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forms time-difference-of-arrival TDOA and RT-TOA, but the relative ordering of the latter two depends on the sensor geometry.
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1. INTRODUCTION

The success of the global positioning system (GPS) has
sparked great interest in locating mobile wireless users. Ap-
plications include locating E-911 callers in the cellular tele-
phone network, tracking emergency responder personnel in
indoor environments, personal navigation using maps and
turn-by-turn driving directions, or tracking vehicles and
other valuable property. All such systems will require im-
provements in the delivered accuracy, time-to-fix, reduction
of outage probability, and lowered cost. We can also foresee
a shift from a global system to positioning based on local in-
frastructure, possibly relying entirely on transmissions from
ground stations. With a local architecture comes the possi-
bility of combining wideband communications and location
functions in the same radio spectrum for increased spectrum
utilization.

To enable the design of these future systems, there is
a continuing need to understand the fundamental perfor-
mance limits of positioning systems, especially in difficult in-
door and urban environments [1–4]. While at first glance it
may appear that simply increasing the signaling bandwidth
will lead to gains in location accuracy, several effects emerge
that limit such gains. First, a larger bandwidth implies an in-

crease in the observed multipath delay spread (in samples),
making the detection of the “first arrival” signal more diffi-
cult in practice. Next, urban/indoor environments also ex-
hibit a “non-line-of-sight” (NLOS) property (also known as
“undetectable direct path”), wherein the path due to straight-
line propagation may be severely attenuated and considered
undetectable. This is a substantial obstacle to accurate lo-
calization. Several authors have proposed algorithms for lo-
cating users in either pure NLOS or mixed LOS/NLOS con-
ditions [5–8]. A statistical characterization of the NLOS ef-
fect is not presently available, though a few authors have re-
cently published results in this direction [9, 10]. Also needed
is an understanding of the performance differences in these
environments among several positioning principles: time-
of-arrival (TOA), time-difference-of-arrival (TDOA), and
round-trip time-of-arrival (RT-TOA).

Our focus in this paper is on the theoretical performance
limit, given by the Cramer-Rao lower bound (CRLB), for the
three time-based location principles when all the sensors
exhibit NLOS conditions. If the total number of sensors is
small, it may not be feasible to separate out the LOS sensors
and perform the location fix from that subset only; hence all
sensors should be considered NLOS to some degree. We envi-
sion indoor location using only ground-based infrastructure,
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which brings the advantages of lowered Doppler, reduced
delay uncertainty, higher signal strength, and lack of iono-
spheric effects. We also assume Rayleigh fading of the sig-
nals (implying that the Cramer-Rao bound becomes a ran-
dom variable) and different average SNR at each sensor due
to pathloss and shadowing. Two other assumptions should
be mentioned up front. We will restrict ourselves to the case
of flat fading only, as it has been shown [3] that multipath
actually improves the CRLB slightly (theoretically, it is not
a degradation), while introducing numerical complications.
Also, certain advanced location receivers, using integrated
carrier phase [11, 12], are able to achieve extraordinary lo-
cation accuracy by examining the carrier signal phase prior
to mixing to baseband. These systems currently have severe
limitations in terms of the time-to-fix, and the allowed initial
position uncertainty, so we restrict ourselves to traditional
baseband processing.

The unique contributions of this paper are as follows. We
present the first (to the author’s knowledge) derivation of the
CRLB for a RT-TOA system in LOS and NLOS channels, and
provide numerical comparisons with TOA and TDOA. We
investigate the CRLB under pure NLOS channels and prove
that the bound does not exist when there is no a priori infor-
mation. We prove that a priori channel amplitude informa-
tion is not needed to achieve the CRLB. We also investigate
the CRLB when the sensor’s locations are themselves only
statistically known, again, for the first time to our knowl-
edge under pure NLOS channels. Additionally, two variants
of RT-TOA are investigated, one of which is shown to have
root-mean-square (rms) error precisely twice that of TOA.

In Section 2, we begin with a review of the Cramer-Rao
bound, and the location bounds for TOA and TDOA pro-
cessing. The need for a priori amplitude information is ad-
dressed. In Section 3, we look at the all-NLOS case, and in-
troduce a “half Gaussian” model for the probability density
function (pdf) of the excess delay. In Section 4 the RT-TOA
system is investigated, and in Section 5, we study statistical
sensor position knowledge. Finally, Section 6 presents our
numerical findings, and Section 7 contains a summary and
conclusions.

2. CRAMER-RAO BOUNDS FOR GEOLOCATION

The Cramer-Rao lower bound (CRLB) gives the lower limit
on estimation error among all unbiased estimators. Consider
a parameter vector θ = [x, y, p1, . . . , pN ]T made up of the
parameters of direct interest, here, the two-dimensional po-
sition1of the terminal, [x, y], and additional unknown nui-
sance parameters [p1, . . . , pN ] that affect the received vector,
r. The Fisher matrix [13] is

Jθ = E

{(
δ

δθ
Λ(r | θ)

)(
δ

δθ
Λ(r | θ)

)H}
, (1)

1 Extension of all results to the three-dimensional case is straight-forward.

where Λ(r | θ) is the log-likelihood of received vector, r. Note
that the expectation in (1) is over the random variable, r. The
Cramer-Rao lower bound for the position error is then

CRLB = Tr
{(
J−1
θ

)
2×2

}
, (2)

where the notation indicates taking the trace of the upper-
left corner of the inverse of the full Fisher matrix. The rms
position error is the square root of this value.

It is also possible that some of the variables in the param-
eter vector are partially known, meaning that we know their a
priori probability density, p(ω). In this case, it can be shown
that the Fisher matrix is

J = Jθ + Jω, (3)

where

Jω = E

{(
δ

δω
Λ(ω)

)(
δ

δω
Λ(ω)

)H}
. (4)

Here the expectation is over the random variable ω, and
Λ(ω) � ln p(ω). The generalized Cramer-Rao bound [14]
is

G-CRLB = Tr
{(
J−1)

2×2

}
. (5)

2.1. One-dimensional ranging bound

Next we briefly review the derivation of the well-known
Cramer-Rao bound for the one-dimensional ranging, or
time-delay estimation problem. Here the channel conditions
are assumed to be the ordinary LOS case, and the receiver
is subject to ordinary AWGN. Assume a known waveform,
s(t), has been transmitted, and the received signal over a fi-
nite time interval is

r(t) = s(t − τ) + n(t), 0 ≤ t ≤ T. (6)

The parameter of interest is the delay of the received sig-
nal, τ, which is proportional to the distance between the re-
ceiver and transmitter. The ranging bound is derived from
continuous-time estimation theory. The log-likelihood of a
continuous-time random process is given by the Cameron-
Martin formula [15]

Λ(r | τ) = 2
N0

∫ T

0
s(t − τ)dX − 1

N0

∫ T

0
s(t − τ)2dt, (7)

where X refers to the integral of the observed Wiener process.
Using (1), the Fisher matrix (here, a scalar) for this problem
then simplifies to

Jτ = 2
N0

∫ T

0

(
δ

δτ
s(t − τ)

)2

dt. (8)

Letting T→∞ and assuming finite energy signals, we can
use well-known Fourier transform properties. For the trans-
mitted signal in (6), assume the Fourier pair s(t) ⇔ S( f ),
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and note that the transform of the time derivative is ṡ(t) ⇔
j2π f S( f ). Applying Parseval’s theorem, we find

Jτ = 2
N0

∫∞
0

(
ṡ(t)

)2
dt = 2

N0
(2π)2

∫∞
−∞

f 2
∣∣S( f )

∣∣2
df .

(9)

Defining the squared rms bandwidth and the received signal
energy as

β2 �
∫∞
−∞ f 2

∣∣S( f )
∣∣2

df∫∞
−∞
∣∣S( f )

∣∣2
df

,

Eobs =
∫∞

0

∣∣s(t)∣∣2
dt = 1

2π

∫∞
−∞
∣∣S( f )

∣∣2
df � C Tobs,

(10)

then substituting in and inverting (9) allow us to write the
Cramer-Rao bound for ranging accuracy:

σ range ≥ c√
2 2π β

√
SNR

, (11)

where c is the speed of light. Note that ranging accuracy im-
proves linearly with rms bandwidth, but only as the square
root of SNR. Here we define SNR � Eobs/N0 = (C/N0)Tobs.
Note that observation interval Tobs is a function of the chan-
nel coherence time and the local oscillator stability, and not
the signaling bandwidth. The implication is that if a trans-
mitter has C watts of average power, and we change the sig-
naling bandwidth, then SNR as defined does not change. This
fact will be important in the subsequent development.

2.2. Basic geolocation bounds

When the mobile user’s and sensors’ clocks are all synchro-
nized, it is possible to use the TOA location technique. In the
simplest form of the problem, no nuisance variables are con-
sidered, and the parameter vector is θ = [x, y]. The signal re-
ceived at the ith sensor is ri(t) = ai s(t−τi)+ni(t), where ai is
a complex-valued channel coefficient (here assumed known),
and τi is the delay between the ith sensor and the mobile user.
Note that

τi = 1
c

√(
xi − x

)2
+
(
yi − y

)2
, (12)

where (xi, yi) is the location of the ith sensor. Using a vector
derivative version of (8) and assuming B sensors, the Fisher
matrix is

Jθ = 2
No

B∑
i=1

∫ T

0

[
δ

δθ
ai s
(
t − τi

)][ δ

δθ
ai s
(
t − τi

)]H
dt. (13)

From elementary calculus,

δ

δθ
ai s
(
t − 1

c

√(
xi − x

)2
+
(
yi − y

)2
)

= ai
c
ṡ
(
t − τi

)
⎡
⎢⎢⎢⎢⎣

xi − x√(
xi − x

)2
+
(
yi − y

)2

yi − y√(
xi − x

)2
+
(
yi − y

)2

⎤
⎥⎥⎥⎥⎦

� ai
c
ṡ
(
t − τi

)
hi,

(14)

where ṡ(t) again denotes the time derivative of the transmit-
ted signal. The Fisher matrix for TOA is

Jθ =
B∑
i=1

2Eobs,i

No
(2π)2β2

∣∣ai∣∣2

c2
hi hHi = μ1 HΛHH , (15)

where H � [h1,h2, . . . ,hB], Λ is a diagonal matrix whose ith
element is (Eobs,i/N0)|ai|2 and μ1 � 2(2π)2β2/c2. The CRLB
therefore depends on the SNR per sensor link, the rms signal
bandwidth, and the geometry of the user and sensors, and is
computed from (2).

When the mobile user’s clock is not synchronized with
the sensors, we may use the TDOA location method. The
most straightforward way of finding the related bound is by
introducing a single nuisance variable, Δ0, that corresponds
to the erroneous range due to clock offset. Hence, the pa-
rameter vector becomes θ = [x, y,Δ0]. It has already been
shown that this very general approach is equivalent to the
CRLB when delays are first estimated by ML and then one
sensor’s delay is subtracted from all the remaining delay es-
timates, corresponding to the classical TDOA processing [4].
We now write

τi = 1
c

(√(
xi − x

)2
+
(
yi − y

)2
+ Δ0

)
, (16)

accounting for the unknown clock offset affecting each mea-
surement. Starting from (13), we observe

δ

δθ
ais

(
t −

√(
xi − x

)2
+
(
yi − y

)2 − Δ0

c

)

= ai
c
ṡ
(
t − τi

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xi − x√(
xi − x

)2
+
(
yi − y

)2

yi − y√(
xi − x

)2
+
(
yi − y

)2

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

� ai
c
ṡ
(
t − τi

)
hi.

(17)

The Fisher matrix for the TDOA system is μ1 HΛH
H

, where
H � [h1,h2, . . . ,hB], and the CRLB is from (2). In our nu-
merical results we will contrast the performance of TOA and
TDOA systems. It has previously been shown that the per-
formance of TDOA is no better than TOA, and equality is
proven to occur only in certain highly symmetrical sensor
geometries [2].

2.3. CRLBwith unknown signal amplitudes

Thus far, we have considered the CRLB when the signal am-
plitudes were assumed known. In this section, we redefine
the parameter vector to be θ = [x, y, a1, . . . , aN ]T and con-
sider the impact of these unknown nuisance variables. Note
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that [1] considered a similar case of joint amplitude/delay
channel estimation. In our case,

δ

δθ
ai s
(
t − 1

c

√(
xi − x

)2
+
(
yi − y

)2
)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai ṡ
(
t − τi

) (
xi − x

)
c
√(

xi − x
)2

+
(
yi − y

)2

ai ṡ
(
t − τi

) (
yi − y

)
c
√(

xi − x
)2

+
(
yi − y

)2

0
s
(
t − τi

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B+2)×1

,

(18)

where it should be understood that the first two terms are
generally nonzero for all i, and the remaining nonzero term
occurs in the (i +2)th position. Define μ2 �

∫ T
0 s(t) ṡ(t) dt =

0.5(s2(T)− s2(0)). The Fisher matrix is

Jθ =
[
μ1HΛHH μ2HΛ1/2

μ2Λ
H/2HH D

]
, (19)

where D � diag(2Eobs,1/N0, . . . , 2Eobs,B/N0). Given this struc-
ture, we would like to know if the unknown amplitudes affect
the bound, or whether

Tr
((
J−1
θ

)
2×2

)
� Tr

((
μ1HΛHH

)−1)
. (20)

This question is especially relevant in the multipath chan-
nel case, where the unknown amplitudes would include the
complete time-dispersive channel structure, but we do not
consider this here.

Theorem 1. The degradation of the CRLB due to unknown
channel amplitudes can be made arbitrarily small.

Proof. The key observation is that the scalar μ2 is under the
control of the designer, and may be made arbitrarily small.
When μ2 = 0, then Jθ of (19) becomes block diagonal, and
(20) follows immediately.

Due to this result, the unknown amplitude case will not
be considered further.

3. GEOLOCATIONWITH ALL NLOS SENSORS

In [1–4] the sensors experienced a mix of LOS and NLOS
conditions and the receiver was assumed to have perfect
knowledge which were LOS. Here, we consider all sensors
to experience NLOS channels. Let Ni be the unknown, ad-
ditional range the signal travels between the user and the ith
sensor. The corresponding signal delay is

τi = 1
c

(√(
xi − x

)2
+
(
yi − y

)2
+ Ni

)
. (21)

We expand the parameter vector to include these unknown
nuisance variables, θ = [x, y,N1, . . . ,NB]T . Taking deriva-
tives as in (14) we find the Fisher matrix in this case to be

Jθ =
B∑
i=1

2Eobs,i

N0
(2π)2β2

∣∣ai∣∣2

c2

[
hi
−ei

][
hi
−ei

]H

, (22)

where ei is the elementary column vector of length B, having
a single 1 in the ith position. The Fisher matrix is of size (B+
2)× (B + 2) and can also be written as

Jθ = μ1

[
HΛHH −HΛ
−ΛHH Λ

]
, (23)

where H and Λ are as defined previously. However, in the
all-NLOS case, the inverse of this Fisher matrix does not ex-
ist, implying that there can be no guarantee of a finite error
variance.

Theorem 2. When a TOA or a TDOA geolocation system ex-
periences NLOS conditions on all sensors and lacks a priori
information, the resulting Fisher matrix is singular, and the
Cramer-Rao bound does not exist.

Proof. Consider first a TOA system. Assume that the CRLB
exists in the related LOS conditions, that is, (HΛHH)

−1
exists.

Regarding (23), the inverse will exist iff the determinant is
nonzero. The determinant is

∣∣Jθ∣∣ = μB1
∣∣HΛHH

∣∣ ∣∣Λ−ΛHH
(
HΛHH

)
HΛ

∣∣
= μB1

∣∣HΛHH
∣∣ |S|. (24)

The first determinant is nonzero by assumption. The second
determinant is nonzero if and only if S−1 exists. Using the
matrix inversion lemma,

S−1 = Λ−1 −Λ−1ΛHH
(
HΛΛ−1ΛHH −HΛHH

)−1
HΛΛ−1

= Λ−1 −HH
(
HΛHH −HΛHH

)−1
H,

(25)

where the second term clearly does not exist. Therefore,
(Jθ)−1 does not exist. The same proof extends immediately
to the TDOA case when H is substituted for H, and assuming

(HΛH
H

)
−1

exists.

3.1. Extensionwhen the statistics of
the NLOS are known

Consider again the parameter vector θ = [x, y,N1, . . . ,NB]T

and the delays defined in (21). When the probability density
function pN (n) is known, then we can write the Fisher matrix
using (3):

J = μ1

[
HΛHH −HΛ
−ΛHH Λ

]
+

[
02×2 02×B
0B×2 ΩB×B

]
, (26)

where the subscripts denote the dimensions of the various
submatrices. We define n � [N1,N2, . . . ,NB]T , and

Ω = E

{[
∂

∂n
ln pN (n)

][
∂

∂n
ln pN (n)

]H}
, (27)
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where the expectation is over n. Note that the choice of den-
sity pN (n) affects whether (26) is invertible. At the present
time, very little is known about the statistics of the NLOS
variables in realistic propagation environments, and there are
no established models. In [1] the numerical results assumed
an ordinary two-sided Gaussian distribution which includes
negative delays. Since the straight-line path is the shortest
path, any other NLOS path can only increase the delay, so
it would be more reasonable to use a density having support
only on n ≥ 0. As an example, we might consider use of the
exponential distribution,

pN (n) =
N∏
n=1

1
σ
e−ni/σ , ni ≥ 0. (28)

This is attractive as it has support only for positive delays and
is easy to differentiate. Substituting (28) into (27),

ln
(
pN
(
n
)) = B∑

i=1

ln
(

1
σ
e−ni/σ

)
=

B∑
i=1

− ln (σ)− ni
σ
. (29)

Taking partial derivatives and substituting into (27) yields
Ω = (1/σ2)1B×B, which is a rank-one matrix. We found nu-
merically that the Fisher matrix is singular with this model.
This agrees with the statement in [2] that the chosen pdf
must have a local maximum. Consider instead the assump-
tion of a “half-Gaussian” distribution (i.e., the absolute-value
of a Gaussian random variable),

pN (n) =
B∏
i=1

2√
2πσ

e−n
2
i /2σ

2
, ni ≥ 0. (30)

For each individual random variable, we have the moments
[16] E{ni} =

√
2/πσ and E{n2

i } = σ2. The ith partial deriva-
tive is

∂

∂ni

( B∑
i=1

ln
(

2√
2πσ

)
− n2

i

2σ2

)
= − ni

σ2
. (31)

Taking the expectation,

E
{

∂

∂ni
ln
(
p(N)

) ∂

∂nj
ln
(
p(N)

)}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E
{
ninj

}
σ4

= 2
π σ2

i�= j,

E
{
n2
i

}
σ4

= 1
σ2

i = j.

(32)

Putting this together,

Ω = 1
σ2

(
2
π
1B×B +

(
1− 2

π

)
IB

)
, (33)

which is full-rank by inspection. Hence, the half-Gaussian is
a reasonable choice for an assumed density function for the
NLOS phenomenon.

To extend these NLOS results to the TDOA system, we
merely substitute H into (26), where the matrix dimensions
labeled “2” are increased to “3.”

Throughout this paper we assume a narrowband signal
model, allowing us to consider the NLOS statistics to be in-
dependent of bandwidth.If the transmitted frequency were
allowed to vary widely, it could significantly alter the atten-
uation through various materials in the environment and
thereby increase the probability that the straight-line path
is detectable. For the bandwidths of interest in this paper
(<100 MHz), we can safely neglect this phenomenon.

4. GEOLOCATION FOR ROUND-TRIP TOA SYSTEMS

Recently, a third type of time-based geolocation has been
receiving renewed interest, namely, the round trip time-of-
arrival (RT-TOA) system [17, 18]. The RT-TOA approach is
potentially a cost-effective solution, as none of system clocks
are required to be synchronized: only short-term accuracy is
needed. The basic concept entails a ranging waveform trans-
mitted from node A to node B, which in turn sends it back
to A. Node A measures the elapsed time between its trans-
mission and reception and divides by two to determine the
range. However, as quantified below, the fact that the wireless
channel must be used twice will reduce the location accuracy.
It should also be evident that the originating A node may be
either the mobile user, or the stationary infrastructure, with-
out changing the relevant formulas.

Consider first the round-trip ranging bound under LOS
conditions. Node A will observe the elapsed round-trip time,
Ti = 2 τi. Setting up the ranging bound beginning with (6)
but using s(t − 2τi), and taking the derivative with respect
to τi, and further assuming no changes in the bandwidth or
SNR conditions, we find

σRT = 1
2
σ range, (34)

where σ range was defined in (11). The fact that the rms range
error is reduced by a factor of two in a round-trip geometry
is well known in classical radar theory [19].

In the RT-TOA system, the B node is not a passive reflec-
tor, but receives and actively retransmits the ranging wave-
form. Generally, radio systems cannot receive and transmit
on the same frequency at the same time without overloading
the receiver’s front-end. Therefore, the radio system must di-
vide its resources into forward and reverse links. In one type
of RT implementation, frequency-division (FD) multiplex-
ing is used to separate forward and reverse links. Here, half
the bandwidth is employed in the forward direction, and half
in the reverse. In the FD system, the B node is particularly
simple to implement; it is simply a dual-frequency transpon-
der, although it may also add some signaling to identify the
particular node returning the signal. Alternatively, time di-
vision (TD) multiplexing may be used to separate the links.
Here, only half the time (hence, half the SNR) is available for
the A node to measure ranging delay, and further, any syn-
chronization error at the B node will contribute a source of
ranging error. We study both FD and TD variants below.
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Consider an RT-TOA-FD system under LOS conditions.
The parameter vector is θ = [x, y], and substituting s(t−2τi)
into (13) we have,

Jθ=
B∑
i=1

(
1
4

2E
No

)
(2π)2

∣∣ai∣∣2

c2

(
β

2

)2(
2hi
)(

2hi
)H = μ1

4
HΛHH.

(35)

We observe that this differs from (15) only by several scale
factors, and we account for these as follows. The RT geometry
causes the factor of two that multiplies the hi vector, just as in
(34). The fact that the FD signal occupies half the bandwidth
accounts for the scale factor on β. Last, the SNR is scaled by a
factor of four, and this is justified as follows. To keep the total
transmit power the same as in the TOA case, we assume that
each node sends half the power of a TOA node. Further, the
noise power contributes twice, as noise is received at nodes
A and B. Note that (35) leads to an rms error of exactly twice
that of the TOA case.

For the RT-TOA-FD system on NLOS channels, we
have that θ = [x, y,N1, . . . ,NB] and Ti = (1/

c)(2
√

(xi − x)2 + (yi − y)2 +2Ni), where the excess NLOS dis-
tance is traveled twice. Assuming Ni is half-Gaussian dis-
tributed, then analogous to (26), we have

Jθ =
B∑
i=1

(
1
4

2E
No

)
(2π)2

∣∣ai∣∣2

c2

(
β

2

)2 [2hi
2ei

][
2hi
2ei

]H

,

J = μ1

4

[
HΛHH −HΛ
−ΛHH Λ

]
+

[
0 0
0 Ω

]
,

(36)

where Ω is defined in (33).
Consider next the RT-TOA-TD system under LOS condi-

tions. The parameter vector is θ = [x, y, ν1, . . . , νB], where νi
denotes a synchronization error (in meters) due to B node’s

receiver. Here Ti = (1/c)(2
√

(xi − x)2 + (yi − y)2 + νi). As we
saw in Section 3, the pdf of νi must be known for the CRLB
to be defined. If the B node performs maximum likelihood
delay estimation, then the synchronization error is asymp-
totically Gaussian distributed:

p
(
νi
) = 1√

2π σTD,i
e−|vi|

2/2σ2
TD,i ,

σTD,i = c

(2π)β
√

SNRi/2
.

(37)

Here σTD follows from the ranging bound (11), but the SNR
has been reduced by a factor of 4 due to the RT amplifier
scaling and half the observation period being available in a
TD system. Then, analogous to (26), we have

Jθ =
B∑
i=1

(
1
4

2E
N0

)
(2π)2

∣∣ai∣∣2

c2
β2

[
2hi
−ei

][
2hi
−ei

]H

,

J = μi
4

[
4HΛHH −2HΛ
−2ΛHH Λ

]
+

[
0 0
0 Ω

]
,

(38)

where Ω � diag(1/σ2
TD,1, . . . , 1/σ2

TD,B). Note that in the TD
system, the signal is regenerated at node B and therefore there
is no doubling of the noise power at node A.

Finally, we consider the RT-TOA-TD in NLOS chan-
nels. Let θ = [x, y, ν1, . . . , νB,N1, . . . ,NB], and Ti = (1/

c)(2
√

(xi − x)2 + (yi − y)2 + νi + 2Ni). The Fisher matrix is

J = μ1

⎡
⎢⎣ 2H
−I
−2I

⎤
⎥⎦
[

1
4

Λ

][
2HH −I −2I

]
+

⎡
⎢⎣0 0 0
0 Ω 0
0 0 Ω

⎤
⎥⎦ .

(39)

5. GEOLOCATIONWITH UNCERTAIN
SENSOR POSITION

The geolocation system will consist of the mobile user and a
sensor array. The positions of the sensor array have up to now
been considered as fixed and known, and the user’s coordi-
nates are determined in the same frame of reference. Sim-
ilarly, the GPS satellites are assumed to be at known posi-
tions, and the user’s position is determined relative to them
in Earth-centered coordinates. In fact, there are small errors
in the satellite positions, and these must contribute to the
overall GPS error budget. Imagine that we have a ground-
based portable infrastructure, where the sensors are brought
to a particular location, and it is desired to learn the position
of various users in the immediate area. Since the system is set
up quickly, the sensor positions cannot be surveyed, they are
more likely to be determined via GPS. This motivates the de-
velopment of the CRLB under the conditions where the sen-
sors positions are partially known; we have a priori knowl-
edge of the pdf from our knowledge of the GPS system error.
We allow different pdfs in the various spatial dimensions, an-
ticipating that GPS typically has poorer error performance in
the z-direction (height). Our solution assumes that the pdfs
are Gaussian, zero mean, with differing variances that are as-
sumed known. These bounds can be developed in combina-
tion with any of the scenarios presented in previous sections,
however, here we concentrate on the case of TDOA and all
NLOS channels.

Let the parameter vector be

θ = [x, y,Δ0, ex,1, . . . , ex,B, ey,1, . . . , ey,B,N1, . . . ,NB
]T

(40)

of length 3+3B, where ex,i denotes the position error of the ith
sensor in the x direction, and as before Δ0 is the user’s clock
bias, and Ni is the ith sensor’s NLOS error. The ith delay is

τi = 1
c

(√√√(
xi + ex,i − x

)2

+
(
yi + ey,i − y

)2
+ Δ0 + Ni

)
.

(41)

The solution is

J = μ1

⎡
⎢⎢⎢⎣
He

Dx

Dy

−I

⎤
⎥⎥⎥⎦Λ

[
H

H
e DH

x DH
y −I

]

+

⎡
⎢⎢⎢⎣
03×3 0

σ−2
x IB

σ−2
y IB

0 Ω

⎤
⎥⎥⎥⎦ ,

(42)
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where

he,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
xi + ex,i − x

)
√(

xi + ex,i − x
)2

+
(
yi + ey,i − y

)2(
yi + ey,i − y

)
√(

xi + ex,i − x
)2

+
(
yi + ey,i − y

)2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

He =
[
he,1,he,2, . . . ,he,B

] ∼= H,

Dx = diag

⎛
⎝ (

x1 + ex,1 − x
)

√(
x1 + ex,1 − x

)2
+
(
y1 + ey,1 − y

)2
, . . . ,

(
xB + ex,B − x

)
√(

xB + ex,B − x
)2

+
(
yB + ey,B − y

)2

⎞
⎠.

∼= diag
(
H
(

:, 1
))
.

(43)

Unlike the previous cases, here we must generate random
variables ex,i, ey,i and average over them. However, as long as
these errors are small in the sense that E{|ex,i|} 
 E{|xi−x|},
their impact on the geometry term He is small, and there is
no need to actually generate such variables. Nevertheless, we
have included them in our numerical results.

6. NUMERICAL RESULTS

In our initial results, we assume four sensors are placed at the
corners of a square (0,0), (0,50), (50,0), (50,50), and a fifth at
(25,0). The user location is fixed at (15,15), and we assume
that all links are received at the same SNR (20 dB), and in-
terference is neglected. We run multiple trials of the CRLB
where independent Rayleigh fading is present on each link. In
Figure 1, we plot the CRLB for the TOA and TDOA systems
with 2 through 5 sensors, in LOS channels. In this 2D prob-
lem, 3 sensors are the minimum required for TDOA. We note
that substantial improvement is achieved with 4 sensors, and
diminishing returns are setting in with a 5th sensor. There is
a noticeable loss for using TDOA versus TOA (about a 20%
increase in error). Note also that a TOA system with B nodes
is almost equal to a TDOA system with B +1.

In Figure 2, we fix the number of sensors at 4, and we
compare TOA, TDOA, and RT-TOA-FD on LOS channels.
To see the sensitivity with user location, we place the user
at either Location 1 (20, 25) or Location 2 (10, 5). We first
note that RT-TOA-FD has a significant penalty relative to the
others, with an error precisely double that of TOA. We can
also see that TDOA shows somewhat more sensitivity to user
location than the other two.

In the remaining figures, the user geometry more accu-
rately models a typical indoor scenario. A square building
with length 50 m per side is assumed, and the user location
is uniformly distributed throughout. The sensors are placed
on a circle surrounding the building with radius 100 m, uni-
formly spaced along an arc subtending ±θ degrees. A stan-
dard pathloss model is adopted with pathloss exponent equal
to 2 (similar results were seen with 4), and link budget set
so that all sensors experience average SNR = 20 dB when the
user is at the center of the circle. In Figure 3, we compare
LOS and NLOS channels, where the NLOS is “half-Gaussian”
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Figure 1: LOS channels, TOA versus TDOA (fixed user location).
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Figure 2: LOS channels, TOA versus TDOA versus RT-TOA-FD
(two user locations).

distributed with mean = 2.5 m. There are 4 sensors extend-
ing over half the circle (θ = π/2). We compare three sys-
tems having bandwidths 1 MHz, 10 MHz, and 50 MHz. For
the 1 MHz system (similar to today’s civilian GPS), we see a
location error on the order of 10 m, and at 90% there is a loss
of about 2 m (roughly 20%) in the NLOS case. When the sys-
tem bandwidth is increased to 10 MHz, the LOS case shows
a 10-fold improvement in the location error (as expected),
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Figure 3: TOA channels, LOS versus NLOS (three bandwidths).

but the NLOS shows only a 2-fold improvement. When the
bandwidth is further increased to 50 MHz, the NLOS channel
shows almost no improvement. Clearly, arbitrary increases in
the signaling bandwidth are not warranted under NLOS con-
ditions.

Figure 4(a) is for the 1 MHz, TDOA system, where sensor
location error is included (with standard deviation 2.5 m). In
this plot, the spacing between the 4 sensors is varied so that
the arc subtended corresponds to θ = {π/4, 3π/8, π/2}. We
see that spacing the sensors at ±π/4 incurs a large loss, al-
though ±3π/8 appears to be acceptable. For good perfor-
mance with TDOA, the sensors should span almost a half cir-
cle around the building. In Figure 4(b), we repeat the above
conditions for a 10 MHz system, and we see again that the
LOS case gets a 10-fold improvement, and the NLOS case
exhibiting diminishing returns as before. Note also that the
combination of NLOS channels and narrow angular spacing
gives particularly poor results.

Figure 5 (bandwidth = 10 MHz) is a comparison of TOA,
TDOA, and RT-TOA-FD for LOS channels, where we have
varied the sensor position angle. This plot highlights the sen-
sitivity of TDOA to geometry factors (as anticipated in Fig-
ure 2) leading to a change in the relative ordering among the
techniques. For relatively large angles, such as±π/2, TDOA is
better than RT-TOA-FD; for ±3π/8, they are quite close; and
for small angles such as ±π/4, TDOA is significantly worse
than RT-TOA-FD. The choice among these modes depends
on how the system sensors will be deployed.

Figure 6 concentrates on the RT-TOA system in 10 MHz,
with sensors covering ±π/2. The left-most group consists of
four curves for LOS channels. We plot the RT-TOA-FD and
TD, along with the TOA and TDOA curves for reference. We
observe that TD is superior to FD and comes quite close to
TOA. The NLOS curve is intermediate, and would shift con-
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(a) TDOA with sensor error, LOS versus NLOS (variable sensor posi-
tion, 1 MHz).

0 5 10 15 20 25

Location error (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

CDF of location error: TDOA,
SNR = 20 dB sensors = 4 angle = 0.7854

LOS π/4
NLOS π/4
LOS 3π/8

NLOS 3π/8
LOS π/2
NLOS-s π/2

BW = 10 MHz

(b) TDOA with sensor error, LOS versus NLOS (variable sensor posi-
tion, 10 MHz).

Figure 4

siderably to the right if the sensor angle were made smaller.
For the four NLOS cases, TD is again superior to FD, and
quite close to TOA. TDOA is dramatically worse, as was also
seen in Figure 4(b). It appears that RT-TOA can give signifi-
cant benefit over TDOA, depending on the sensor angle and
channel conditions.
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Figure 5: LOS channels, TOA versus TDOA versus RT-TOA-FD (3
angles).
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7. SUMMARY AND CONCLUSIONS

We have investigated the Cramer-Rao bounds for three time-
based geolocation schemes, in LOS and all-NLOS channel
conditions. Under pure NLOS conditions, without a priori
information, we proved that the Cramer-Rao bound does not
exist. We introduced a half-Gaussian model for NLOS with
positive-only support and found that the related bound ex-

ists. On the other hand, lack of a priori amplitude informa-
tion was found not to affect the bound. While increasing the
bandwidth in LOS channels leads to a proportional increase
in location accuracy, we find that in NLOS channels band-
width increase beyond a certain point (10 MHz in our exam-
ples) does not lead to significant gains. We introduced a new
bound for round-trip time-of-arrival systems, in which two-
way signaling is used and accurate clocks are not required.
Among the time-based location techniques, TOA was found
to have the best performance, and RT-TOA-FD has exactly
twice the location error of TOA in LOS channels. The relative
ordering between TDOA and RT-TOA was found to depend
on the sensor geometry, with TDOA being preferable if the
sensors cover approximately half a circle or more around the
user. RT-TOA-TD is slightly better than FD, and comes quite
close to TOA in either LOS or NLOS channels.

Future research is required to determine similar bounds
under multipath conditions, and most importantly, to find
practical algorithms that can approach the performance lev-
els promised by the bounds.
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