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Zero-forcing (ZF) precoding scheme can achieve the asymptotic sum capacity as dirty-paper coding (DPC) in multiple-input
multiple-output broadcast (MIMO-BC) channel when the number of users, K , approaches infinity. However, the gap between ZF
and DPC is not negligible in a practical range of K , that is, K ≤ 100. The capacity loss is partly due to the excessive transmission
power penalty incurred by ZF when the channel matrix of the selected user subset is poorly conditioned. To avoid this power
penalty, we propose to use a variation of ZF, channel inversion regularization (CIR), as a precoding scheme in MIMO-BC channels.
But, unlike the interference-free ZF, the problem of maximizing sum-rate capacity using CIR precoding becomes nonconvex,
which cannot be solved by water-filling strategy. Thus, we propose an efficient algorithm based on gradient projection (GP) as the
optimal power allocation strategy for selected users, and show that the proposed CIR precoding scheme can achieve asymptotically
the optimum sum-rate of the DPC strategy. Moreover, simulation results show that the CIR precoding scheme with the proposed
optimal power allocation scheme achieves better sum-rate performance than ZF for a wide range of K .
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1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems demon-
strate considerable capacity gain compared to single-input
single-output systems (SISO) in a single-user communica-
tion system [1, 2]. But the application of MIMO is not
limited to the single-user case. Recently, more and more
research has been conducted to investigate the application of
MIMO to multiuser systems in wireless networks.

This paper considers a MIMO-broadcast channel
(MIMO-BC), where a transmitter equipped with multiple
antennas at the base station communicates with several users
equipped with multiple antennas. The capacity region of
MIMO-BC channels has been characterized in [3–6] recently.
In [5, 6], the duality between MIMO-BC and MIMO
multiaccess (MIMO-MA) is established and exploited to
calculate the capacity of MIMO-BC in an efficient manner.
Moreover, the sum capacity of MIMO-BC channels can be
achieved theoretically by applying dirty-paper coding (DPC)
[7] to serve multiple users simultaneously at the transmitter

[4]. Based on interference precancellation at the transmit-
ter, the multiuser encoding DPC is the optimal capacity
achieving strategy for MIMO-BC. Though several practical
implementations of DPC were proposed in [8, 9], DPC
strategy still remains to be very difficult to be implemented
for practical systems due to its high computation complexity
incurred by successive encoding and decoding.

To circumvent the complexity of DPC, a simple subop-
timal linear zero-forcing (ZF) precoding scheme is inves-
tigated in [10] and demonstrates achieving asymptotically
the sum capacity as DPC in MIMO-BC channel if the
number of users K approaches infinity. However, achieving
optimum ZF sum-rate requires the highly complicated
exhaustive search of all possible user subsets to select the
best user subset that yields the highest sum-rate, which is
clearly computationally infeasible for large K. Hence, [10]
proposed a low-complexity suboptimum algorithm based
on semiorthogonal user selection (SUS). The basic idea
of SUS algorithm is to find a subset of users with best
semiorthogonal channel vectors. As the search space of SUS
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is greatly reduced as compared to the exhaustive search,
the complexity of SUS is significantly lower but it can
still achieve the sum-rate of optimal ZF asymptotically as
K → ∞. However, the SUS scheme requires perfect channel
state information (CSI) at the base station, demanding huge
amount of feedback information from users to the base
station. To alleviate the CSI feedback burden imposed by
SUS, two other suboptimum schemes [11, 12] can approach
the performance of SUS scheme but with much less CSI
feedback and computation complexity.

All these schemes based on ZF, however, incur non-
negligible performance loss compared to DPC when K is
relatively small. This sum-rate performance loss is partly due
to the excess transmission power penalty incurred at the
transmitter by ZF. More specifically, when the number of
users K is relatively small, for example, less than 100, it is
not always possible to find a group of M users with nearly
orthogonal channels and the channel matrix of selected user
subset is thus often poorly conditioned. It is known that
inverting a poorly conditioned matrix unavoidably results in
the reduction of effective channel gain [10]. In addition, the
sum-rate loss caused by this reduced effective channel gain is
more prominent in the case of low SNR.

In this paper, we propose to use channel inversion
regularization (CIR) [13] as an alternative precoding scheme
to alleviate the reduction of effective channel gain for
MIMO-BC channels. Rather than applying pseudoinverse
directly, CIR scheme adds a multiple of identity matrix
before inverting to regularize an inverse. Hence, unlike the
interference-free ZF, the zero-interference condition is no
longer satisfied with CIR precoding scheme. As a result, the
achieved sum-rate capacity of CIR scheme cannot be reduced
to a simple convex optimization problem as ZF scheme, and
hence the well-known transmission power “water-filling”
strategy may not be applicable.

Instead, the problem of CIR scheme becomes a nonlinear
nonconvex optimization problem. To solve globally this
nonconvex optimization problem, we can resort to the
global difference of convex (d.c.) optimization technique
via recognizing that its objective function can be written as
the difference of two convex functions. In [14], a similar
global d.c. optimization approach has been proposed to find
the global optimum of the power allocation problem in
digital subscriber lines (DSLs) interference channels with
much less complexity than the existing exhaustive search
method. But this global optimization approach is not the
ideal choice for designing the highly efficient algorithm
required by wireless fading channel, where the algorithm
for power allocation has to be done for every fading block.
As an alternative, we then propose to use a low-complexity
gradient-projection (GP) method, which is an extension of
the unconstrained steepest descent method, as the power
allocation scheme at the transmitter for the selected user
subset. Because the feasible region of our particular power
allocation optimization problem is a geometrically simple
simplex, GP method is well suited as a candidate for solving
it efficiently. The asymptotic convexity analysis in Section 5
shows that the nonconvex optimization problem reduces to
a convex optimization problem when the number of users

in the system is sufficiently large. Thus, local GP method can
find the global optimum solution whenK is sufficiently large.
Moreover, simulation results in various wireless scenarios
also indicate that the sum-rate performance loss of local
GP method is negligible compared to that of global d.c.
approach, justifying the use of local GP method for MIMO-
BC channels.

The remainder of this paper is organized as follows.
Section 2 begins with the system model of MIMO-BC and
describes the ZF precoding scheme. Section 3 presents the
proposed scheme based on CIR with optimal power control,
and considers both global d.c. optimization approach and
local GP method for solving the nonconvex optimization
problem. The analysis of asymptotic sum-rate performance
and convexity is presented in Section 4, showing that the
proposed CIR precoding scheme can achieve asymptotically
the optimum sum-rate offered by the DPC strategy. Section 5
provides simulation results on the performance of the pro-
posed scheme under various conditions. Finally, concluding
remarks are made in Section 6.

2. SYSTEMMODEL AND ZF PRECODING SCHEME

2.1. Systemmodel

In this paper, we consider a MIMO broadcast system using
one transmitter to serve K users in a single-cell wireless
scenario. The transmitter at the base station is equipped with
M transmit antennas, and user k with Nk receiver antennas.
The channel between user k and base station is modeled as
a zero-mean circularly symmetric Gaussian matrix Hk. The
received signal vector of user k is written as

yk = Hkx + nk, k = 1, . . . ,K , (1)

where x ∈ CM×1 is the transmitted signal from the base
station, Hk ∈ CNk×M the channel gain matrix between
base station and user k,nk ∈ CNk×1 the additive white
Gaussian noise (AWGN) at the kth user with covariance
matrix E{nknH

k } = INk , and yk the received signal vector of
user k.

Assume that the transmitter at the base station has
an average power constraint P over M antennas, that is,
E{tr(xxH)} ≤ P. The entries of Hk are assumed to be
independent, and Hk is assumed to be unchanged for the
duration of a frame. Also the channel matrix and AWGN
are normalized such that the entries of Hk and nk all have
unit variance. For ease of presentation, Nk = 1, k = 1, . . . ,K
is assumed in the following discussions without loss of
generality in this paper. As argued in [10, Section VIII], the
most straightforward way of extension to multiple receive
antennas is to treat each antenna of the kth user with Nk > 1
as a separate user, assuming Nk receiver antennas do not
coordinate. This uncoordinated receiver strategy results in
∑K

k=1 Nk single-antenna users. Thus, in the limit of K → ∞,
we can extend all the algorithm development and asymptotic
analysis presented in this paper to multiple receive antennas
without loss of generality.

Using transmitter linear precoding at the base station,
the transmitted signal vector x can be expressed as a
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linear combination of transmitted symbols for each user.
User streams are separated by different precoding vectors,
namely, beamforming directions. Let sk,wk, and Pk be the
data symbol, precoding column vector, and allocated power
for user k, respectively. The transmitted signal of linear
precoding schemes can thus be expressed as

x =
K∑

k=1

√
Pkwksk,

K∑

k=1

Pk ≤ P. (2)

As a result, the received signal of user k can be written as

yk =
√
Pkhkwksk +

K∑

j /= k

√
Pjhkw j s j + nk, (3)

where hk is a row vector referring to the kth user’s channel
when Nk = 1, and the second term represents the interfer-
ence caused by all other users to user k.

Treating the interference from all other users as an
additive Gaussian white noise (AWGN) and assuming single-
user detection is employed, the achievable sum-rate of linear
precoding for MIMO-BC channels is given by [10]

R = max
wk ,Pk

K∑

k=1

log2

⎛

⎝1 +
Pk
∣
∣hkwk

∣
∣2

1 +
∑K

j=1, j /= k Pj

∣
∣hkw j

∣
∣2

⎞

⎠ ,

Pk ≥ 0,
K∑

k=1

∥
∥wk

∥
∥2
Pk ≤ P.

(4)

In contrast, the sum-rate capacity of MIMO-BC channel
achieved by DPC strategy was shown in [3, 6]

CBC = RDPC

= max
Pk≥0,

∑K
k=1Pk<P

log2

(∣
∣
∣
∣
∣
I +

K∑

k=1

PkhHk hk

∣
∣
∣
∣
∣

)

,
(5)

where |·| denotes the determinant of the matrix inside.

2.2. Zero-forcing precoding scheme (see [10])

ZF precoding scheme selects S ≤ M precoding vectors such
that hiw j = 0, for all i /= j, that is, no interference among
S users. Since the dimension of hi is 1 × M, there exists at
most M precoding vectors satisfying the zero-interference
condition. Let S ⊂ {1, . . . ,K}, S = |S| ≤ M be the subset of
user indexes selected for transmission, where |S| denotes the
size of a set S. Define H(S) and W(S) as the corresponding

submatrices of channel matrix H = [hT1 , . . . ,hTK ]
T

and
precoding matrix W = [w1, . . . ,wK ] indexed by the subset
of selected users S, respectively.

The Moore-Penrose pseudoinverse of H(S) generates
W(S) that satisfies zero-interference among the following
users:

W(S) = H(S)† = H(S)H
(
H(S)H(S)H

)−1
, (6)

where † denotes the Moore-Penrose pseudoinverse of the
matrix.

Substituting the ZF precoding vector wi ∈ W(S) into
(4), the achievable sum-rate of the ZF scheme for MIMO-BC
channels is

RZF(S) = max
Pi≥0,

∑
i∈SPi≤P

∑

i∈S
log2

(
1 + γiPi

)
, (7)

where γi is the effective gain of subchannel i given by

γi =
∥
∥wi

∥
∥−2 = 1

[(
H(S)H(S)H

)−1]
i,i

. (8)

Under the condition of zero-interference among parallel
subchannels, water-filling strategy [15] gives the optimal
power allocation Pi for the optimization problem (7). Since
there are many possible choices of selected user subsets, the
achievable sum-rate capacity of optimum ZF is defined in
[10] as RZF = maxS⊂{1,...,K}:|S|≤MRZF(S).

3. PROPOSED SCHEME

Despite its simplicity and asymptotic sum capacity opti-
mality, as a suboptimal linear precoding scheme, the main
disadvantage of ZF scheme is the excess transmission power
penalty incurred at the transmitter. In particular, the effective
channel gain is greatly reduced when the selected H(S)
is poorly conditioned, which is often the case with small
number of users in the system. A channel matrix is called
poorly conditioned if the spread of its singular values is large.

In this paper, to alleviate the reduction of effective
channel gain, we propose to use CIR [13] as an alternative
linear precoding scheme in conjunction with user selection
algorithms, for example, SUS [10]. Rather than performing
pseudoinverse on the channel matrix of selected users H(S)
directly as conducted in ZF scheme, the CIR scheme adds a
multiple of identity matrix before inverting to regularize an
inverse for MIMO-BC channels.

Instead of performing Moore-Penrose pseudoinverse to
obtain W(S) using (6), we compute the CIR precoding
matrix as

W(S) = H(S)H
(
H(S)H(S)H + βI

)−1
, (9)

where I is an S × S identity matrix and β ≥ 0 is a load
factor introduced for controlling the amount of interference
allowed. Clearly, by choosing β sufficiently large, the inverse
of a poorly conditioned H(S) in (6) can be made to behave as
well as desired.

Note that in the case of β = 0, (9) is equivalent to the
simple channel inverse of ZF precoding scheme, given by
pseudoinverse in (6). The amount of interference increases
with β, and can be controlled by β as desired. One reasonable
choice of β is to maximize the SINR at the receiver under the
assumption of equal power for users is given in [13] as

β = M

P
. (10)
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Substituting the CIR precoding vector wi ∈ W(S) in (9)
into (4), we can obtain the achievable sum-rate of MIMO-BC
channels with CIR as the linear precoding scheme as

RCIR(S) = max
Pi

R(P)

= max
Pi

∑

i∈S
log2

⎛

⎝1 +
Pi
∣
∣hiwi

∣
∣2

1 +
∑

j∈S, j /= iPj

∣
∣hiw j

∣
∣2

⎞

⎠ ,

0 ≤ Pi, i ∈ S,
∑

i∈S
‖wi‖2Pi ≤ P.

(11)

It is worth noting that when β > 0, the zero-interference
condition hiw j = 0, for all i /= j is no longer satisfied with
the CIR precoding scheme. In other words, the received
signal at user i contains the interference from other users,
denoted by

∑
j∈S, j /= i Pj|hiw j|2. This residual interference

from other users makes the optimization problem (11)
dramatically different from the convex optimization problem
(7) resulting from ZF precoding scheme. In fact, the
optimization problem in (11) cannot be reduced to a simple
convex optimization problem, and is essentially a nonlinear
nonconvex optimization problem with many local optima.
Unlike the closed-form water-filling solution of convex
optimization problem (7), the optimum power allocation for
the nonlinear nonconvex optimization problem (11) defies a
closed-form solution, and requires a constrained numerical
optimization algorithm to find the optimal power allocation
for selected user subset S.

The global optimum of nonconvex optimization prob-
lem generally cannot be found by conventional optimization
techniques which are only capable of finding one of the local
optima. To solve the nonconvex optimization problem (11)
globally, we can resort to global optimization techniques that
are developed to solve globally multiextreme optimization
problems arising from important practical applications [16].
Yet the successful application of global optimization methods
to solve practical problems depends heavily on exploiting the
specific structure of a problem.

3.1. Global d.c. optimization approach

The objective function in optimization problem (11) can be
decomposed into the following form:

−R(P) = −
∑

i∈S
log2

⎛

⎝1 +
Pi
∣
∣hiwi

∣
∣2

1 +
∑

j∈S, j /= i Pj

∣
∣hiw j

∣
∣2

⎞

⎠

= −
∑

i∈S
log2

⎛

⎝
1 +

∑
j∈SPj

∣
∣hiw j

∣
∣2

1 +
∑

j∈S, j /= i Pj

∣
∣hiw j

∣
∣2

⎞

⎠

= −
∑

i∈S
log2

(

1 +
∑

j∈S
Pj

∣
∣hiw j

∣
∣2
)

+
∑

i∈S
log2

(

1 +
∑

j∈S, j /= i

Pj

∣
∣hiw j

∣
∣2
)

= f (P)− g(P),

(12)

where

f (P) = −
∑

i∈S
log2

(

1 +
∑

j∈S
Pj

∣
∣hiw j

∣
∣2
)

,

g(P) = −
∑

i∈S
log2

(

1 +
∑

j∈S, j /= i

Pj

∣
∣hiw j

∣
∣2
)

,

(13)

where P = [P1, . . . ,PS]T is power allocation vector for the
selected users.

Because the sum of convex functions is convex, g(P) =
−∑i∈S log2(ui(P)) is convex if−log2(ui(P)) is convex, that is,
log2(ui(P)) is concave, where ui(P) = 1 +

∑
j∈S, j /= iPj|hiw j|2.

Since log2x is a nondecreasing concave function, and ui(P) is
a concave function as it is a linear function of P, log2(ui(P))
is concave because the composition function w = v ◦ u is
concave if v is concave and nondecreasing, and u is concave
[17]. Similarly, we can show that f (p) is also convex. Hence,
−R(P) = f (P) − g(P) is a direct connection function. It
follows that

maxR(P) ≡ min
(− R(P)

) = min
[
f (p)− g(p)

]
, P ∈ D,

(14)

where D �
{
P ∈ RN : 0 ≤ Pi, i ∈ S and

∑
i∈S‖wi‖2Pi ≤ P}

are a convex set in RN . Thus, maxR(P) in (11) is a global
d.c. optimization problem [16] similar to that formulated
for optimal spectrum balancing (OSB) in digital subscriber
lines (DSLs) interference channels [14]. This particular class
of d.c. optimization problems with only linear constraints
can be transformed into their equivalent global concave
minimization problems [18]. The prismatic branch and
bound (PBnB) algorithm was introduced for solving the
concave minimization formulation for OSB in DSL in [14],
which can find the global optimum efficiently via only
solving a sequence of linear programing (LP) subproblems.
The detailed description of PBnB algorithm was presented in
[14] and is omitted in this paper for the sake of brevity.

3.2. Local gradient projection approach

To solve the resulting nonlinear optimization problem of
CIR scheme efficiently, we propose to use local gradient-
projection (GP) method [19], which is an extension of the
unconstrained steepest descent method particularly suitable
for constrained optimization problem with convex feasible
region. Since the feasible region of our particular power
allocation optimization problem (11) is a geometrically
simple simplex, GP method can find the optimum solution
of optimization problem (11) very efficiently.

Recall that the feasible region of optimization problem
(11) is defined by

S(P) =
{
(
P1, . . . ,PM

) ∈ RM
∣
∣Pi ≥ 0,

M∑

i=1

∥
∥wi

∥
∥2
Pi ≤ P

}

.

(15)

In order to apply the GP method to our particular
optimization problem in (11), we have to first show how
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Initialization:

l = 0; P0 =
[
∥
∥w1

∥
∥2
P/

M∑

i=1

∥
∥wi

∥
∥2

, . . . ,
∥
∥wM

∥
∥2
P/

M∑

i=1

∥
∥wi

∥
∥2

]

Iteration:
do

(1) Compute the gradient gli =
∂RCIR(Pl)

∂Pi
, i ∈ S by (18)

(2) P
l
i = Pl

i + sig
l
i , i ∈ S

(3) P̂l
i obtained by prejecting P

l
i onto S(P), i ∈ S

(4) Applying Armijo rule along feasible direction to
compute δl

(5) Pl+1
i = Pl

i + δl
(
P̂l
i-P

l
i

)
, i ∈ S

(6) l = l + 1
until maxi

(∣
∣Pl

i − Pl−1
i

∣
∣
) ≤ ε

Algorithm 1: Optimal power allocation based on GP method.

to perform projection onto the constraint set given by the
simplex S(P) and the gradient of the objective function in
(11), respectively.

The projection of point outside a simplex, that is,
∑M

i=1 ‖wi‖2Pi ≥ P, is straightforward. The distance from
a point X = (x1, . . . , xM) to the hyperplane defined by
∑M

i=1 ‖wi‖2Pi = P is

D(X) =
∣
∣
∣
∑M

i=1

∥
∥wi

∥
∥2
xi − P

∣
∣
∣

∑M
i=1

∥
∥wi

∥
∥2 . (16)

Then, the projection of a point X onto this hyperplane is

x̂i = xi −
∥
∥wi

∥
∥2
D(X)

∑M
i=1

∥
∥wi

∥
∥2 , i = 1, . . . ,M. (17)

The gradient gi is derived as

gi = ∂RCIR

∂Pi

= 1
loge2

⎛

⎝
1 +

∑
j∈S, j /= iPj

∣
∣hiw j|2

1 +
∑

j∈SPj

∣
∣hiw j

∣
∣2

⎞

⎠
∣
∣hiwi

∣
∣2

− 1
loge2

∑

j∈S, j /= i

⎛

⎝

∣
∣h jwi

∣
∣2

1 +
∑

l∈S,l /= jPl
∣
∣h jwl

∣
∣2

⎞

⎠ .

(18)

The proposed algorithm using GP method is presented
in Algorithm 1.

The GP algorithm is guaranteed to converge to a
stationary point [19]. In most of the numerical simulations
we conducted for the CIR precoding with optimal power
control, the GP algorithm can converge successfully to a local
maximum solution in less than 40 iterations.

4. ASYMPTOTIC ANALYSIS

In this section, we first study the asymptotic sum-rate
performance of our proposed CIR precoding in conjunction

with SUS user selection algorithm in MIMO-BC channels
in the limit of K → ∞. Then, we show that the proposed
local GP algorithm can achieve the global optimum of
the nonconvex optimization problem (11) as K → ∞.
Throughout the proof in this section, we assume that |S| =
M is almost surely true with sufficiently large K as argued in
[10].

4.1. Asymptotic sum-rate analysis

It has been shown in [10] that the ZF precoding scheme with
SUS algorithm has the same asymptotic sum-rate as that of
DPC. Thus, we only need to prove that the CIR precoding
vectors W(S) are equivalent to the ZF precoding vectors as
K → ∞.

We define the measure of orthogonality between two
arbitrary vectors a and b as

ρ(a,b) �
∣
∣aHb

∣
∣

‖a‖‖b‖ . (19)

Clearly, as a and b become nearly orthogonal to each
other, ρ(a,b) tends to closely approach zero.

To maximize the sum-rate using ZF precoding scheme
for MIMO-BC channels, the user selection algorithms SUS in
[10] chooses a group of users with nearly orthogonal channel
responses and also with sufficiently large magnitude of the
channel responses.

SUS algorithm proposed in [10] introduced a small pos-
itive constant α to control the degree of semiorthogonality
among selected users. More specifically, at iteration number
i, user k is considered in the next iteration if and only if
ρ(gi,hk) < α is satisfied, where gi is the orthogonal vector
derived from hk by using the Gram-Schmidt procedure [10].
Using some simple but tedious algebraic operations, we can
show that ρ(gi,hk) < α implies an α-orthogonal H(S). A
set of selected channel vectors H(S) is called ε-orthogonal if
ρ(hi,h j) ≤ ε, for all i, j ∈ S, i /= j.

It can be shown that for an arbitrary small positive ε,
we can construct an ε-orthogonal H(S) by SUS algorithm
with probability one with sufficiently larger number of user
K [10]. Hence, the channel vectors of selected users obtained
by SUS algorithm become increasingly more orthogonal as K
increases, and eventually these M vectors form an orthogonal
basis for the space of CM in the limit of K → ∞.

Recall that the CIR precoding matrix is computed by

W(S) = H(S)H(H(S)H(S)H + βI)
−1
. In the limit of K → ∞,

we have

WCIR(S) = H(S)H
(
diag

(∥
∥h1

∥
∥2

, . . . ,
∥
∥hM

∥
∥2)

+ βI
)−1

= H(S)H
(
diag

((∥
∥h1

∥
∥2

+ β)
−1

, . . . ,
(∥
∥hM

∥
∥2

+β
)−1))

.
(20)

Compared with the ZF precoding matrix,

WZF(S) = H(S)H
(
H(S)H(S)H

)−1

= H(S)H
(
diag

(‖h1‖−2, . . . ,‖hM‖−2)),
(21)



6 EURASIP Journal on Advances in Signal Processing

it is evident that the normalized precoding vectors of both
the CIR and ZF schemes are exactly the same. Therefore, the
expected sum-rate performance of the CIR is equivalent to
that of ZF precoding scheme as K → ∞. Since ZF precoding
scheme was shown in [10] to achieve asymptotically the opti-
mum sum-rate, the proposed CIR precoding with SUS can
thus achieve asymptoticallythe optimum sum-rate capacity
equal to that of the optimum DPC strategy as K → ∞, that
is,

E
{
RCIR

}∼M log2

(

1 +
P

M
logK

)

∼E{RDPC
}
. (22)

4.2. Asymptotic convexity analysis

The asymptotic convexity analysis for the nonconvex opti-
mization problem (11) reveals that the objective function can
be regarded as a convex function of users’ power allocation
vector P when K → ∞.

The d.c. representation in (14) establishes the equiv-
alence between the original sum-rate maximization prob-
lem (11) and its d.c. formulation, that is, maxR(P) ≡
min(−R(P)) = min[ f (p) − g(p)]. As previously discussed,
H(S) obtained by SUS can be made as arbitrarily orthogonal
as desired with sufficient large K. In other words, the CIR
precoding vectors WCIR(S) given in (20) are just a scaled
rotation of H(S) in the limit of K → ∞. Hence, we have

lim
K→∞

− g(P)

= lim
K→∞

∑

i∈S
log2

(

1 +
∑

j∈S, j /= i

Pj

∣
∣hiw j

∣
∣2
)

a� lim
K→∞

∑

i∈S
log2

(

1 +
∑

j∈S, j /= i

Pj

∣
∣hih j

∣
∣2(∥∥h j

∥
∥2

+ β
)−2
)

b� lim
K→∞

log2e
∑

i∈S

∑

j∈S, j /= i

Pj

∣
∣hih j

∣
∣2(∥∥h j

∥
∥2

+ β
)−2

c≤ P log2e lim
K→∞

∑

i∈S

∑

j∈S, j /= i

ε
∥
∥hi
∥
∥2∥∥h j

∥
∥−2

d≤ PM2C log2e lim
K→∞

ε

(23)

where x � y indicates that limK→∞x/y = 1. In (a),
we use WCIR(S) in (20); (b) follows from limx→ 0 log2(1 +
x) � x log2e; inequality (c) is obtained by ρ(hi,h j) ≤
ε, for all i, j ∈ S, i /= j, Pi ≤ P and decreasing the

denominator from (‖h j‖2 + β)
2

to (‖h j‖2)
2
; inequality (d)

follows the approximation of the number of combinations∑
i∈S
∑

j∈S, j /= i by M2 and the constant C is defined as C =
max∀i /= j∈S‖hi‖2‖h j‖−2.

Therefore, the nonconvex component −g(p) can be
essentially ignored in the d.c. formulation −R(P) = f (p) −
g(p). As f (p) was shown to be convex, the optimization
problem maxR(P) ≡ min(−R(P)) in (14) can be regarded
as a convex optimization problem as K → ∞. It implies
that the local optimum solution obtained by GP method is
actually the global optimum of the optimization problem
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Figure 1: Sum-rate performance comparison of DPC, ZF-SUS, and
CIR-SUS.

(11), because standard optimization techniques for finding
local solutions yield the global optimum [17] for a convex
optimization problem. Moreover, it provides the theoretical
justification for using the local GP method to find the
optimum solution of our sum-rate maximization problem,
as the performance loss compared to that of the global d.c.
approach is negligible whilst the computational complexity
reduction is significant.

5. NUMERICAL RESULTS

In this section, illustrative numerical sum-rate results of the
CIR-SUS scheme are presented to evaluate and compare its
performance with that of the ZF-SUS scheme in MIMO-BC
channels. In all simulations, the number of transmit anten-
nas is M = 4, and α = 0.4 for controlling semiorthogonality
[10] in all SUS algorithms (ZF-SUS, CIR-SUS-GP, and CIR-
SUS-DC). By doing this, all SUS algorithms have the same
and fixed selected user subsets. All the plots are obtained by
averaging over 500 independent channel realizations.

Figure 1 first compares the sum-rate performance versus
the number of users in the system for DPC, ZF-SUS scheme,
the proposed CIR-SUS scheme with local GP method, and
the CIR-SUS with global d.c. method. The SNR is set to 10 dB
which is equal to the transmit power P = 10 dB. It shows that
the proposed scheme can achieve a higher sum-rate capacity
than ZF with the same selected user subset obtained by the
SUS algorithm. Note that the gain of CIR over ZF precoding
decreases with the number of users. This reduction of gain
is because channel matrix of selected user subset tends to be
more near-orthogonal with a higher number of users. As a
result, the effective channel gain reduction encountered by
ZF would become less prominent when the number of users
is larger.

Figure 1 also shows that the CIR-SUS with global d.c.
optimization approach only leads to a slight ergodic sum-
rate gain over CIR-SUS with local GP method in the case of
small number of users is small. Furthermore, the gain offered
by global d.c. approach quickly diminishes with increasing
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a large number of users. The simulation results support
our claim in Section 4.2 that the nonconvex optimization
problem can be essentially regarded as a convex optimization
problem with a sufficiently large number of users. Hence, in
the simulation results presented in Figures 2 and 3, the sum-
rate performance of CIR-SUS is obtained by using local GP
optimization method.

Figure 2 compares the sum-rate performance of CIR-SUS
and ZF-SUS versus the number of users K at three different
levels of the base station transmission power, that is, P =
0 dB, 5 dB, and 10 dB. Figure 2 shows that the gain of CIR
over ZF increases with lower transmission power. This is not
surprising because the rate function log(1 + x) ≈ x when
x is small. In other words, when transmission power is low,
the rate function behaves like a linear function rather than
as a logarithmic function. Hence, any reduction of effective
channel gain experienced by ZF is directly translated into a
linear loss of sum-rate when SNR is low.

The sum-rate performance of CIR-SUS and ZF-SUS
versus the transmission power is compared in Figure 3 for
both the cases of 20 users and 50 users. Clearly, the gain of
CIR over ZF increases when the number of users K is less or
the transmit power is lower.

6. CONCLUSIONS

In this paper, for MIMO-BC channels, we proposed to
use CIR as the precoding scheme in conjunction with
user selection algorithm to alleviate the transmission power
penalty incurred by ZF. Unlike the interference-free ZF,
the optimization problem of maximizing sum-rate capacity
using CIR precoding is nonlinear and nonconvex. A local
GP method is then proposed to solve this optimization
problem efficiently with negligible sum-rate performance
loss compared to the global d.c. optimization technique,
but with much less computational complexity. Asymptotic
analysis shows that the proposed CIR precoding scheme in
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conjunction with user selection algorithm can achieve the
optimum ergodic sum-rate equal to that of DPC in the
limit of a large number of users. Simulation results under
various conditions show that the proposed CIR precoding
scheme with optimal power allocation achieves better sum-
rate performance than ZF in MIMO-BC channels, especially
in the practical range of number of users, for example, K ≤
100, and at relatively low SNR.
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