo. Note that the case
of Mo = 1 corresponds to TDMA, whereas Mo > 1 corre-
sponds to SDMA. The system with Mo = 1 exhibits better
performance for low and intermediate values of cos θk, that
is, TDMA provides higher rates than SDMA in most cases.
Only for large values of cos θk, Mo > 1 provides higher rates,
which in practice occurs for large number of quantization
bits B or large number of users K . Since the amount of bits
B is generally low due to bandwidth limitations, SDMA will
be chosen over TDMA when Mo > 1 users with small quan-
tization errors can be found, with higher probability as the
number of users in the cell increases. As the parameter ε in-
creases, the crossing points of the curves in Figure 1 shift to
the right and thus the range for which TDMA performs bet-
ter also increases. This is due to the fact that the bound in
ξIk becomes looser for increasing ε values. As shown in this
example, for ε > 0 there exist M possible modes of transmis-
sion, that is, Mo = 1, . . . ,M. However, for the case of ε = 0
and varying Mo as considered in Metric 4, it can be proven
that the modes of transmission exhibiting higher rates are
reduced to 2, namely, Mo = 1, M.

5. SUM-RATE FUNCTION

In this section, we derive a function to approximate the er-
godic sum rate that a system with linear beamforming and
limited feedback can provide, given knowledge of each user’s
SINR metric. A general and simple solution is derived based
on the generic metric representation of ξ, given in (10). Note
that the different metrics described in the previous section
follow as particular cases of ξ by setting accordingly the val-
ues of α, β, γ, and Mo. The sum-rate function we provide is a
tool that enables simple analysis and comparison of SDMA
and TDMA approaches. Moreover, as shown in the simu-
lations, it approximates well the system number even when
the number of users in the cell is small. In our analysis, we
are interested in the actual sum rate that can be achieved.
Hence, the metric takes on the meaning of either an upper
or lower SINR bound as needed in order to compare SDMA
and TDMA in the extreme regimes under study.

First, an approximation on the cdf of ξ is derived, using
mathematical tools from [23].

Proposition 1. In the low-resolution regime (small B), the cdf
of ξ can be approximated as follows:

Fξ(s) ≈ 1− e−Mos/P(1−αs)

δM−1(1 + m)M−1 , (14)

where m = (2γs[γs +
√
γ2s2 + (1− αs)βs] + (1 − αs)βs)/

(1− αs)2.

Proof. See Appendix A.

Note that the above cdf is a generalization for arbitrary ε
and Mo of the cdf derived in [13]. Also, the result provided in
[10] follows as a particular case by selecting ε = 0, Mo = M,
and B = 0.

Let the ordered variate si:K denote the ith largest among
K i.i.d. random variables. From known results of order statis-
tics [24], we have that the cdf of s1 = max1≤i≤Ksi:K is Fs1 =
(Fξ(s))K . According to the proposed user selection algorithm,
the SINR of the first-selected user is the maximum SINR
over K i.i.d. random variables. However, at the ith selection
step (ith beam) the search space gets reduced since the ε-
orthogonality condition needs to be satisfied. Hence, the ith
user is selected over Ki i.i.d. random variables yielding a cdf
for the maximum SINR given by Fsi = (Fξ(s))Ki . Since ξ is
upper bounded by 1/α, its mean value is given by

E
(
si
) =

∫ 1/α

0
1− (Fξ(s)

)Kids. (15)

An approximation of Ki can be calculated through the prob-
ability that a random vector in CM×1 is ε-orthogonal to a set
with i−1 vectors in CM×1, which is equal to Iε2 (i−1,M−i+1)
[5], Ix(a, b) being the regularized incomplete beta function.
By using the law of large numbers [21], we can find the fol-
lowing approximation:

Ki ≈ KIε2 (i− 1,M − i + 1). (16)
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Figure 2: Sum-rate function using Metric 1 versus orthogonality
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10 dB, and B = 1 bit.

The average sum rate in a system with Mo active beams can
be bounded as follows by using Jensen’s inequality:

SR =
∑
i∈S

E
[
log2

(
1 + si

)] ≤∑
i∈S

log2

[
1 + E

(
si
)]
. (17)

Using (17) and solving the integral in (15) for the cdf of ξ de-
scribed in (14), we obtain the following theorem after some
approximations.

Theorem1. Given ε-orthogonal transmission in a system with
Mo active beams, the sum rate is approximated as follows:

RMo ≈
Mo∑
i=1

log 2

[
1 +

1
α

Ki∑
n=1

BnKi,nPn

]
, (18)

where

Bn = (−1)n−1

δn(M−1) ,

Ki,n =
(
Ki

n

)
,

Pn = 1 +
Cn

α
eCn/αEi

(
− Cn

α

)
,

(19)

and C = Mo/P + (M − 1)β. The exponential integral function
is defined as Ei(x) = −∫∞−x(e−t/t)dt.

Proof. See Appendix B.

Note that the term Bn reflects the influence of the code-
book design, Ki,n together with the summation upper limit
Ki inside the logarithm capture the amount of multiuser di-
versity exploited by the system and Pn accounts for the de-
pendency of the sum rate on the power.

Note that as a particular case of the equation above, a
simpler expression can be derived for Mo = 1, given by

R1 ≈ log2

[
1 +

K∑
n=1

BnK1,n
P

n

]
. (20)
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Another case of interest is the case in which α = 0. As α ap-
proaches zero, we have

lim
α→0

1
α

[
1 +

Cn

α
eCn/αEi

(
− Cn

α

)]
= 1

Cn
, (21)

and thus the sum-rate function in this case becomes

lim
α→0

RMo =
Mo∑
i=1

log2

[
1 +

Ki∑
n=1

BnKi,n
1
Cn

]
. (22)

In Figure 2, the sum-rate function in (18) is plotted as a func-
tion of the number of active beamsMo and orthogonality fac-
tor ε, using the values for α, β, and γ as described in Metric 1.
In this simulation, a system with K = 35 users has been con-
sidered, an average SNR = 10 dB and a simple codebook with
B = 1 bit. Note that in this particular scenario, SDMA can-
not guarantee better rates than TDMA regardless of the value
of ε. In this context, the number of users is low, hence there
is low probability of obtaining large values of cos θk. Thus,
TDMA transmission is favored, which is consistent with the
results obtained in the previous section.

In order to validate the obtained sum-rate function, we
consider a simple scenario with M = 2 antennas and a system
in which Mo = 2 if 2 ε-ortogonal users can be found in a
given time slot and Mo = 1 otherwise. The probability of not
finding 2 ε-orthogonal users is given by p = [1− ε2]K−1.
Hence, the approximated rate in this simplified scenario is
given by

R ≈ pR1 + (1− p)R2, (23)

where R1 and R2 (RMo with Mo = 2) are as described in
(18) and (20), respectively. Figure 3 shows a comparison of
analytical and simulated lower bounds on the sum rate in
such a system, with M = 2 antennas, K = 15 users, and
SNR = 10 dB. The values for α, β, and γ used are those of
Metric 3, given in (14). Each user has a simple codebook de-
signed as described in the previous section with B = 1 bit,
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Figure 4: Simulated lower bound on the sum rate using Metric 3 as
a function of the orthogonality factor ε for large K .

different from user to user. Note that the jitter in the analyti-
cal curve is due to the rounding effect of Ki.

6. STUDY OF EXTREME REGIMES

In this section, we analyze several extreme regimes, namely,
scenarios with large number of users, high SNR, and low
SNR regime. The results intuitively clarify the cases in which
SDMA is better than TDMA and the role of ε in the compari-
son of both techniques. Previous works in the literature focus
on the study of the asymptotic scaling with P or K by using
results from extreme value theory, as shown in [10, 13]. Here,
we base our study on simpler mathematical tools. The ratios
between the sum rates provided by SDMA and TDMA are
computed in different limiting cases, by using the sum-rate
functions derived in the previous section.

6.1. Large number of users

In this subsection, we provide asymptotical results showing
that SDMA can provide higher rates than TDMA in near-
orthogonal MIMO systems as the number of users increases,
which is consistent with the work presented in [25]. First,
note that the number of available users at the ith step can be
bounded as Ki ≥ Kε2(M−1) as shown in [5]. For finite SNR,
we can easily obtain from (18) and (20) the following result.

Theorem 2. Given an arbitrary ε, SDMA outperforms TDMA
asymptotically with the number of users

lim
K→∞

RMo

R1
=Mo. (24)

Proof. As shown in Figure 3, it can be seen from (18) that
RMo , as function of ε, is lower bounded by RMo| ε=1. Thus,
here we focus on a lower bound on the SINR, as described

by Metric 3, in order to provide a lower bound on the actual
sum rate. The value ε = 1 results in a pessimistic SINR lower
bound in the metric given in (9). Setting ε = 1, we obtain
that in each selection step Ki = K − i + 1, i = 1, . . . ,Mo, and
thus

RMo ≥
Mo∑
i=1

log2

[
1 +

1
α

K−i+1∑
n=1

BnK1,nP n

]
, (25)

where P n = 1 + (C n/ α)eCn/αEi(− C n/ α), C= C|ε=1, and
α= α|ε=1. Therefore, we get the following lower bound on
the ratio between RMo and R1:

lim
K→∞

RMo

R1

≥ lim
K→∞

RMo|ε=1

R1

(a)= lim
K→∞

∑Mo
i=1log2

[(
K−i + 1

(K − i+1)/2

)
(1/α)B(K−i+1)/2P (K−i+1)/2

]

log2

[(
K
K/2

)
BK/2(P/K/2)

]

(b)= lim
K→∞

∑Mo
i=1log2

(
K − i + 1

(K − i + 1)/2

)

log2

(
K
K/2

) (c)= Mo,

(26)

where (a) follows from selecting the highest exponent terms
of K in the numerator and denominator and (b) from apply-
ing the logarithm property log (xy) = log (x) + log (y), keep-
ing the relevant terms for the computation of the limit; (c)
follows by realizing that limK→∞(log2( K−a

(K−a)/2 )/log2( K
K/2 )) =

1 for any finite integer a.
Similar to the lower bound obtained on RMo/R1, it can

be shown that limK→∞(RMo/R1) ≤Mo by assuming an upper
bound on the SINR as metric with 1 ≤ Mo ≤ M, which cor-
responds to the case of using Metric 4. Setting Ki = K − i+ 1,
i = 1, . . . ,Mo, and using the sum-rate function for the partic-
ular case of α = 0, given in (22), yields the desired result.

6.2. High SNR regime

This scenario corresponds to the interference-limited region,
in which the multiuser interference limits the system perfor-
mance rather than the average SNR. The number of users K
is considered to be finite in the analysis of this regime.

Theorem 3. Given an arbitrary ε, TDMA outperforms SDMA
in the high SNR regime

lim
P→∞

RMo

R1
= 0. (27)

Proof. The bounded behavior of SDMA as function of the
power P is intuitively reflected in the proposed rate function.
It suffices to realize that the power dependent part of RMo can
be upper bounded as follows:

Pn ≤ 1. (28)
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In order to provide a proof for the theorem, we focus here
on Metric 4, which yields an upper bound on the SDMA sum
rate with variable number of active beams. Since in this case
we have that α = 0, the sum rate is described by (22). The
power dependent part is bounded by the following constant:

lim
P→∞

1
C
= lim

P→∞
P

Mo + (M − 1)βP
= 1

(M − 1)β
. (29)

Hence, when transmitting Mo > 1 active beams, the sum rate
is bounded regardless of the transmitted power. Thus we have
that

lim
P→∞

RMo

R1
≤ lim

P→∞

∑Mo
i=1log2

[
1 +

∑ Ki
n=1BnKi,n(1/Cn)

]
log2

[
1 +

∑ K
n=1BnK1,n(P/n)

] = 0,

(30)

where the inequality follows from the fact that an upper
bound on the SDMA sum rate is used, based on Metric 4 with
α = 0. The equality comes from the fact that when taking the
limit, the numerator is not a function of P as shown in (29).
Since both RMo and R1 are greater than or equal to zero, we
obtain the desired result.

Note that the above result is consistent with the work
in [9], in which the interference-limited behavior of MIMO
broadcast channels is studied in a system where limited feed-
back is available in the form of channel direction informa-
tion.

6.3. Low SNR regime

This scenario corresponds to the noise-limited region. In
this regime, the choice of ε has an impact on the optimal
choice of transmission technique, that is, SDMA or TDMA.
In Figure 4 we show the evolution of the optimal value of
ε for varying SNR in a cell with large number of users,
K = 1000, M = 2 antennas and a codebook of B = 1 bit.
The simulated system adapts the optimal number of active
beams as a function of ε so that the lower bound on the sum
rate computed on the basis of Metric 3. Fixing ε = 0 im-
plies that the system forces a TDMA solution since there is
zero probability of finding two quantized random channels
perfectly orthogonal, assuming different quantization code-
books for each user. A shift to the right in the position of
the maximum implies that the number of ε-orthogonal users
found at the second step (K2) also increases, hence using 2
beams for transmission and thus exploiting the benefits of
SDMA rather than TDMA. Therefore, Figure 4 shows that as
the SNR decreases, a system based on near-orthogonal trans-
mission tends to select SDMA over TDMA.

However, if the system parameter ε is set independently
of the average SNR value (or equivalently the power P for
normalized noise power), we obtain the following theorem
for finite number of users.

Theorem 4. Given an arbitrary ε, set independently of SNR,
TDMA provides the same or better performance than SDMA in
the low SNR regime:

lim
P→0

RMo

R1
≤ 1. (31)

Proof. In order to proof the theorem, we first proof the fol-
lowing asymptotic relation between SDMA and TDMA in 2
extreme cases:

0 ≤ lim
P→0

RMo

R1
≤ 1

Mo
if ε = 0, (32)

0 ≤ lim
P→0

RMo

R1
≤ 1 if ε = 1. (33)

First, we note that the relation limP→0(RMo/R1) ≥ 0 fol-
lows from the fact that both RMo and R1 are greater than
zero for positive P. In order to proof the upper bound on
limP→0(RMo/R1) for ε = 0, 1, we consider an upper bound on
the sum rate, provided by using Metric 4. Since in this case
α = 0, we use the sum-rate function given in (22). We obtain
the following result:

lim
P→0

RMo

R1

≤ lim
P→0

∑Mo
i=1log2

[
1 +

∑ Ki
n=1BnKi,n(1/Cn)

]
log2

[
1 +

∑ K
n=1BnK1,n(P/n)

]

(a)= lim
P→0

(Mo∑
i=1

∑ Ki
n=1

(
BnKi,n/n

)
(1/C)′

1+
∑ Ki

n=1BnKi,n(1/Cn)

)(
1+
∑ K

n=1BnK1,n(P/n)∑ K
n=1

(
BnK1,n/n

)
)

(b)= 1
Mo

∑Mo
i=1

∑ Ki
n=1

(
BnKi,n/n

)
∑ K

n=1

(
BnK1,n/n

) ,

(34)

where (a) follows from applying L’Hôpital’s rule, with
(1/C)′ = ∂(1/C)/∂P = Mo/[Mo + (M − 1)βP]2, and (b) fol-
lows from limP→0(1/C)′ = 1/Mo. For the case ε = 0, we have
that K1 = K , and Ki = 0 for i ≥ 2. Hence, it can be seen
from (34) that the ratio becomes 1/Mo, thus yielding (32).
For the case ε = 1, we get Ki = K − i + 1, i = 1, . . . ,Mo. For
simplicity, we provide a looser upper bound by considering
Ki = K − i + 1, i = 1, . . . ,Mo, which yields the result de-
scribed in (33). Since intermediate values of ε independent
of the SNR will yield values for (34) in the range (1/Mo, 1),
we obtain the desired result.

7. NUMERICAL RESULTS

Figure 5 shows a performance comparison in terms of sum
rate versus orthogonality factor ε for various levels of
channel state information at the transmitter (CSIT). The
simulated system has M = 2 antennas and a simple code-
book of B = 1 bits. The number of active users is K = 10
and the average SNR = 20 dB. The upper curve corresponds
to the sum rate obtained with transmit matched filtering,
with perfect CSIT and exhaustive search. Hence, its average
rate is not a function of the orthogonality factor. The lower
curve corresponds to the sum rate that the system can guar-
antee when the CSIT consists of quantized channel direc-
tions and Metric 3 as scalar feedback (equivalent to Metric 1
for M = 2). Thus, this curve corresponds to a lower bound
on the actual sum rate that the system can achieve. Finally,
the third curve corresponds to the sum rate of a system with
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Figure 5: Comparison of simulated lower bound on the sum rate
using Metric 3, and actual sum rates obtained with second step of
feedback and full CSIT. M = 2 antennas, K = 10 users, SNR =
20 dB, and B = 1 bit.

second step of full CSIT feedback, which means that given
a set of users selected for transmission by using Metric 3,
the BS requests full channel information from those users
to perform transmit matched filtering. We can see that the
bound becomes looser as ε increases, since the bound on
the SINR becomes more pessimistic. In the simulated sys-
tem with K = 10 users, the maximum average sum rate oc-
curs when the system sets orthogonality ε = 0. This means
that the system forces that at each time slot only one beam
will be active, since there is zero probability of finding two
quantized random channels perfectly orthogonal, assuming
different quantization codebooks for each user. Thus, in the
simulated scenario with reduced number of users, TDMA
(one active beam per time slot) is the optimal transmission
technique while in systems with large number of users SDMA
is optimal as shown in previous section.

In the remainder of this section, we compare the ac-
tual sum rate achieved by systems based on different scalar
feedback: Metrics 1, 2, 3, and 4, for M = 3 antennas and
B = 9 bits. For comparison, the performances of random
beamforming (RBF) [10] and TxMF with perfect CSIT and
exhaustive-search user selection are provided. The systems
using Metrics 1, 2, and 4 are assumed to appropriately set Mo

and ε both for transmision and metric computation, maxi-
mizing the sum rate for each K and SNR pair. On the other
hand, the scheme with Metric 2 uses optimal ε values in each
scenario.

Figure 6 shows a performance comparison in terms of
sum rate versus number of users for SNR = 10 dB, in a cell
with realistic number of active users. The scheme based on
Metric 1 provides slightly better performance than the other
schemes. The scheme based on Metric 3 exhibits worse scal-
ing with the number of users, thus exploiting less effectively
the multiuser diversity. Note that all schemes exhibit slightly
worse scaling than RBF and the perfect CSIT solution. This is
due to the fact that a simple transmission technique has been
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Figure 6: Sum rate achieved by different feedback approaches as a
function of the number of users, for B = 9 bits, M = 3 transmit
antennas, and SNR = 10 dB.

used, TxMF, since beamforming design is beyond the scope
of this paper. In order to restore the optimal scaling with K ,
zero-forcing beamforming (ZFBF) can be performed at the
transmitter based on the available channel quantizations, as
discussed in [13].

Figure 7 depicts the performances of different schemes
in the low-mid SNR region, in a setting with K = 10 users.
As the average SNR in the system increases, the sum rate of
schemes using Metrics 1 and 3 for feedback converges to the
same value. They exhibit linear increase in the high SNR re-
gion as expected, which corresponds to a TDMA solution.
The scheme that uses Metric 4 for scheduling also benefits
from a variable number of active beams, although providing
worse performance than the systems using Metrics 1 and 3.
Since in the simulated system the number of codebook bits
B is not increased proportionally to the average SNR, as dis-
cussed in [9], the scheme using Metric 2 (Mo = M) exhibits
an interference-limited behavior, flattening out at high SNR.

8. CONCLUSIONS

A design framework for scalar feedback in MIMO broad-
cast channels with limited feedback has been presented. In
order to perform user scheduling, these metrics may con-
tain information such as channel power gain, quantization
error, orthogonality factor between beamforming vectors,
and/or number of active beams. An approximation on the
sum rate has been provided for the proposed family of met-
rics, which has been validated through simulations. As it has
been shown, the proposed sum-rate function is a powerful
design tool and enables simple analysis. A sum-rate compar-
ison between SDMA and TDMA has been provided in several
extreme regimes. Particularly, SDMA outperforms TDMA as
the number of users becomes large. TDMA provides better
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Figure 7: Sum rate achieved by different feedback approaches ver-
sus average SNR, for B = 9 bits, M = 3 transmit antennas, and
K = 10 users.

rates than SDMA in the high SNR regime (interference-
limited region). Moreover, the importance of optimizing the
orthogonality factor ε in the low SNR regime has been high-
lighted. Several metrics have been presented based on the
proposed design framework, illustrating their performances
through numerical simulations. The system sum rate can be
drastically improved by considering a variable number of
active beams adapted to each scenario. In addition, scalar
metrics based on SINR lower bounds can provide benefits
from a point of view of QoS and feedback reduction.

APPENDICES

A. PROOF OF PROPOSITION 1

Define the following changes of variables:

ψ := sin2θk, x := 1
δ
φ(1− ψ),

φ := ∥∥hk∥∥2
, y := 1

δ
φψ.

(A.1)

Then, the metric in (10) can be expressed as

ξ = x

αx + βy + 2γ√xy + λ
, (A.2)

where λ = δMo/P. Note that ξ ≤ 1/α, with equality for P→∞.
The Jacobian of the transformation x = f (φ,ψ), y = g(φ,ψ)
described in (A.1) is given by

J(φ,ψ) =

∣∣∣∣∣∣∣∣∣∣

∂x

∂φ

∂x

∂ψ

∂y

∂φ

∂y

∂ψ

∣∣∣∣∣∣∣∣∣∣
= φ

δ2 . (A.3)

Expressing φ and ψ as a function of x and y, we have φ =
δ(x + y) and ψ = y/(x + y). Substituting in the Jacobian,
we get J(x, y) = (x + y)/δ. Since φ and ψ are indepen-
dent random variables for i.i.d. channels, the joint proba-
bility density function (pdf) of x and y is obtained from
fxy(x, y) = (1/J(x, y)) fφ[δ(x + y)] fψ[y/(x + y)]. The pdf of
φ is

fφ(φ) = φM−1

Γ(M)
e−φ, (A.4)

where Γ(M) = (M−1)! is the complete gamma function. The
pdf fψ is obtained from the cdf of ψ given in (6). Hence, we
get the joint density

fxy(x, y) = δ

Γ(M − 1)
e−δ(x+y)yM−2. (A.5)

The cdf of the proposed SINR metric is found by solving the
integral

Fξ(s) =
∫∫

x,y∈Ds

fxy(x, y)dx dy. (A.6)

The bounded region Ds in the xy-plane represents the region
where the inequality x/(αx+βy+2γ√xy+λ) ≤ s holds. Isolat-
ing x on the left side of the inequality, Ds can be equivalently
described as x ≤ g(y), with g(y) given by

g(y)

=
(
2γ2s2 +βs(1−αs))y+2γs

√(
γ2s2 +βs(1−αs))y2 +λs(1−αs)y

(1− αs)2

+ ϕ(s),
(A.7)

where ϕ(s) = λs/(1− αs). Since using g(y) in the integration
limits yields difficult integrals, we use the following linear ap-
proximation:

g(y) ≈ m(s)y + ϕ(s), (A.8)

where the slope m(s) corresponds to the oblique asymptote
of g(y):

m(s) = lim
y→∞

∂g(y)
∂y

=
2γs
(
γs+

√
γ2s2 +βs(1−αs)

)
+βs(1−αs)

(1− αs)2 .

(A.9)

Note that, since 0 ≤ s ≤ 1/α, then m(s) ≥ 0 for all s. In
addition, since the domain of ψ is Dψ = [0, δ], we also obtain
the inequalities y/(x + y) ≥ 0, y/(x + y) ≤ δ, and thus x ≥
((1−δ)/δ)y. Hence, Fξ(s) is obtained by integrating fxy(x, y)
over the first quadrant of the xy-plane, in the region defined
by x ≤ g(y) and x ≥ ((1 − δ)/δ)y. Depending on the slopes
of these linear boundaries, the integral in (A.6) is carried out
over different regions

Fξ(s) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫∞
0

∫ my+ϕ

((1−δ)/δ)y
fxy(x, y)dx dy, m ≥ 1− δ

δ
,

∫ yc

0

∫ my+ϕ

((1−δ)/δ)y
fxy(x, y)dx dy 0 ≤ m <

1− δ

δ
.

(A.10)
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The upper integration limit yc along the y axis in the region
0 ≤ m < (1− δ)/δ corresponds to the value of y in which the
linear boundaries intersect

yc

= λs(1− αs)δ

(1−αs)2(1−δ)−βs(1−αs)δ−2γs
(
γs+

√
βs(1−αs)+γ2s2

)
δ
.

(A.11)

Expressing the regions of the domain of Fξ(s) as function of
sc, defined as the crossing point between m(s) and (1− δ)/δ,
and substituting (A.5) into (A.10), the cdf of ξ is found from
the following integrals:

Fξ(s) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ

Γ(M − 1)

∫∞
0
e−δy yM−2

∫ my+ϕ

((1−δ)/δ)y
e−δxdx dy,

sc ≤ s < 1/α,

δ

Γ(M − 1)

∫ yc

0
e−δy yM−2

∫ my+ϕ

((1−δ)/δ)y
e−δxdx dy,

0 ≤ s < sc,
(A.12)

where sc is given by

sc =
α(1− δ)2 + β(1− δ)δ − 2

√
γ2(1− δ)3δ

α2(1− δ)2 + 2αβ(1− δ)δ + δ
(
β2δ − 4γ2(1− δ)

) .
(A.13)

Solving the integrals in (A.12), the resulting cdf becomes

Fξ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− e−Mos/P(1−αs)

δM−1(1 + m)M−1 , sc ≤ s < 1/α,

1− e−Mos/P(1−αs)

δM−1(1 + m)M−1 + Φ(s), 0 ≤ s < sc,

(A.14)

where Φ(s) = 1/Γ(M − 1)[(e−Mos/P(1−αs)/δM−1(1 +
m)M−1)Γ(M − 1, δ(s + 1)yc) − Γ(M − 1, yc)] and
Γ(a, x) = ∫∞

x t
a−1e−tdt is the (upper) incomplete gamma

function.
Note that this is a generalization of previous results in

the literature. In the particular case of B = 0, then δ = 1 and
thus sc becomes 0, yielding the cdf derived in [10] for random
beamforming. If the metric refers to an upper bound on the
SINR, with ε = 0, then sc = (1−δ)/δ. If in addition Mo =M
is considered as in Metric 2, the cdf of (A.14) becomes the
one provided in [13].

In order to obtain a tractable expression for Fξ(s), we as-
sume that sc is small so that Fξ(s) can be approximated as
described in (14). Note that a small sc value corresponds to a
low value of B and thus the obtained cdf approximates better
the low resolution regime.

B. PROOF OF THEOREM 1

Given Mo beams active for transmission, using (17) we ap-
proximate the rate as

SR ≈
Mo∑
i=1

log2

[
1 + E

(
si
)]
. (B.15)

From (15), E(si) is computed as follows:

E
(
si
) =

∫ 1/α

0
1−

[
1− e−Mos/P(1−αs)

δM−1(1 + m)M−1

]Ki

ds. (B.16)

Expanding the binomial in the integral, we get

E(si) =
Mo∑
i=1

(−1)n−1

δn(M−1)

(
Ki

n

)∫ 1/α

0

[
e−Mos/P(1−αs)

δM−1(1 + m)M−1

]n
ds.

(B.17)

A closed-form solution for the integral in the above equation
cannot be found, and thus we use the Bernouilli inequality
to obtain an approximation

∫ 1/α

0

[
e−Mos/P(1−αs)

δM−1(1 + m)M−1

]n
ds ≥

∫ 1/α

0
e[−Mos/P(1−αs)+(M−1)m]n.

(B.18)

Note that the integral above is also difficult to solve, since m
is a nonlinear function of s, as shown in Theorem 1. In order
to provide good sum rates, ε will take in general small values.
Under this assumption, the following approximation can be
made:

m ≈ βs

1− αs
. (B.19)

Let C = Mo/P + (M − 1)β, then the integral in (B.17) is ap-
proximated by the following integral:

∫ 1/α

0
e−Cns/(1−αs) = 1

α

[
1 +

Cn

α
eCn/αEi

(
− Cn

α

)]
, (B.20)

where Ei(x) is the exponential integral function, defined as
Ei(x) = −∫∞−x(e−t/t)dt. By substituting the approximated
value of the integral found above into (B.17), and using the
definitions of Bn, Ki,n, and Pn given in Theorem 2, we ob-
tain the desired approximation for the sum rate.

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,”
European Transactions on Telecommunications, vol. 10, no. 6,
pp. 585–595, 1999.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless commu-
nications in a fading environment when using multiple an-
tennas,” Wireless Personal Communications, vol. 6, no. 3, pp.
311–335, 1998.

[3] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity re-
gion of the Gaussian MIMO broadcast channel,” in Proceed-
ings of the International Symposium on Information Theory
(ISIT ’04), p. 174, Chicago, Ill, USA, June-July 2004.



12 EURASIP Journal on Advances in Signal Processing

[4] M. Costa, “Writing on dirty paper,” IEEE Transactions on In-
formation Theory, vol. 29, no. 3, pp. 439–441, 1983.

[5] T. Yoo and A. Goldsmith, “On the optimality of multiantenna
broadcast scheduling using zero-forcing beamforming,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 3, pp.
528–541, 2006.

[6] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, “Effi-
cient use of side information in multiple-antenna data trans-
mission over fading channels,” IEEE Journal on Selected Areas
in Communications, vol. 16, no. 8, pp. 1423–1436, 1998.

[7] D. J. Love, R. W. Heath Jr., and T. Strohmer, “Grassman-
nian beamforming for multiple-input multiple-output wire-
less systems,” IEEE Transactions on Information Theory, vol. 49,
no. 10, pp. 2735–2747, 2003.

[8] K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, “On
beamforming with finite rate feedback in multiple-antenna
systems,” IEEE Transactions on Information Theory, vol. 49,
no. 10, pp. 2562–2579, 2003.

[9] N. Jindal, “MIMO broadcast channels with finite rate feed-
back,” in Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM ’05), vol. 3, pp. 1520–1524, St. Louis,
Mo, USA, November-December 2005.

[10] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast
channels with partial side information,” IEEE Transactions on
Information Theory, vol. 51, no. 2, pp. 506–522, 2005.

[11] P. Viswanath, D. N. C. Tse, and R. Laroia, “Opportunistic
beamforming using dumb antennas,” IEEE Transactions on In-
formation Theory, vol. 48, no. 6, pp. 1277–1294, 2002.

[12] N. Jindal, “Finite rate feedback MIMO broadcast channels,”
in Proceedings of the Workshop on Information Theory and Its
Applications (ITA ’06), San Diego, Calif, USA, February 2006,
invited paper.

[13] T. Yoo, N. Jindal, and A. Goldsmith, “Finite-rate feedback
MIMO broadcast channels with a large number of users,” in
Proceedings of the IEEE International Symposium on Informa-
tion Theory (ISIT ’06), pp. 1214–1218, Seattle, Wash, USA, July
2006.

[14] M. Kountouris, R. de Francisco, D. Gesbert, D. T. M. Slock,
and T. Sälzer, “Efficient metric for scheduling in MIMO
broadcast channels with limited feedback,” FT060303—
France Telecom R&D internal report, March 2006.

[15] R. de Francisco, D. T. M. Slock, and Y.-C. Liang, “Balance of
multiuser diversity and multiplexing gain in near-orthogonal
MIMO systems with limited feedback,” in Proceedings of the
IEEE Wireless Communications and Networking Conference
(WCNC ’07), pp. 1269–1274, Kowloon, China, March 2007.

[16] R. de Francisco and D. T. M. Slock, “On the design of scalar
feedback techniques for MIMO broadcast scheduling,” in Pro-
ceedings of the 8th IEEEWorkshop on Signal Processing Advances
in Wireless Communications (SPAWC ’07), Helsinki, Finland,
June 2007.

[17] M. Kountouris, R. de Francisco, D. Gesbert, D. T. M. Slock,
and T. Sälzer, “Efficient metrics for scheduling in MIMO
broadcast channels with limited feedback,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP ’07), vol. 3, pp. 109–112, Honolulu,
Hawaii, USA, April 2007.

[18] M. Kountouris, R. de Francisco, D. Gesbert, D. T. M. Slock,
and T. Sälzer, “Low complexity scheduling and beamforming
for multiuser MIMO systems,” in Proceedings of the 7th IEEE
Workshop on Signal Processing Advances in Wireless Communi-
cations (SPAWC ’06), pp. 1–5, Cannes, France, July 2006.

[19] S. Zhou, Z. Wang, and G. B. Giannakis, “Quantifying the
power loss when transmit beamforming relies on finite-rate
feedback,” IEEE Transactions on Wireless Communications,
vol. 4, no. 4, pp. 1948–1957, 2005.
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