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The performance of multiuser MIMO systems can be significantly increased by channel-aware scheduling and signal processing
at the transmitters based on channel state information. In the multipleantenna uplink multicarrier scenario, the base station de-
cides centrally on the optimal signal processing and spectral power allocation as well as scheduling. An interesting challenge is the
reduction of the overhead in order to inform the mobiles about their transmit strategies. In this work, we propose to reduce the
feedback by chunk processing and quantization. We maximize the weighted sum rate of a MIMO OFDM MAC under individual
power constraints and chunk size constraints. An efficient iterative algorithm is developed and convergence is proved. The feed-
back overhead as a function of the chunk size is considered in the rate computation and the optimal chunk size is determined by
numerical simulations for various channel models. Finally, the issues of finite modulation and coding schemes as well as quanti-
zation of the precoding matrices are addressed.
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1. INTRODUCTION

The exploitation of channel state information (CSI) at the
transmitter in wireless systems has been a highly active re-
search area. This transmit CSI can significantly improve the
performance and reliability of multiple antenna single-user
as well as multiuser systems [1–3]. Utilizing this information
effectively is one of the major challenges in future mobile
communication systems like, for example, WiMAX. Multi-
ple input multiple output (MIMO) multiple access channels
(MAC) and broadcast channels (BC) utilizing cyclic prefix
orthogonal frequency division multiplexing (CP-OFDM) are
a central part of WiMAX. Thus optimal transmit strategies
that optimize the performance of such systems were pro-
posed in [4–7].

Until recently, a lot of attention was given to single-user
MIMO systems, which is changing nowadays. The paradigm
shift from single-user MIMO to multiuser MIMO is high-
lighted in [8, 9]. Most recent work on multiuser sytems con-
centrates on the BC, that is, the downlink. Recently, the
weighted sum rate optimization is studied for flat-fading
MIMO systems in [10] and the extension to MIMO OFDM

is developed in [11]. An overview of different linear precod-
ing schemes for the MIMO BC is given in [12]. The ques-
tion about the amount of feedback has been raised for the
BC in [13]. Regarding the uplink channel, finite rate feed-
back is studied in [14] for the multiple-antenna case, and the
average throughput is analyzed in [15].

Depending on the system under consideration, either
perfect CSI or long-term CSI is assumed to be available at the
transmitter in order to derive the optimal precoding strategy.
Under perfect [4, 16, 17] and long-term CSI [18, 19], the op-
timal linear precoding matrices are found at the central base
station by convex optimization. Then the linear precoding
matrices can be applied to up- and downlink by the duality
theory [20, 21]. With imperfect CSI at the transmitter, the
duality theory does not hold any longer [22].

In the uplink scenario with centralized channel-aware
scheduling at the base station, which is considered in this
paper, one important issue is to inform the mobiles about
their precoding strategies with limited amount of feedback.
The more information is needed at the transmitter and the
more this information has been exact, the more feedback is
required.
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Figure 1: Multiuser OFDM MIMO MAC with chunk processing.

In MIMO OFDM systems, this control overhead and sig-
nal processing complexity are quite large, leading to the def-
inition of the so-called time-frequency tiles or chunks [23].
To this end, the physical channel structure divides the avail-
able time-frequency resources into tiles. The tiles or chunks
are considered two dimensional, and each chunk comprises
a number of adjacent subcarriers in frequency domain and
a number of consecutive OFDM symbols in time domain
as illustrated in Figure 1. The application of chunks is wide
spread and it is proposed, for example, in [23] for multi-
ple antenna systems. For all subcarriers and all OFDM sym-
bols within the chunk, the same spatial signal processing is
applied, reducing the signal processing complexity and the
feedback overhead considerably.

In the single input single output (SISO) case, the power
and rate control in each chunk has to be optimized and the
performance decreases as the chunk size increases. Numeri-
cal evidence of this fact has been provided in [24]. Whereas
in the MIMO case, the spatial signal processing, that is, the
linear precoding has to be optimized per chunk. If the chan-
nel is flat within one chunk, the original optimization for the
single carrier case can be reused. However, it turns out that
the MIMO channel matrices within one chunk vary even at
small chunk sizes. This motivates the detailed analysis.

In this paper, the following contributions are made to the
problem of resource allocation in OFDM-SDMAW(We call
this technique OFDM-SDMA because multiple users can be
allocated simultaneously to different chunks over time and
frequency domains.) uplink systems under limited feedback.

(1) We formulate the weighted sum rate maximization un-
der individual power constraints and under the as-
sumption that only one linear precoding matrix per
chunk is fedback.

(2) The programming problem is solved by an efficient
iterative algorithm based on an inner fix-point algo-
rithm and outer iterative water filling. The conver-
gence of the proposed algorithm is proved.

(3) The tradeoff between performance and feedback over-
head is analyzed by formulating an effective transmis-
sion rate that takes the amount of feedback directly
into account.

(4) The effective transmission rate is illustrated for differ-
ent channel models (ideal, IEEE 802.11n [25], WIM2
[26]).

(5) Finally, the framework is extended to cope with finite
modulation and coding schemes as well as finite quan-
tization of the linear precoding matrices.

The first part of the paper restricts itself to the weighted
sum rate maximization under chunk constraints. The sys-
tem model, the limited feedback model, and the problem
statements are described in Section 2. In Section 3, the opti-
mization theoretic framework is developed and convergence
proved. This is done first for the single-user case and then
for the multiuser scenario. The implication of the results on
the MIMO-OFDM MAC system design is discussed with re-
spect to limited feedback, limited modulation and coding
schemes (MCS), and quantized linear precoding in Section 4.
In Section 5, numerical results illustrate the performance.
The paper is concluded in Section 6 and further application
and open problems are discussed. The appendices contain
the proofs.

1.1. Notation and symbols

Vectors are denoted by boldface small letters a, b, and matri-
ces by boldface capital letters A, B. AT , AH , and A−1 are the
transpose, the conjugate transpose, and the inverse matrix
operation, respectively. The identity matrix is I, and 1 is the
vector with all ones. A1/2 is the square root matrix of A and
[A] j,k denotes the entry in the jth row and the kth column of
A. The expectation is denoted by E.

We will use the following symbols: N is the number of
carriers; B is the chunk size. Therefore, there are M = N/B
chunks. The transmit power constraint of user k is Pk. The
channel matrix of user k on carrier n is given by Hk,n. The
transmit covariance matrix of user k on chunk m is given by
Qk,m. The inverse noise power is ρ. The weight of user k to
compute the weighted sum rate is given by wk.

2. SYSTEMMODEL AND PRELIMINARIES

In this section, we introduce the MIMO MAC OFDM model.
Since we operate in frequency-selective fading, there are two
dimensions for resource allocation available, namely the spa-
tial domain (multiple antennas) and the spectral domain
(multiple carriers). To address the two dimensions, we apply
linear (over space) precoders for each carrier. At the receiver,
on each carrier, MMSE-successive interference cancellation
(SIC) is applied.

The feedback limitation introduces blocks of carriers
which are precoded with identical linear precoding matrices.
We will call those blocks chunks. This additional constraint
reduces the feedback overhead and signal processing com-
plexity.

The problem statements are described at the end of this
section. It will turn out that the overall multiuser problem
can be deconstructed into an iterative solution of single-user
problems. Therefore, we present both problem statements.



Eduard Jorswieck et al. 3

IDFT
CP

IDFT
CP

IDFT
CP

Q1/2
k,1

Q1/2
k,2

Q1/2
k,N

xk,1

xk,2

xk,N

S
P

S
P

S
P

Linear precoding

dk,1

dk,2

dk,N

...

User k

Figure 2: Transmitter processing for uplink MIMO OFDM system
of user k.

Q1

Q2

Q3

QN/B

N

B

B

B

B

Figure 3

2.1. UplinkMIMOOFDM system

Consider an ideal multiuser MIMO CP-OFDM system with
K users, N carriers, L taps, nT transmit antennas, nR receive
antennas. Let us focus on the multiple access scenario (up-
link). The transmit processing at the kth user is shown in
Figure 2.

The N data streams dk,1, . . . ,dk,N of user k are serial par-
allel converted and linear precoded by Q1/2

k,1 , . . . , Q1/2
k,N . Note

that the number of parallel data streams depend on the rank
of the transmit covariance matrix Q1/2

k,n . Next, the N times nT
outputs of the linear precoder are processed in front of each
transmit antenna by an IDFT and a cyclic prefix is added
(CP-OFDM). Then one OFDM symbol per antenna is trans-
mitted simultaneously.

The received signal on carrier 1 ≤ n ≤ N at the base
station is given by

yn =
K∑

k=1

Hk,nxk,n + nn, (1)

where Hk,n is the flat-fading channel matrix of user 1 ≤ k ≤
K on carrier n, xk,n is the transmit vector of user k on carrier
n, and nn is the white Gaussian noise with variance σ2

n = 1/ρ
on carrier n. The individual transmit power constraint for
user k is

∑ N
n=1E[xk,nxH

k,n] ≤ Pk. The base station is assumed
to apply an MMSE frontend per spatial stream combined
with SIC. This receiver architecture is shown to be informa-
tion lossless in [27, Section 8.3.4].

2.2. Limited feedback

The control unit at the base station takes queueing infor-
mation as well as physical layer information into account
and provides a set of linear precoding strategies for all users.
Different scheduling strategies are possible ranging from
throughput-oriented scheduling, which is also a subject of
the current paper, to stability-based approaches [28]. Since
the CSI of all users is necessary for the decision, the central-
ized approach leads to a base station that informs the users
about their transmit strategies by feedback. We assume that
the coherence time T in channel uses is large enough to in-
form the mobiles on transmit strategies for the current chan-
nel state.

In order to reduce the amount of feedback required to
inform every user on every carrier about the linear precod-
ing matrix, a number of B carriers is assigned the same lin-
ear precoding matrix Qb (see Figure 3). The total number of
carriers N is divided into chunks of size B. Each chunk of
size B is processed with the same precoding matrix Qb. Thus
the number of precoding matrices is reduced by a factor of B
from N to M = N/B. Note that B does not necessarily corre-
spond to the coherence bandwidth of the channel.

Obviously, there is a tradeoff between the amount of
feedback and the system performance. The larger B is the
less feedback information is required the poorer the system
performance will be. The smaller B is the more feedback in-
formation is required and the better is the nominal system
performance.

2.3. Problem statements

The main question that is answered in this paper is motivated
in the previous section: what is the optimal transmit strat-
egy and what is the optimal chunk size that maximizes the net
throughput? The detailed questions about the impact of the
load (number of user K , number of antennas nT), the impact
of the fairness (maximum throughput scheduler, weighted
sum rate), and the impact of the channel model, and the user
distribution follow immediately.

To answer the main questions and the followup ques-
tions, we need to develop an algorithm that finds the optimal
linear precoding matrices for a given parameter set. The flat
fading case and chunk size of one N = B = 1 are solved in
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[16]. For N ≥ B > 1, even the single-user case leads to an
optimization problem that cannot be solved in closed form.
The following single-user single-chunk problem is the build-
ing block that is needed to develop the solution for the mul-
tiuser multiple-chunk optimization (In this work, the objec-
tive function is always the mutual information with Gaus-
sian code books, except in Section 4.3 in which finite MCS
are studied.),

max
Q

B∑

b=1

cb
(

log det
(

Zb + HbQHH
b

)− log det
(

Zb
))

s.t. Q � 0, tr (Q) ≤ P.

(2)

The coefficients c1, . . . , cB are nonnegative real numbers and
they will be defined below. The operational meaning of the
positive definite matrix Zb will be the spatial noise plus in-
terference covariance matrix, Hb will be identified with the
MIMO channels within one chunk, Q is the transmit covari-
ance matrix, and P is the sum transmit power constraint.

Next, the spectral power allocation and the multiuser
weighted-sum rate problem is incorporated. Let the weights
w1, . . . ,wK be ordered in decreasing order, that is, w1 ≥
w2 ≥ · · · ≥ wK ≥ 0. We arrive at the following opti-
mization problem: maximize the weighted-sum rate of the
K-user MIMO N-carrier OFDM uplink with chunk size B
and weights w1, . . . ,wK ,

max
Q1,1,...,QK ,M

M∑

m=1

B∑

b=1

K∑

k=1

(
wk −wk+1

)
︸ ︷︷ ︸

ck

× log det

(
I + ρ

k∑

j=1

H j,m,bQ j,mHH
j,m,b

)

s.t. Qk,m � 0, 1 ≤ m ≤M,
M∑

m=1

tr (Qk,m) ≤ Pk, 1 ≤ k ≤ K ,

(3)

where H j,m,b denotes the channel matrix of user j in the bth
carrier of chunk m. The optimal SIC orders were used [29,
Proposition 2]. The individual power constraint of user k is
Pk. ρ is the inverse noise variance defined in Section 2.1. The
coefficients ck in (2) are defined as ck = wk − wk+1 and thus
are nonnegative. We set wK+1 = 0.

The advantage of the optimization problem in (3) is that
the objective function is jointly concave with respect to the
tuple (Q1,1, . . . , QK ,M), the constraint set is convex, and there-
fore the programming problem itself is convex. Due to the
large number of optimization variables, the direct solution
using standard convex optimization tools [30, 31] is not
practically feasible. It is also not possible to solve (3) in closed
form, however, we will develop an iterative algorithm that
solves the problem efficiently even for high numbers of users,
carriers, and antennas.

3. OPTIMIZATION THEORETIC RESULTS AND
ALGORITHMDEVELOPMENT

In this section, we solve the theoretical problem statements
from the last section. We will show that the multiuser prob-
lem (3) can be solved by iteratively solving single-user prob-
lems. Therefore, we start with the single-user problem first
and develop an iterative algorithm. The convergence proof
can be found in the appendix.

For the multiuser problem, the SIC decoding order is im-
portant. Fortunately, the optimal order depends only on the
weights of the users (as in the nonchunk single-carrier case).
Based on the single-user algorithm, we develop the multiuser
algorithm.

3.1. Optimal single-user chunk processing

The single-user single-chunk case is the basic element of the
iterative algorithm that is developed later for the overall mul-
tiuser problem solution. Therefore, we study this problem
first.

Consider the following simple setup. The B parallel data
stream vectors d1, . . . , dB of one chunk are linearly precoded
by the same linear precoding matrix Q1/2 and then multiplied
by different MIMO flat-fading channel matrices H1, . . . , HB

to obtain

yb = HbQ1/2db + nb, for 1 ≤ b ≤ B. (4)

The same positive semidefinite transmit covariance matrix Q
has to be used for all channels within one chunk.

Let the input vectors be independently zero-mean com-
plex Gaussian distributed with identity covariance, that is,
dk∼CN (0, I) and the noise vectors are independently zero-
mean complex Gaussian distributed with covariance Zb, that
is, nb∼CN (0, Zb). The weighted mutual information be-
tween input and output of the system is given by

Ψ(Q) =
B∑

b=1

cbI
(

db; yb
)

=
B∑

b=1

cb log det
(

Zb + HbQHH
b

)− cb log det
(

Zb
)
.

(5)

If B = 1, the optimal choice of Q � 0 under trace constraint
diagonalizes the channel matrix and the optimal power al-
location is given by water filling [32]. This strategy is not
applicable for B > 1 because Q cannot diagonalize jointly
all channel matrices H1, . . . , HB except for the unlikely case
that they all commute. The case c1 = c2 = · · · = cB = 1
and Z1 = Z2 = · · · = ZB = σ2

nI is solved in [33]. Note
that in [34] a similar but different iterative approach based
on the Cholesky decomposition of Q was developed. Our
approach has the important advantage that the optimiza-
tion problem stays convex and global convergence can be
proved.
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Result: Solve optimization problem (7)
Input: Channel realization H1,1, . . . , HM,B and power constraint P > 0
initialization: for all 1 ≤ m ≤M : Q0

m = 0, Q1
m = (P/M·nT)I, and set � = 1;

While ‖(
∑M

m=1Ψ(Q�
m))− (

∑M
m=1Ψ(Q�−1

m ))‖ > ε do
� = � + 1;

Q�
m = Q�−1(1/2)

m Ψ′(Q�−1
m )Q�−1(1/2)

m for all 1 ≤ m ≤M;

μ =∑M
m=1 tr (Q�

m);

Q�
m = (P/MnTμ)Q�

m for all 1 ≤ m ≤M;
end
output: Optimal set of transmit covariance matrices Q1, . . . , QM

Algorithm 1: Single-user optimal MIMO OFDM chunk processing.

Theorem 1. Let the start point be Q0 = (P/nT)I. The update
rule

Q�+1 = P
∑B

b=1cb
(

I− Z−1/2
b

[
Zb + HbQ�HH

b

]−1
Z−1/2
b

)

tr
(∑B

b=1cb
(

I− Z−1/2
b

[
Zb + HbQ�HH

b

]−1
Z−1/2
b

))

(6)

converges to the optimal Q∗ and solves optimization problem
(2).

The proof can be found in Appendix A. Note that the
fixed point iteration in (6) has only linear convergence [35]
and any Newton style algorithm has local super-linear con-
vergence. However, the update rule in (6) is further refined
to include spectral power allocation. If a Newton style algo-
rithm is used, this extension is not directly possible.

Before the complete multiuser algorithm is developed,
we consider the case in which multiple M = N/B
chunks are jointly optimized under a sum power constraint∑M

m=1 tr (Qm) ≤ P. This corresponds to the single-user
MIMO OFDM case. The optimization problem reads

max
Q1,...,QM

M∑

m=1

B∑

b=1

cb
(

log det
(

Zm,b + Hm,bQmHH
m,b

)

− log det
(

Zm,b
))

Qm � 0, 1 ≤ m ≤M,
M∑

m=1

tr
(

Qm
) ≤ P

(7)

and the spectral power allocation corresponds to water fill-
ing. The naive approach is to alternate between covariance
matrix optimization and spectral power allocation because
the problem is jointly concave in the chunk powers and
the chunk covariance matrices. However, this approach con-
verges usually very slow.

For the case in which B > 1 we develop an efficient al-
gorithm that merges the spectral power allocation in the up-
date rule from Theorem 1. The algorithm was presented for
c1 = c2 = · · · = cB = 1 and Z1 = Z2 = · · · = ZB = σ2

nI in
[33]. In the following, lemma an iterative algorithm is pro-
posed which solves (7).

Lemma 1. Algorithm 1 solves the optimization problem (7).

The proof can be found in Appendix B. The function Ψ is
defined in (5). The convergence rate of Algorithm 1 is illus-
trated in Figure 4 where ε= 10−3 is used. In Figure 4, it can
be observed that for larger chunk sizes the convergence rate
is faster because the objective function is lower and there are
less optimization variables. This fast convergence is a manda-
tory prerequisite to embed Algorithm 1 in the iterative water-
filling algorithm for weighted sum rate optimization in the
next section.

3.2. Multiuser chunk processing:
weighted sum capacity

In the multiuser setting, we study the uplink scenario with
SIC at the base and solve the optimization problem

max
Q1,1,...,QK ,M

K∑

k=1

wk

M∑

m=1

Rk,m

s.t. Qk,m � 0, 1 ≤ m ≤M,
M∑

m=1

tr
(

Qk,m
) ≤ Pk, 1 ≤ k ≤ K ,

(8)

where Rk,m is the mutual information by user k in chunk m.
The individual achievable rates depend on the SIC order. Ref-
erence [29, Proposition 2] shows that the optimal decoding
order π satisfies wπ1 ≥ wπ2 ≥ · · · ≥ wπK ≥ 0. By insert-
ing the optimal decoding order into (8) and collecting two
succeeding terms in the sum, we obtain the programming
problem in (3).

The optimization problem (3) is a convex-optimization
problem because the objective function is the positive-
weighted sum of functions which are jointly concave in the
set of transmit covariance matrices {Q1,1, . . . . , QK ,M} and
the constraint set is convex. Furthermore, the number of
optimization variables is too large, for example, for N =
2048,B = 2,nT = 4,K = 20 there are 20480 covariance ma-
trices of size 4 × 4 involved, to directly apply a convex op-
timization method, for example, an interior point method.
Instead, the structure of the optimization problem is taken
into account and the problem is decomposed into single-user
problems with colored noise. The fundamental difference to
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timization with nT = 2,nR = 2,N = 1024 and different chunk sizes
for ideal iid Rayleigh fading channel model.

standard iterative water filing [16] is the single-user step and
the additional spectral power allocation.

Algorithm 2 first initializes the covariance matrices to
identity matrices. Next, for all users the single-user multi-
carrier chunk optimization from Algorithm 1 is performed.
Since the objective function is increasing in each step and
there is a unique global optimum, the algorithm converges to
the optimum. The formal proof is similar to the proof in [29,
Proposition 7] and is therefore omitted. The general condi-
tions for convergence and the convergence speed of the alter-
nating optimization approach are given in [36, Theorems 2
and 3].

4. SYSTEMDESIGN ANDOPTIMAL CHUNK SIZE

In this section, we use the developed algorithm to show how
practical limitations, namely, quantization and finite mod-
ulation and coding schemes (MCS) can be incorporated.
Furthermore, the performance measure is introduced which
takes the feedback overhead into account. Later simulations
will all be based on this net throughput.

The control unit decides on transmit strategies, that is,
linear precoding matrices Q1,1, . . . , QK ,N , modulation, and
coding for each user at each carrier. Feedback from base to
mobile is required. A full rank Qk has n2

T complex entries,
however it can be reduced to nT + (nT − 1)·nT = n2

T real
entries since the matrix is Hermitian. Thus, the worst case
feedback (η = nT) from base to mobiles are K·N·n2

T real val-
ues. By applying different chunk sizes, the feedback overhead
and signal processing complexity can be decreased, reducing
thereby the performance of the system.

In this section, a measure for the effective overall trans-
mission rate is derived. Furthermore, several practical aspects
as quantization of the linear precoding matrices and MCS are
discussed.

4.1. Net throughput

Following the feedback computation above, the amount of
feedback as a function of the number of transmit antennas
nT , the number of users K , the quantization q, the coherence
time T , the number of carriers N , the chunk size B, and feed-
back channel data rate Rd is defined by

α = N·K·ζ
B·Rd·T

(9)

with ζ as the number of feedback bits for one transmit co-
variance matrix. As an example, assume a scalar quantiza-
tion and an 8-bit quantization per real value. This leads to
ζ = n2

Tq and K·N·n2
T·8 bits feedback. Consider for exam-

ple K = 10,N = 1024,nT = 2. Then 320 Kbits per coher-
ence time (or per frame) are necessary. Further on, the signal
processing at transmitter needs N multiplications of trans-
mit data block with nT×nT matrices. Assume a feedback rate
Rd = 320 bits per channel use and T = 500 channel uses. The
resulting feedback amount in (9) is given by α = 0.002N/B.

In our approach, the control overhead reduces the trans-
mission rate R to the effective transmission rate Re,

Re,1 = R(1− α) = R
(

1− N·K·ζ
B·Rd·T

)
. (10)

This approach considers only the uplink and the feedback
reduces the transmission rate directly.

As in other communications systems, there are complex
tradeoffs between design parameters and performance in
multiuser MIMO OFDM MAC. In (10), there are two trade-
offs. The first is with respect to the chunk size B. The larger
B, the worse is the performance but the smaller is also the
feedback overhead. The second tradeoff is with respect to the
quantization level q. The larger q, the better is the perfor-
mance because the linear precoding matrices are represented
better, but the higher is also the feedback overhead.

4.2. Quantized linear precoding

In [37], methods and performance results of quantized feed-
back approaches for multiple antenna channels are described
and compared. A concrete vector quantization scheme based
on Grassmannian subspace packing is proposed in [38] for
single-user beamforming without power allocation. In the
multiuser setting, it often happens (see multiuser illustra-
tions in Figure 9) that only a small number of streams with
different powers are allocated. Therefore, the Grassmannian
subspace packing can be extended with a rough quantization
of the power allocation to arrive at a full transmit covariance
matrix. The channel optimized covariance matrix quantiza-
tion is beyond the scope of this paper.

In the effective rate definition (10), q is the quantiza-
tion level of every real number that is needed to parame-
terize the channel covariance matrix. In the worst case, n2

Tq
bits are needed, that is, one transmit covariance matrix Q
is described by n2

Tq bits. Since this number is large even for
small number of antennas and quantization levels we restrict
our attention to the random vector quantization approach
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Result: Solve optimization problem (3)
Input: Channel realizations H1,1,1, . . . , HK ,M,B and power constraints Pk > 0 for

1 ≤ k ≤ K
initialization: for all 1 ≤ m ≤M and 1 ≤ k ≤ K : Q0

k,m = 0, Q1
k,m = (Pk/M·nT)I, and set � = 1;

While ‖∑M
m=1

∑ K
k=1

∑ B
b=1(wk −wk+1) log (det (I + ρ

∑ k
j=1H j,m,bQ�

j,mHH
j,m,b)/ det (I + ρ

∑ k
j=1H j,m,bQ�−1

j,m HH
j,m,b))‖ > ε do

� = � + 1;
For 1 ≤ k ≤ K , 1 ≤ m ≤M set Q�

k,m = Q�−1
k,m ;

for k = 1, . . . ,K do
{Q�

k,1, . . . , Q�
k,B} = arg max Q1,...,QM

∑ K
j=k(wj −wj+1)

∑M
m=1

∑ B
b=1 log det (I + ρ

∑ j
l=1, j 	=kHl,m,bQ�

j,mHH
l,m,b + ρHk,m,bQmHH

k,m,b)

s.t. Qm � 0, 1 ≤ m ≤M and
∑M

m=1 tr (Qm) ≤ Pk by Algorithm 1;
end

end
Output: Optimal set of transmit covariance matrices Q1,1, . . . , QK ,M

Algorithm 2: Multiple user optimal MIMO OFDM chunk processing.

[7, 39]. We use (nT −1)q bits for the power quantization and
the remaining bits for beamformer quantization.

Consider, for example, the case in which the mobiles
have two transmit antennas and q = 8, we generate 16 777
216 random vectors for beamforming quantization. The two
eigenvalues of the covariance matrix corresponding to the
power allocation are uniformly quantized according to 16
levels between 0 and the maximum transmit power.

4.3. Modulation and coding schemes

In the ideal simulations, the mobiles use independent Gaus-
sian code books. However, in practice finite modulation and
coding schemes are employed. These limitations influence
the resource allocation and limit the performance of a sin-
gle stream. In order to show the impact of finite modula-
tion and coding schemes (MCS), we present also results with
respect to the MCS shown in Figure 5. At high SNR, the
maximum achievable rate is bounded by 4.5 bit/s (64-QAM
with code rate 3/4). The MCS used in Figure 5 are defined in
[40].

The conversion from the rates achievable with Gaussian
code books to finite MCS works via the SINR values of the
individual data streams. The receiver applies the optimum
combining (OC) method [41]. Hence, the SINR for data
stream s of user k in chunk b on carrier θ is given by(We
omit the indices b and θ for convenience.)

SINRk,s = h̃H
k,s

[
∑

t 	=s
h̃k,th̃H

k,t + Zk

]−1

h̃k,s (11)

with effective channel after precoding h̃k,s = HkQ1/2
k,s , where

Q1/2
k,s = vk,s p

1/2
k,s is the beamforming vector vk,s and power al-

location pk,s of user k and stream s and with noise plus mul-
tiple access interference after SIC (For sum rate optimiza-
tion the SIC order is arbitrary. For weighted-sum rate op-
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Figure 5: Average rate versus SNR for Gaussian code-book and for
finite modulation and coding schemes.

timization, we assume that the users are ordered according
to w1 ≥ w2 ≥ · · · ≥ wK ≥ 0.),

Zk =
K∑

l=k+1

HlQlHH
l + σ2

nI. (12)

Note that the linear precoding matrices as well as the op-
timal decoding order hold only for Gaussian code books.
However, the optimization of the weighted sum rate under
finite MCS constraints is a combinatorial nonlinear prob-
lem with high computational complexity. Therefore, we opti-
mize first under the Gaussian signalling assumption and map
then the SINR values to finite MCS achievable rates. This ap-
proach is suboptimal.
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As it can be seen in Figure 5, the difference between the
rates achievable with finite MCS and the Gaussian codebook
is characterized by the following behavior. First the MCS
curve is shifted to the right and second, that at high SNR the
rate achievable with finite MCS is bounded by 4.5 bit/s/Hz.
The first difference can be resolved by the SINR-gap con-
cept [42, 43]. For high SNR, the second difference leads to
a problem because increasing the SINR from a certain point
does not increase the achievable rate of finite MCS. On the
one hand, this problem occurs seldom because the SINR is
limited by multiple access interference. On the other hand,
it occurs in sparse resource allocation scenarios where only
a single user is scheduled on one chunk, this may lead to a
performance loss. One remedy is to increase the finite MCS
for higher SINR. Another remedy could be to include this
restriction into the original optimization problem without
destroying the convenient structure. This is left as an open
research problem.

5. ILLUSTRATIONS

In this section, we illustrate the theoretical results as well as
the practical implications. First, the rate region is completely
computed for an ideal channel model without quantization
and MCS constraints but with chunk constraint. These re-
sults show the performance gain of the proposed algorithm
compared to existing algorithms. Next, the IEEE 802.11n
channel model is used to illustrate a particular chunk size
optimization (again without quantization and MCS). Finally,
the WIM2 channel model is used to illustrate all the practical
limitations.

5.1. Rate region for ideal Rayleigh channels

In Figure 6 the achievable rate region of a realization of an
identically and independently distributed (iid) Rayleigh fad-
ing channel with L = 6 taps, equal power delay profile,
N = 32 carriers, and two users is shown for different chunk
sizes. The region is computed with Algorithm 2 for 33 differ-
ent weights w = [ω, 2− ω] with ω ranging from 0.01 to 1.99
in steps of 0.06. We assume nonquantized precoding matri-
ces. The feedback overhead is not considered in the rates R1

and R2 shown in Figure 6.
In Figure 6 it can be observed that even for a chunk size

of B = 2 the region shrinks compared to perfect feedback
with B = 1 although the coherence bandwidth is larger than
two carriers. The performance degradation between B = 1
and B = 32 at the sum rate point is about 50%.

We compare the achievable rate region with the subopti-
mal scheme which takes the average channel matrix within
each chunk for optimization. This scheme is optimal for
small SNR [44] only. The advantage of the proposed Algo-
rithms 1 and 2 can be clearly observed especially for larger
chunk sizes.

5.2. Sum rate in IEEE 802.11n uplink channels

In Table 1 the chunk size and the corresponding feedback
overhead in percent, the number of OFDM symbols used for
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Figure 6: Two user rate region for different chunk sizes in ideal
frequency-selective iid Rayleigh fading channel.

Table 1: Feedback overhead, number of OFDM symbols for feed-
back, and sum rate for different chunk sizes for 20 users in IEEE
802.11n channel model.

Chunk size B
Feedback
overhead in
%

# of OFDM
symbols

Sum rate
(Mbit/symb)

32 45.31 10 929

64 22.66 5 905

128 11.33 2-3 865

256 5.66 1-2 828

512 2.83 1 791

1024 1.42 <1 768

feedback, and the sum rate R are shown for a multiuser sce-
nario with K = 20 users, nT = nR = 2 antennas at 15 dB
SNR based on the IEEE 802.11n channel model. The precod-
ing matrices are fedback without quantization.

From Table 1, we observe that the feedback overhead
can be reduced significantly with only a small penalty in
the achievable sum rate. Note that if only a maximum of 4
OFDM symbols is allowed for feedback signaling (which is
equivalent to 18% overhead), the chunk size has to be larger
than 128.

The results in Table 1 show that the sum rate decreases
only slowly by increasing the chunk size. This behavior de-
pends on the SNR, the channel model, and the number of
users. For asymptotically high SNR, equal power allocation
is optimal and therefore, the transmit strategies do not de-
pend on the carrier. The performance loss increases with the
frequency selectivity of the channel. In IEE802.11n model D
and E, 18 taps are created by 3 and 4 clusters, respectively.
The more users are available (the channels of the users are
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generated independently by the IEEE802.11n model D and
E) the easier the algorithm can allocate chunks to users who
do not fluctuate too much.

In Figure 7, the average sum rates for different chunk
sizes are depicted with nT = 2 and nR = 2, K = 20 users and
an SNR of 15 dB. From the figure, it can be observed that the
maximum average efficient sum rate is achieved for Re,1 for
B = 256.

5.3. Sum rate inWINNER local area scenario

In Figure 8, the average effective sum rate of a five-user lo-
cal area scenario are shown. The system parameters are ac-
cording to the definition in [40] for the local area (LA) sce-
nario, that is, eight cross-polarized base station antennas and
two dual cross polarized antennas. 1840 out of 2048 carriers
and a signal bandwidth of 81.25 MHz out of a system band-
width of 100 MHz are used. The feedback load was set to
106. No quantization of the linear precoding matrices is as-
sumed. The chunk sizes are varied between 16 ≤ B ≤ 1840.
Three different SNR, defined as individual power constraint
divided by noise power, are studied from −5 dB to 15 dB.

There are several observations in Figure 8. At first, the
degradation due to finite MCS fluctuates between 20% for
high SNR, 40% for medium SNR, and 30% for small SNR.
The main source of rate loss is the upper bound on the rate
of the finite MCS (at 4.5 bit in Figure 5). At medium and low
SNR, the absolute loss due to finite MCS is decreased, for
medium SNR, the average sum rate even increases with in-
creasing chunk size from B = 920 to B = 1840. The reason
for this lies in the fact that with individual power constraints
and only one large chunk, all users are scheduled simulta-
neously (In the uplink scenario with individual power con-
straints it can be easily shown that all users should transmit
with maximum individual power to be Pareto optimal.) on
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Figure 8: Effective average transmission rate Re over chunk size B
for 5 users in WIM2 local area channel model A1.

that chunk and the individual SINRs of the data streams are
clearly interference limited. No data stream is saturated with
respect to the maximum data rate of the MCS.

The power allocation in the left upper subfigure in
Figure 9 shows that indeed too much power is allocated to
two users on a single chunk and hence the SINR for those
users is too high. However, the remaining three users dis-
tributed their power over the chunks. Therefore, there is the
sum rate loss of about 35% for a chunk size of 115. For larger
B = 230, there is much more multiple access interference (see
Figure 9 right-hand side) and thus the loss due to finite MCS
is smaller, about 20%.

Second, for all SNR values, there is an optimal chunk size
at B = 115 which is larger than the coherence bandwidth of
the channel (between 8 and 16 carriers). Another important
observation is that the loss between the optimal chunk size
and the minimum chunk size B = 16 is for all SNR around
25–27%.

5.4. Resource allocation inWINNER LA

Note that the solution of the optimization problem (8) con-
tains implicitly the mapping of users to chunks because mul-
tiple transmit covariance matrices Qk,m will be zero and thus
user k will not be scheduled on chunk m.

Figure 9 shows a typical power allocation of the users
over the chunks for one fixed channel realization of the
WIM2 A1 channel model at SNR 5 dB. The channel model
is for indoor small office or residential scenario with line-of-
sight (LOS) with velocities between 0 and 5 km/h. Note that
the sum powers of all users are identical. Two different chunk
sizes are compared.

In Figure 9, it can be observed that there are two types of
power allocations, namely, a peaky power allocation of user 3
and 4 and a flat power allocation for users 1, 2, and 5. These
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Figure 9: Power allocation and number of active streams of users over chunks for different chunk sizes: B = 16 and B = 230.
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peaky power allocations lead to the rate loss for finite MCS
described above. If the chunk size is increased, more and
more users are scheduled on the same chunk. For B = 230,
three users are loaded on one chunk on average.

For a chunk size of B = 1840 all users transmit si-
multaneously on the same chunk. One interesting ques-
tion is whether the users perform single-stream beamform-
ing or spatial multiplexing. For the channel realization
from Figure 9, only one user performs spatial multiplexing
whereas all other users perform single-stream beamforming.
This observation corresponds to the results in [45, 46].

5.5. Impact of quantization inWINNER LA

In Figure 10, the impact of the quantization of the transmit
covariance matrix is illustrated for one instantaneous chan-
nel realization. For every transmit covariance matrix 16 bits
or 8 bits are allocated. The same setting as in Figure 8 is used.
In Figure 10, it can be observed that the degradation due to
finite quantization of the precoding matrices is about 20%
for q = 16 and 35% for q = 8.
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Another observation from Figure 10 is that for finite
MCS with quantization, the achievable rate increases mono-
tonically with the chunk size. The reason for this behavior
is that the gain by adapting better to the channels for small
chunk sizes is lost due to the rough quantization of the trans-
mit covariance matrices. In this scenario, it seems to be better
to use only one roughly quantized transmit covariance ma-
trix over the maximum chunk size.

6. DISCUSSIONS AND CONCLUSIONS

The work solves the weighted-sum rate optimization of the
MIMO OFDM MAC under individual power constraints and
under chunk constraints. In order to reduce the feedback
overhead by informing the mobiles of their linear precoding
matrices, the optimal chunk size is numerically found. Finite
MCS and quantization of the linear precoding matrices are
also addressed. The performance is illustrated by numerical
simulations according to different channel models.

6.1. Further applications

In the iterative water-filling algorithm that was proposed for
the weighted-sum rate optimization of flat fading MIMO
channels, the update rule (6) can be directly applied to solve
the inner single-user update step, that is, to solve [29, Section
VII.B], first step in 6.a.] Note that this step can be also solved
by a modified MAXDET [30] software. However, depending
on the chunk size and the number of transmit and receive
antennas, the algorithm converges slowly or does not stop at
all.

Another application of the update rule and also of
Algorithm 1 is in the context of code-book design for MIMO
systems with limited feedback. In [47], an iterative algorithm
was proposed to find the set of covariance matrices for quan-
tized feedback with statistical CSI at the transmitter. The al-
gorithm is similar to Lloyd algorithm which finds a local op-
timum in channel optimized vector quantization [48, 49].
For fixed index mapping and set of channels H , the optimal
covariance matrices are found by solving

arg max
Q�0

1
|H|

∑

H∈H
log det

(
I + HQHH

)

s.t. tr Q ≤ P.

(13)

The programming problem (13) can be directly solved with
the update rule (6).

6.2. Open problems

In the work, the optimization under chunk constraints is per-
formed first and then the additional finite MCS and quanti-
zation constraints are considered. The performance can be
improved if the limitations by finite MCS and quantized pre-
coding matrices are modeled as additional constraints in the
programming problem (3). Thereby the constraints are to
be formulated such that the properties of the constraints are
conserved, especially convexity and continuity. The channel
optimization quantization of the transmit covariance matri-
ces in this multiuser setting is also unsolved.

In the work, it is assumed that all active users in the sys-
tem have data to transmit, that is, all users have full buffers.
However, the weighted sum rate optimization can be used
to incorporate the queuing behavior of the system, that is,
assume arrival processes at the mobiles. The interesting per-
formance measure is then the system stability.

APPENDICES

A. PROOF OF THEOREM 1

The optimization problem is a convex optimization problem
with a feasible start point. Therefore, the duality gap is zero
and we derive the KKT optimality conditions for (2) in stan-
dard form (minimization of convex objective) [50]. The La-
grangian is

L(Q,μ,Ξ) = −Ψ(Q) + μ
(

tr (Q)− P
)− tr (ΞQ). (A.1)

One of the KKT conditions is obtained by setting the first
derivative of L(Q) with respect to Q to zero, that is,

∂L(Q,μ,Ξ)
∂Q

= −
B∑

b=1

cbHH
b

[
Zb + HbQHH

b

]−1
Hb+μI− Ξ = 0.

(A.2)

Since from the other optimality conditions follows QΞ = 0,
we solve (A.2) for the first summand and multiply both sides
with Q1/2 from the left and from the right

Q = 1
μ

B∑

b=1

cbQ1/2HH
b

[
Zb + HbQHH

b

]−1
HbQ1/2 (A.3)

with μ chosen such that tr (Q) = P. Note that the RHS of
(A.3) is positive semidefinite. The characterization in (A.3)
leads directly to an iterative algorithm with the updating rule

Q�+1= 1
μ

Q�,1/2Ψ
(

Q�
)′

Q�,1/2

= 1
μ

B∑

b=1

cbQ�,1/2HH
b

[
Zb + HbQ�HH

b

]−1
HbQ�,1/2

(A.4)

and the water level

μ = P

tr
(∑ B

b=1cbQ�,1/2HH
b

[
Zb + HbQ�HH

b

]−1
HbQ�,1/2

) .

(A.5)

Due to the convexity of the programming problem, in the op-
timum the update rule will give the same covariance matrix
and this is used as a stopping criteria. The representation in
(6) follows with positive semidefinite X and positive definite
Z from

X1/2[Z + X]−1X1/2 = I− Z−1/2[Z + X]−1Z−1/2. (A.6)

The second part proves that the update rule converges
to the global optimum by showing that the objective func-
tion is increased in every step of (6). Note that this part
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of the proof works for any objective function Ψ(A). Con-
sider the �th step from A = Q� to the new point Q�+1 =
A1/2Ψ(A)′A1/2/ tr (AΨ(A)′). The directional derivative of the
objective function at the point A in the update direction

Δ = A1/2Ψ(A)′A1/2

tr
(

AΨ(A)′
) − A (A.7)

is given by

∂

∂ε

∣∣∣∣
ε=0

Ψ(A + εΔ) = tr
(
ΔΨ′(A)

)

= tr
(

A1/2Ψ′(A)A1/2Ψ′(A)
tr
(

AΨ′(A)
) − AΨ′(A)

)
.

(A.8)

Let us define B = Ψ′(A), then it holds

tr
(

A1/2BA1/2B
tr (AB)

− AB
)

= 1
tr (AB)

(
tr
(

A1/2BA1/2B
)− tr (AB)2).

(A.9)

By assumption, the matrix A = Q� is trace constrained and
we assume without loss of generality that tr (A) = 1. The ma-
trix B in (A.9) is positive semidefinite. Next, we find the ma-
trix B∗ which minimizes the expression in brackets in (A.9),
that is, we define

g(B) = tr
(

A1/2BA1/2B
)− tr (AB)2 (A.10)

and solve the minimization problem

B∗ = arg min
B�0

g(B). (A.11)

The Lagrangian for (A.11) is L(B,Γ) = tr (A1/2BA1/2B) −
tr (AB)2 + tr (BΓ). Note that by construction the Lagrangian
multiplier Γ and B commute. The necessary optimality con-
dition is [51, Equation (15)]

2A1/2BA1/2 − 2 tr (AB)A = Γ. (A.12)

Multiply (A.12) from left and right with B1/2 to obtain

B1/2A1/2
[

B− tr (AB)I
]

A1/2B1/2 = 0. (A.13)

From (A.13) it follows that the extreme points of B are either
B∗ = cI for c > 0 or A1/2B∗,1/2 = 0. Note that g in (A.10) is
zero for both values of B∗, that is, g(B∗) = 0.

Finally, we show that the extreme points B∗ are indeed
minima and therefore g(B) ≥ 0. Denote the eigenvalue de-
compositions of A = UΛAUH and B = VΛBVH , respectively.
Define a new positive semidefinite matrix C = UHBU to
write g(C) as

g(C) = tr
(
Λ1/2
A CΛ1/2

A C
)− tr

(
ΛAC

)2
. (A.14)

Note that the function g in (A.14) is invariant against the
trace of C and we will assume without loss of generality that
the tr (C) = δ. Parameterize the unitary matrix by a skew

Hermitian S = −SH as exp (−εS). First, we show that the
local minima are obtained for diagonal C by contradiction,
that is, for the parameterized function g(ε),

∂

∂ε

∣∣∣∣
ε=0

g(ε) = ∂

∂ε

∣∣∣∣
ε=0

tr
(
Λ1/2
A exp (εS)B exp (−εS)

×Λ1/2
A exp (εS)B exp (−εS)

)

− tr
(
ΛA exp (εS)B exp (−εS)

)2

= 2 tr
(
ΛAB

)[
tr
(
ΛASB

)− tr
(
ΛABS

)]

= 2 tr
(
ΛAB

)
tr
([
ΛAB− BΛA

]
S
) ≥ 0,

(A.15)

where the last inequality follows from the choice S = BΛA −
ΛAB. Equality holds when B and ΛA commute. Therefore,
the extreme points are obtained for diagonal A and diagonal
B. Define β = [β1, . . . ,βn] = diag(ΛB), α = [α1, . . . ,αn] =
diag(ΛA), and

g(β) =
n∑

k=1

αkβ
2
k −

( n∑

k=1

αkβk

)2

. (A.16)

The last step is to show that g(β) is Schur-convex with respect
to β. This implies that the minimum is obtained for B∗ = cI.
We verify Schur’s condition [52, Lemma 2.1], that is, we sort
β1 ≥ β2 ≥ · · · ≥ βn and

∂ f (β)
∂β1

− ∂ f (β)
∂β2

= 2α1β1 − 2α2β2 − 2γα1β1 + 2γα2β2

≥ 2α1β1 − 2α1β1 − 2α2β2 + 2α2β2 = 0
(A.17)

with γ = ∑ n
k=1αkβk. The inequality follows because∑ n

k=1αk = 1 and we can choose
∑ n

k=1βk = δ � 1 arbitrary
small.

Hence, the first derivative at the point Q� in direction of
the update in (6) is positive

∂

∂ε

∣∣∣∣
ε=0

Ψ(A + εΔ) ≥ 0. (A.18)

The remaining step is to show that the first directional
derivative at the updated point Q�+1 in the direction of Q�

is nonpositive. This can be shown by the same procedure as
above starting from (A.8). By concavity of the objective func-
tion follows that there cannot be the maximum between Q�

and Q�+1. Therefore, every fix-point algorithm defined in the
way as (6) works for concave objective functions.

B. PROOF OF LEMMA 1

The proof follows along the same line as the proof of
Theorem 1. The optimality conditions are given by

Qm = 1
μ

Q1/2
m Ψ′

(
Qm
)

Q1/2
m for 1 ≤ m ≤M (B.1)

with μ as the Lagrangian multiplier for the sum power con-
straint. Therefore, there is only one fix point which corre-
sponds to the global maximizer of (7). The monotonicity of
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the update rule is shown by the same arguments as in the
proof of Theorem 1 with the super covariance matrix

Q̌ =

⎛
⎜⎜⎜⎜⎝

Q1 0 . . . 0
0 Q2 0 0

0
. . . 0 0

0 0 . . . QM

⎞
⎟⎟⎟⎟⎠

(B.2)

of size M×M. The update rule in Algorithm 1 can be simul-
taneously expressed for all transmit covariance matrices of all
chunks super channel matrix

Ȟb = diag
[

H1,b, . . . , HM,b
]

(B.3)

and super noise plus interference covariance matrix

Žb = diag
[

Z1,b, . . . , ZM,b
]

(B.4)

by

Q̌
�+1 =

P
∑ B

b=1cb
(

I− Ž
1/2
b

[
Žb + ȞbQ̌

�
Ȟ

H
b

]−1
Ž

1/2
b

)

tr
(∑ B

b=1cb
(

I− Ž
1/2
b

[
Žb + ȞbQ̌

�
Ȟ

H
b

]−1
Ž

1/2
b

)) .

(B.5)

The update rule in (B.5) assures that the resulting Q̌
�+1

is also
block-diagonal and positive semidefinite and fulfills the trace
constraint. Therefore, the same arguments as in the proof of
Theorem 1 in Appendix A apply.
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