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1. INTRODUCTION

The time-varying, multiuser, multiple-input multiple-
output (MIMO) wireless channel promises significant
gain in performance over that offered by conventional
single-antenna systems [1]. Multiplexing and multiple access
gains increase system throughput and are achieved through
the use of multiple antennas and spatial reuse. Temporal
diversity gains enabled by channel-time variation further
increase system performance. Unfortunately, this temporal
variation typically implies that outdated estimates of the
channel state information (CSI) are used to construct the
signaling strategy, resulting in capacity degradation [2, 3]
that is analogous to that created by channel estimation
errors [4, 5]. These same effects of channel estimation errors
and Doppler sensitivity in practical precoding systems were
shown in [6, 7] to contribute significantly to performance
loss. These observations motivate the development of
transmission schemes which are robust to physically-realistic
channel variations.

Prior work has studied performance degradations of the
single-user, point-to-point MIMO link when transmitter

and receiver have channel estimation errors or partial CSI.
In [4] capacity upper and lower bounds are given for the
single-user, flat-fading, MIMO channel with Gaussian inputs
and normal channel error statistics. The work in [3] uses
measured channel responses for moving nodes to analyze
the capacity degradation caused by outdated CSI at the
transmitter (CSIT) and receiver (CSIR). In an effort to
reduce this sensitivity to CSI quality, recent research has
suggested the formation of transmit beamformers using
channel distribution information (CDI) at the transmitter
(CDIT) [8, 9], a strategy which is optimal in an ergodic
capacity sense under certain antenna correlation conditions.
An adaptive beamformer that uses both CSI and CDI is
suggested in [10] where capacity degradation from outdated
CSI occurs in a time division duplex (TDD) MIMO system
with a spatially correlated Jakes’ channel.

Similar work for the multiuser MIMO channel has
focused more on the effects of channel estimation errors than
the impact of outdated CSI created by channel-time varia-
tion. For example, for the single-input single-output (SISO)
broadcast channel, a scheduling strategy was proposed in
[11] to combat the effects of channel estimation error.



EURASIP Journal on Advances in Signal Processing

Furthermore, capacity regions for the MIMO broadcast
channel with erroneous CSIT and CSIR are found in [12]
using the duality between the broadcast and multiple-access
channels (MAC) [13]. The work in [5] uses error statistics
for the sum-capacity-optimal dirty-paper coding (DPC)[1]
to determine when time-sharing outperforms DPC in the
multiple-input single-output (MISO) broadcast channel. A
similar study for erroneous CSIT was also performed for
the computationally simpler zero-forcing DPC (ZF-DPC) in
[14] using capacity bounds similar to those presented in [4].
This work builds on the existing understanding to study
the behavior of different CSIT-based transmit precoding
techniques [15] in the time-variant multiuser broadcast
channel (BC). The study considers DPC, linear beamform-
ing, and time-division multiple access (TDMA) techniques.
While numerous beamforming algorithms exist for various
design criteria [15-17] we focus on the beamforming
algorithm that maximizes capacity for a MIMO broadcast
channel (for linear precoding) as defined in [15] which is an
extension of the algorithm in [18] for (MISO) channels. The
TDMA scheme removes multiple access interference (MAI)
and the need for CSIT by assigning each user a unique time
slot for channel access and by using the optimal signaling
strategy for an uninformed transmitter. The analysis of these
schemes begins with simulations based on accepted models
for the spatially-correlated time-variant channel [19, 20].
However, since these models may not capture the complex
physical structure of the multiuser time-variant MIMO
channel [21], the results obtained using the models are
reinforced using simulations with experimentally obtained
channels [22] taken in an outdoor environment on the
Brigham Young University (BYU) campus [3, 23]. Motivated
by the performance degradation observed for the existing
signaling schemes, the paper finally develops and analyzes
an iterative beamforming algorithm that has similar perfor-
mance to the capacity optimal beamformer when used with
CSIT and provides stable throughput performance when
constructed with CDIT. The stable performance offered
by this algorithm implies the existence of slowly varying
subspaces in the time-varying multiuser MIMO channel.

2. SYSTEM AND CHANNEL MODELS

The MIMO broadcast channel communication scenario of
interest consists of a single transmitting node equipped with
N; antennas and K receiving nodes (users) each with N;
antennas. The N, x 1 received vector for the jth user at time
sample n can be expressed as

K
yi(n) = Hj(m)x;(n) + > H;(nm)xi(n) +1;(n), (1)
i#j
where H;(n) is the Ny X N; matrix of channel transfer
functions for user j, x;(n) is the N; X 1 signal vector
destined for the ith user, and 5 i (n) is additive white Gaussian
noise (AWGN). Equation (1) presumes no specific transmit
precoding and is therefore appropriately modified later in the
discussion of specific transmission schemes.

The examination of different precoding strategies per-
formed in this paper considers both modeled channels,
which allow a parametric evaluation over a variety of
channel conditions but may not accurately represent the
physical time-space evolution of the subspace, and measured
channels which allow performance quantification over a
limited set of realistic environments. This section details the
models and measurements used to facilitate this study.

2.1. Channel models

Because effective multi-antenna transmit precoding strate-
gies exploit spatial structure in the channel, it is important
that the channel model used accurately reflects this spatial
information. The spatial correlation of the transfer matrix,
which is created by the angular properties of the multipath
propagation as well as the antenna configuration, is a
common mechanism for capturing this spatial structure in
the model. To aid in the analysis, the correlation matrices
at the transmit and receive ends of the link are assumed
separable, resulting in a Kronecker description of the overall
spatial correlation [20]. Using this mechanism, the channel
matrix at the nth time sample is

H;(n) = \[RpHyj(n)\Ry 2)

where Hy,j(n) is an N; X N; matrix with zero mean, unit
variance, i.i.d. complex Gaussian random variables at sample
index 1, R; j, and Ry j are the N; X N; and N; X N; receive and
transmit correlation matrices, respectively, for the jth user,
and the square root operation on some positive semidefinite
matrix Z is defined as v/Z+/Z = Z. There is some debate on
the accuracy of the Kronecker model because the model has
been verified for a small number of antennas in [24] while
deficiencies in the model for a larger number of antennas
have been identified in [25]. The application of interest in
this work is a mobile ad hoc network (MANET) in which all
nodes are equally equipped with a small number of antennas,
justifying the use of the Kronecker model assumption in (2).

Any model must also ensure that the channel samples
possess the proper relationship in time. This can be accom-
plished by properly representing the temporal correlation
between channel samples for sample spacings smaller than
the channel coherence time. This work assumes the temporal
correlation function model suggested by Jakes [19] which is
given by

p(1) = Jo(27 fat), (3)

where Jo(-) is the zeroth-order Bessel function of the first
kind and f; is the normalized Doppler frequency. For
simulation purposes a sum of eight weighted sinusoids is
used in Jakes’ model with the specified normalized Doppler
taken into account to produce the temporal correlation in
(3).

The channel model realizes both spatially and temporally
correlated channel coefficients by filtering H,, ;(n) in (2)
with the time-varying coefficients generated from Jakes’
model with the Doppler frequency f; in (3) chosen to
match that of the measured channel. Further, the spatial
correlation matrices used in (2) are either modeled with an
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exponentially decaying function or estimated from measured
data as explained in Section 2.2. The channel matrices for
different users are realized independently. Throughout this
paper, the term “modeled channel” refers to a sequence of
channel matrices generated using this procedure.

2.2. Channel measurements

The test equipment at BYU allows sampling of a single-
user point-to-point MIMO link with N, = N, = 8.
The measurements can accommodate up to 100 MHz of
instantaneous bandwidth at a center frequency between 2
and 8 GHz. Specific details of the measurement equipment
are available in [26].

Prior to data collection, calibration measurements were
taken with the transmitter “off” to measure background
interference. At the chosen carrier frequency of 2.45 GHz,
the external interference was found to be below the noise
floor in the environment considered. A second calibration
performed with both the transmitter and receiver “on” but
stationary revealed that the time variation of the channel
caused by ambient changes such as pedestrians, atmospheric
conditions, and other natural disturbances was insignificant
for the environments examined in this paper.

The channel coefficients used in this analysis were
measured with a stationary transmitter and a receiver
moving at a constant pedestrian velocity (30 cm/s). Since the
channel is highly oversampled, with samples taken every 3.2
milliseconds, data decimation or interpolation can be used
to create any effective node velocity. For a given transmitter
location, measurements for different receiver locations were
taken (using the same receiver velocity), with each location
producing the channel matrix for one user in (1) for the
simulated multiuser network. Since it was observed that
channel-time variation results almost exclusively from node
movement, the superposition of these asynchronous mea-
surements into a single-synchronized multiuser broadcast
channel seems reasonable. Throughout this paper the term
“measured channel” refers to channel coefficients acquired
in this fashion.

The statistical space-time-frequency structure of the
experimental MIMO channels has been well analyzed in the
literature [2, 27] with ensemble averages over a variety of
locations showing the coefficients to obey a zero-mean com-
plex Gaussian distribution (Rayleigh channel magnitudes)
with spatial and temporal correlation functions that closely
resemble those generated using the classic Jakes model [23].
Because the transmit and receive spatial correlation matrices
are used in the development of the transmit precoding
strategy introduced in this paper as well as the generation
of modeled channel matrices (see Section 2.1), estimation of
these matrices from the data is an important consideration.
The transmit correlation matrix estimated using N samples
starting at sample 7y can be written as

N-1

1
NN, %H?(ﬂo‘l‘l’l)Hj(i’lo‘l‘l’l), (4)

R.j(no,N) =

where {-}* is the matrix conjugate transpose. Similarly, the
receive correlation matrix estimate is

N-1
1
Rr,j (ﬂo,N) = NN, Z Hj(l’l() + H)H?I(I’lo + n). (5)
n=0

The fact that the correlation matrices are functions of the
starting channel index ny and length of the estimate N sug-
gests that the channel is not stationary. This nonstationarity
is a mathematical manifestation of physical changes in the
propagation environment created by changes in the angular
characteristics of the propagation environment due to such
effects as a node moving around a corner or the introduction
of a mobile scatterer. However, drastic nonstationary effects
occur on a time scale larger than the channel coherence time,
and therefore values of N are chosen to remain within the
channel stationarity time.

3. TRANSMIT PRECODING WITH
TIME-VARYING CHANNEL

Transmit precoding techniques attempt to manipulate input
data signals to achieve a specified design criterion for the
overall system. The types of precoders can be classified as
either linear or nonlinear [15] while system optimizations
range from maximizing throughput to minimizing transmit
power for a given signal-to-interference plus noise (SINR)
requirement. Regardless of the scheme or optimization used,
most algorithms require instantaneous CSIT. This require-
ment suggests that as nodes move and CSIT becomes out-
dated, the performance guarantee of an algorithm no longer
holds. This section describes the optimal sum capacity
technique (DPC), linear transmit beamforming (BF), and
time division multiple access (TDMA), and evaluates their
performance degradation due to node motion.

It is important to choose a measurable quantity such
that comparison between different algorithms can be per-
formed in a meaningful manner. For this work, we consider
performance metrics based on maximizing the total mutual
information between transmitter and receiver for all users
given the theoretical concept of Gaussian input signals [4].
For a given transmit precoding algorithm with fixed input
parameters, the total mutual information is referred to as
either the expected sum rate or throughput of the system
measured in bits/sec/Hz.

To calculate the sum mutual information for the broad-
cast channel with outdated CSIT, a general procedure is
followed for all transmit precoding techniques. First, the
CSIT (assumed perfect) obtained when the receivers are at
an initial position is used to generate the precoded transmit
vectors over a range of receiver motion, meaning that the
CSIT used is outdated except at the initial position. The
received vector for each user is then determined using (1),
allowing computation of the mutual information for each
user, and the sum mutual information is computed as the
sum of each individual mutual information value.
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3.1. Optimal transmit precoding

The nonlinear dirty-paper coder is optimal in the sense that
it maximizes the sum mutual information(and therefore sum
capacity) when the receivers are at their initial position.
Consider the case of strict DPC at the transmitter, where user
1 is encoded first, user 2 second, and so on. The iterative
implementation of the algorithm results in received vectors
at sample 7 given CSIT H;(no) obtained at sample ny < n
given by

Yi (i’lo, Tl)

( K

Hi (n)x;(n) + Hi(n)> xi(n) + 5, (n),

i=2

j=1

= j-1 K
H;(n)x;(n)+E;(no,n) > xi(n)+H; > xi(n)+n;(n),
i=1 i=j+1
2<j<K,
(6)

where E;(n9,n) = H;(n) — H;(no).
The mutual information for the jth received vector in (6)
given knowledge at the receiver of both H;(n) and H;(no) is

Ippc[xj(n);y;(no,n) | Hj(n), H;(no)]

= hlyj(no,n) |Hj(n)] =hly;(no, n) | x;(n),H;(n),H;(no)],
(7)

where x;(n) are assumed to be Gaussian inputs and h[-] is
the entropy function. With perfect CSIR, the error becomes
deterministic at the receiver (i.e., the receiver is aware
that CSIT is outdated), and therefore both [y;(ng,n) |
H;(n),H;(no)] and [y;(no,n) | xj(n),H;(n),H;(no)] are
Gaussian distributed. As a result, the upper and lower
bounds on mutual information with erroneous CSI from [4]

are equivalent and reduce to
Ippc[x;(n);y;(no,n) | Hj(n),H;(no)]

|Z; +H;(n)Q; (n0)HY (n) |
1Z; ] ’ (8)

K j-1
_ H;(n) E;(ng,n)
Zj =T+ > Wi 4 S gt
i=j+1 i=1

where for some matrix V, ‘I’}/ = E[VHQj(no)V] and
Qj(ng) = E[xj(no)x?(no)] represents the input covariance
matrix calculated at sample ng. After computing (8) for each

user, the sum mutual information becomes

K
Corc(no,n) = > Ippc[x;(n);y;(no,n) | Hj(n),H;(no)],

j=1
9)

where Cppc(ng,n) is implicitly a function of the input
covariance matrices Q;(n). If the transmitter assumes that
there is no lag between acquisition of CSIT and transmission

(i.e., inaccurately assumes n = ny), then the “optimum”
input covariances are found using the duality of the MAC/BC
and iterative water-filling [1].

3.2. Linear transmit precoding

Linear transmit precoding, or beamforming, is a technique
that uses linear preprocessing to mitigate multiuser interfer-
ence. Different types of BF algorithms are used to optimize
different communication parameters [15]. Because we are
considering techniques which maximize the sum mutual
information, we adopt a rate-maximizing BF technique [18].
In this case, the N, X 1 capacity optimal beamformer weights
b;(ny) for user j are computed at sample index ny based
upon the CSIT H;(np). Assuming a maximum of one data
stream is transmitted to each user, the received signal vector
for user j at sample n = ny is

K
H;(n)b; (1) (n)+H; (1) X b;(no) xi(n) + 1, (n).
i#j

Yij (no,n) =
(10)

Because the distributions of both the desired signal and
the interference plus noise given H;(n) are Gaussian, the
mutual information for user j is found in a manner similar
to that outlined in Section 3.1, resulting in

Ige[x;(n);y;(no,n) | H;(n), H;(no)]

\I+H;<n (S5, Quno) ) HE(m)| (D)
’I+H,(n)(z,¢]Ql( o) JHE ()|

where Q;(ng) = E[bj(no)b?(no)] and E[x?(n)xj(n)] is
unity. If the optimization results in the zero matrix for
Q;(no), then user j is excluded from access to the channel.
For completeness, we can write the total expected rate given
the outdated input covariances Q;(o) for beamforming as

=

Cgr (19,1 Z

£[xj(n);yj(no,n) | Hj(n),H;(no)].
(12)

Some comments are necessary regarding the capacity
maximizing MISO beamforming algorithm [18]. In [15],
this technique was used with multiple receive antennas by
iteratively performing the algorithm while updating the
receiver beamformer with minimum mean squared error
(MMSE) weights, although no proof of optimality was
made. Since the beamforming weights are, in form, capacity
optimal (CO) for the MISO channel and have the structure
of a regularized channel inversion (RCI), it is referred to here
as CO-RCI [15].

3.3. Timedivision multiple access without CSIT

Time division multiple access (TDMA) is a transmit pre-
coding technique that ideally creates an interference-free
environment. Furthermore, since it does not require CSIT,
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it can provide stable throughput in a time-varying channel
although it significantly lowers the overall throughput since
it does not accommodate simultaneous channel access for
multiple users. This form of TDMA is achieved by employing
time sharing at the transmitter and optimal coding with
no CSIT assuming a Rayleigh fading channel. For this
scheme, the broadcast channel reduces to a virtual single-
user channel (x; is zero for i# j) where each user has a
received vector

yi(n) = H(m)x;(n) + 1,(n). (13)

Since each user is only accessing the channel a fraction of
the time, the mutual information for user j will simply be

Trowaa ) (n)sy; () | Hj()] = S log | L+ - 0B ()|,
(14)

where P is the total available power at the transmitter
and the optimal input covariance reduces to the scaled
identity for all ny given channel coefficients which satisfy a
spatially uncorrelated Gaussian distribution. The stability of
TDMA without CSIT is manifest in the total sum mutual
information

K
Croma(n) = > Itpmalx;(n);y;(n) | Hj(n)] (15)
in

which is only a function of the current channel at sample #.

Performance comparisons between different transmit
precoders can be made by examining how total throughput
scales with the number of network nodes [15]. Consider the
standard Rayleigh flat-fading channel scenario where there
is no lag between CSIR and CSIT (i.e., n = ng) and all
nodes have perfect estimates of the channel. Figure 1 shows
throughput scaling as the number of users increases for each
of the transmit precoding techniques discussed. The system
is fixed at N; = 4 transmit antennas, N; = 4 receive antennas
per user, and a total power constraint of P = > ;tr{Q;(ng)} =
10. While these results reveal the optimality of DPC, they also
show that BF captures the majority of available throughput
for larger networks and that the TDMA performance does
not scale appreciably with increasing network size.

4. PERFORMANCE METRICS

Assessing the performance of the algorithms under con-
sideration requires definition of meaningful metrics which
capture the performance degradation created by outdated
CSIT. Naturally, many different metrics could be defined,
with the conclusions drawn ultimately depending on these
definitions. However, since the goal of DPC and CO-RCl is to
maximize the sum mutual information, it is logical that the
performance metrics used in this work depend on this quan-
tity. One excellent metric which describes the maximum rate
at which error-free transmission is theoretically possible for
a given channel type is the ergodic channel capacity [1].
However, computing this quantity requires an expectation

20

Expected throughput (bits/channel use)

10

Number of users (K)

— DPC
--- CO-RCI
-—-- TDMA

Ficure 1: Expected throughput versus number of users for fixed
N; = N, = 4 antennas and P = 10 in Rayleigh, flat-fading channel
model. All nodes have perfect channel knowledge for all realizations
of the channel.

over an infinite set of channel realizations, which is not
possible using a finite set of measured data, and is not strictly
defined for outdated CSI.

Given the difficulties associated with the ergodic capacity
for this application, metrics used in this study are based on
the sample expected throughput (SET) which is the expected
error-free throughput for the channel as a function of the
delay n — ny. We perform a time average over all possible
initial displacements n, so that the SET for a displacement
A, = n — ny is defined as

Nmax_An

Z Cx(mym+A,), (16)

m=1

1
SX (An) Nmax - An
where Ny, is the total number of samples in the dataset
and the subscript X is a member of the set of specified
precoders {DPC, BF, TDMA}. Note that for A, = 0, (16)
represents the time-average expected system throughput.
Since this study considers temporal channel variation and
not coefficient estimation, it is assumed that the channel
estimates H;(n) and H;(ng) known, respectively, at the
receiver and transmitter are error free.
It is noteworthy that Cx(ng,n9 + A,) is not necessarily
a decreasing function of A,. For example, if the channel esti-
mate occurs at the end of a fade, the sum mutual information
is likely to be greater as the nodes move and the channel
improves. However, because the SET in (16) represents an
average behavior, it generally decreases with increasing A,,.
Figure 2 plots the SET versus the spatial displacement A =
A, Tsv, where Ts and v represent respectively the sample
interval and the receiver velocity, for each of the transmit
precoders assuming Jakes” channel model and a normalized
Doppler frequency of f; = 0.0086 chosen based upon T, and
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v. The system parameters include K = 5 users each equipped
with N, = 4 antennas, a transmitter with N; = 4 antennas,
and a total power constraint of P = 10. The maximum
displacement A is limited to 3\ since the transient behavior of
throughput degradation happens within this interval. Note
that both DPC and CO-RCI experience a reasonably rapid
degradation in throughput as a result of outdated CSIT.

While plots of the SET such as that in Figure 2 reveal
detailed information regarding performance degradation
due to outdated CSIT, it is useful to derive simple quan-
titative measures from the SET that allow single-number
comparison of the behavior for different environments. The
remainder of this section outlines two metrics based on
the SET which help quantify the stability of the transmit
precoding algorithms and motivate the new algorithm
defined in Section 5.

4.1. SET crossover distance

As shown in Figure 2, there is a displacement at which
the expected throughput drops below that for TDMA. This
displacement, denoted as dr, is referred to as the SET
crossover distance and quantifies the displacement beyond
which CSIT is no longer useful (i.e., beyond this displace-
ment, TDMA which uses no CSIT offers higher throughput).
Small values of dr suggest that a given precoding algorithm
is highly sensitive to channel temporal variations and will
perform poorly in practical systems. In Figure 2, dr = 0 for
TDMA, dr ~ 0.25) for DPC, and dr = 0.4) for CO-RCI
beamforming.

4.2. Average sample expected throughput (ASET)

While the SET crossover distance gives an indication of how
quickly the performance degrades with node displacement,
it clearly provides only limited insight into the behavior.
This fact motivates another performance metric which
incorporates the throughput over all displacements. The
average sample expected throughput (ASET) is defined by

M-1
Sx(M) = = 3 Sx(), (17)
A,=0

where M represents the extent of displacements in the region
of interest. From Figure 2, the normalized ASET values
Soxc/Stoma are 1, 0.89, and 0.55 for TDMA, CO-RCI, and
DPC, respectively.

Some important observations from Figure2 can be
made regarding the performance metrics and their effects
on transmission stability. The distance dr is meaningful
in that it defines the sensitivity of an algorithm to node
movement but is not practical as an optimizable variable.
For example, maximizing dr will not necessarily result in
a stable transmission policy since the majority of available
throughput may be lost in the first few fractions of a
wavelength. In fact, Figure 2 indicates that the most stable
transmission scheme is TDMA which maximizes the ASET.
These observations will be used to motivate a more stable
transmit precoder in Section 5.

Sample expected throughput (bits/s/Hz)

0 0.5 1 1.5 2 2.5 3

A (wavelengths)
FIGURE 2: Sample expected throughput (SET) as a function of
delay for a network with parameters N, = N, = 4, K = 5, and
P = 10 given various transmit precoding schemes in the spatially

white, Jakes” channel model with a normalized Doppler frequency
of f; = 0.0086.

5. STABLE TRANSMISSION

As shown in the previous sections, attempting to transmit
with either the optimal nonlinear transmit precoding scheme
(DPC) or linear beamforming on the optimal subspaces
(CO-RCI) results in signficant performance loss with even
small node displacement. This observation suggests that a
signaling strategy which is insensitive to node displacement
must use transmission on suboptimal subspaces that remain
constant for longer periods of time. Motivated by this fact, we
present an iterative beamforming algorithm that has similar
performance to CO-RCI beamforming when used with CSIT
and stable performance when used with CDIT. While the
complexity of this algorithm is higher than that of CO-RCI,
it enables a significantly reduced frequency at which the
transmitter BF weights must be updated.

5.1. MMSE-CSIT beamforming

Our goal is to define a beamforming algorithm that achieves
the capacity-optimal performance of CO-RCI when used
with CSIT but can be extended for use with CDIT. We apply
the standard coordinated transmitter/receiver beamforming
algorithm suggested in [15] where weights at the transmitter
and receiver are updated in an iterative manner. To motivate
the steps at each iteration of the algorithm, the following
observations are considered:

(i) the metric of interest is maximizing the total mutual
information (capacity) of the system with linear
beamforming (Section 3);

(i) MMSE beamforming at the receiver is capacity
optimal [13];

(iii) there exists a duality between transmit and receive
beamforming [1, 13].
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wi; = (T+H;(>, Pkbkbf)H7)71Hjbipi
(3) Find the survivor streams using SINR
7(i) = argmax;p;

(6) Repeat (2)—(5) until convergence
(7) Repeat (1)—(6) for N, = 1,...,K

Cunst-csit = 21y log(1 + pie(i)

(1) Assume an initial set of Ny random transmit weights b; with equal power allocation p; = P/N;
(2) Calculate the MMSE receiver beamforming weights for all streams to all users

(4) Numerically optimize the powers p; assigned to each stream
(5) Update the MMSE transmitter beamforming weights

-1
bi = (T+ Xk peHE o Wi ao Wi n o Hn)) Hor(yy Wiy Pi

(8) Use Wi (;) corresponding to the value of N; that maximizes

ALGorITHM I: Iterative beamforming for maximization of sample expected throughput.

For the following, the optimization variable is indexed
over the current sample index n and the index ny at
which the transmitter acquires CSI. This indexing is for
convenience when we address CDI beamforming, while for
CSI beamforming the transmitter assumes ny = n for all
time (i.e., the transmitter only calculates a single set of
beamforming weights).

Unit norm transmit beamforming weights b;(1y) are
initialized for a given number of data streams N; using the
singular vectors of a random matrix, similar to the random
beamforming algorithm [28], with the powers for all streams
initially equal. Given transmit weights and powers, each
receiver calculates a set of Ny MMSE beamforming weights,
one for each of the N; streams. For unit receiver noise
variance and assuming linear receiver processing (so that
multiple streams destined for the same user will interfere
with each other), the resulting received SINR of the ith
stream to the jth user for the MISO broadcast channel is
written as

pi(no)bf! (no) HY (n)H; (n)b; (o)

T 1+ Sgppr(n0)bf (no) HY (m)H, (m)bi (o)
(18)

pij (110, 1)

where pi(ng) is the power allocated to the ith stream and
> pi(ng) < P.

The next step within the iteration is to assign a single
user to each stream. This is accomplished by sequentially
moving through each of the Ny streams and assigning to it
the user which achieves the highest value of p; ;(no, no). If
(i) represents the user index for the ith stream, this process
is represented mathematically as

n(i) = argmax p; j (19, n). (19)
j

It is important to note that while the stream mapping policy
7(i) may result in nodes without an assigned stream at a
given iteration, these nodes may recapture a stream at a
future iteration.

Once streams have been mapped to users, MMSE receiver
beamforming weights are computed using

-1

K
) = {14105 bl |
=1
X H;(n)b;(no) pi(no).
(20)

Each receiver then “transmits” using its set of beamforming
weights over the reciprocal channel Hfr (ng), and for each
stream the transmitter computes updated MMSE beamform-
ing weights b;(n). For a given set of transmitter and receiver
beamforming weights, the quasiconvexity of the single-
input single-output SINR function enables a straightforward
numerical optimization of the power coefficients p;(ny) to
maximize the expected system rate. The sample expected
throughput based on the beamforming weights and power
allocations is

N;
Camse-csit (1o, n) = Z log (1 + pixi) (1o, 1)), (21)
i=1

where (18) is modified to include both transmit and
receive weights for the MIMO channel. The final solution
corresponds to the weights w; ;(#n9,7) associated with the
value of N, that maximizes (21). The complete algorithm
for maximizing the sample throughput through linear
processing, referred to as MMSE-CSIT, is summarized in
Algorithm 1. Note that since the algorithm is performed with
n = ng, Algorithm 1 drops sample indices from the variable
matrices.

Figure 3 compares CO-RCI and MMSE-CSIT beam-
forming for N; = 6, N; = 1, P = 10, and a variable number of
receiver nodes for perfect CSI. The channel coefficients were
generated using the standard Rayleigh, flat-fading model
for the multiuser channel. Figure 3 also shows the optimal
nonlinear DPC precoder as a performance reference. Note
that, with power optimization, CO-RCI and MMSE-CSIT
perform almost identically, which is the intended result.
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When step 4 is dropped from the algorithm, equal power
is used for each data stream and only a small loss in
throughput is seen as the number of users increases. Figure 4
shows the convergence with the number of iterations for
CO-RCI and MMSE-CSIT. Note that the trend for both
algorithms is a longer convergence time as the number of
users is increased. Though not shown, a similar behavior
is observed as the number of antennas is increased for
either the transmitter or receiver. It is noteworthy that both
the CO-RCI and MMSE-CSIT algorithms only guarantee
convergence to a local maximum when used in the MIMO
broadcast channel, therefore allowing the situation where
one algorithm outperforms the other. From a computational
complexity standpoint, at each iteration the complexity of
the CO-RCI algorithm is dominated by the cost of taking the
inverse of a single Ny X N; and KN, X N, matrices, with an
asymptotic cost of O(N? + KN}). In contrast, the complexity
of the MMSE-CSIT algorithm requires taking the inverse of
approximately KN; X N; and K2N, x N, matrices, which is
roughly K times the cost of the CO-RCI scheme.

5.2. MMSE-CDIT beamforming

As observed at the end of Section 4.2 and shown in Figure 2,
stable transmission is achieved by the scheme that maximizes
the ASET of the channel rather than instantaneous through-
put. We therefore reformulate the beamforming problem to
maximize the average of (21) over some window size M, or

M-1 N;

1
M Z Z IOg L+ piq(i (”0>n0+m)).

m=0i=1

Cwmse-csit (10, M) =

(22)

While direct maximization of (22) with no CSIT appears
difficult, the average throughput can be upper and lower
bounded by (see the appendix for discussion on bounds)

N;
EUPPer(nO’M) = Z log (1 +pi,n(i) (nO)M))’

i=1

N (23)
71 wer s N
C*" (no, M) = 3" 1og (1 + Piai (no, M)),
i=1
where
1M
m{pizi (no, no + m) }
’ M , 24
Pini) (no, M M Z:: {p”” (10,10 +m) } (24)
D, /M m=0 DUM 1 Pi 7(i) (No, 1 +m
Pin(i) (no, M) = (/M) 0 {Pinti) (o, n0 + m)}

(1/M)S Y0 den {pinqi) (o, o +m)}

(25)

and num{-} and den{-} return the numerator and denom-
inator, respectively, of the argument. Equation (24) is the
average SINR (ASINR) while (25) is the ratio of the average
signal power to the average interference plus noise powers
(ASAINR). Analogous to the instantaneous throughput of
(21), the bounds on average throughput (23) can each be

18 T T T T

Throughput (bits/channel use)

4 1 1 1 1
1 2 3 4 5 6

Number of users (K)

— DPC -=+= MMSE-CSIT
--- CO-RCI MMSE-CSIT equal power

F1GURE 3: Comparison of optimal transmit beamforming CO-RCI
and MMSE-CSIT beamforming for Ny = 6, N, = 1,and P = 10ina
Rayleigh flat-fading channel. The optimal nonlinear preprocessing
(DPC) is also shown for comparison.

Throughput (bits/channel use)

6 1 1 1 1
0 20 40 60 80 100

Number of iterations

--- CO-RCI
—— MMSE-CSIT

F1cure 4: Convergence of CO-RCI and MMSE-CSIT beamforming
algorithms for N; = 4, N; = 4, P = 10, and different number of
users for a channel realization from the measured data.

considered instantaneous throughputs assuming the SNR
is given by the average quantities ASINR and ASAINR,
respectively.

Since, as shown in the appendix, the lower bound on
ASET is tighter than the upper bound, we will use this bound
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(3) Find the survivor streams by using
7(i) = argmax;p;

(5) Repeat (2)—(4) until convergence
(6) Repeat (1)—(5) for N, = 1,...,K

Cmmse-corr = 25151 log(1 + fia)

(1) Assume an initial set of Ny random transmit weights b; with equal power allocation p; = P/N;
(2) Calculate the receiver beamforming weights for all streams to all users

H
wij = (I+ R (Zg pibib ) Rej )R jbipi

(4) Update the transmitter beamforming weights

H H,~1
b; = (1+ X pevRoat) Wit WiroVRoak) ) VRealy Wit Pi

(7) Use Wi (;) corresponding to the value of N; that maximizes

ALGoRrITHM 2: Iterative beamforming for maximization of ASET lower bound.

as the objective function for maximization. The ASAINR can
be expanded generically as

pij (no, M)
- (/M) num {pij(no,no +m)}
B (1/M)SM- Y den {pij(no,no +m)}
(1/M) 3=y pi(no)bf (no) HY (@) H; (@) by (no)
1+(1/M)Zﬁ\n/[;é Zk#Pk (no)ka(WO)H?(am)Hj(am)bk(”O)

Pi(no)biH(nO)\/Rt,j (WO)M)H\/Rt,j(HO’M)bi(WO)

1+ S i (m0)bf (10) R 10, M) Ry (0, M) b (o)
(26)

>

where Ry (9, M) is the transmit correlation matrix from
(4) and a,, = ny + m. Note that (26) is in the exact
form of (18) used for maximizing throughput with CSIT
when the transmit correlation matrices are exchanged for
channel realizations. Thus, the same beamforming algorithm
used to maximize instantaneous throughput can also be
used to maximize the lower bound on average throughput
by simply swapping CDIT for CSIT. Algorithm 2 shows
the beamforming algorithm that utilizes CDIT (MMSE-
CDIT) with power optimization removed for computational
savings.

An important discrepancy between the MMSE-CSIT and
MMSE-CDIT beamformers is the use of channel duality
when updating the beamformer weights. With MMSE-CSIT
beamforming, the dual of the downlink channel is simply the
matrix Hermitian of the uplink and vice versa. However, for
MMSE-CDIT beamforming, the receive correlation matrix
is not generally the Hermitian of the transmit correlation
matrix. For example, if the transmitter is closely obstructed
by interferers or contains tightly spaced antennas, then (4)
will reflect more correlation than (5) and duality will not
hold. For this algorithm, however, SINR equality is only
required when the transmitter and receiver change roles, and
this is satisfied when using Rffj(no,M ) as the dual “channel”
for MMSE-CDIT.

Figure 5 plots SET for the CO-RCI and CDIT-MMSE
beamformers with the TDMA scheme provided as a baseline.
Channel coefficients for this plot were generated using Jakes’
model with a normalized Doppler of f; = 0.0086, N; =
N; = 4 antennas, K = 5 users, and P = 10. Spatial
correlation is added by creating transmit correlation matrices
with exponential decay where the element in the ith row and
jth column is given by

_ )i i=j
rij = ‘|ea(ij>z i (27)

For each user, a is chosen randomly from a uniform
distribution on the range [0.5,1] and y; is chosen to keep
relative gains on par with the measured data. After adding
spatial correlation to Jakes’ model, channel realizations are
normalized to match the overall gain of the measured
channel. Figure 5 again confirms the degradation of CO-
RCI with displacement originally observed in Figure 2.
However, the MMSE-CDIT beamforming provides a stable
throughput and provides the maximum ASET for the
algorithms considered. This result suggests that the beam-
forming weights produced by the MMSE-CDIT algorithm
reside in stable subspaces within the multiuser time-varying
MIMO channel. This stability can be seen by noting that
the throughput as a function of SINR and delay is only
based on the single set of beamformer weights produced
at zero delay and not adapted to channel conditions and
variations. It is also interesting to note that the SET crossover
distance dr for the CO-RCI beamformer in this spatially
correlated channel is larger than that observed for the
spatially white Jakes’ channel considered in Figure 2. This
observation suggests that spatial correlation provides an
innate robustness to channel temporal variation when used
with linear beamforming even when the correlation is not
explicitly used in the computation of the beamforming
weights.

Some comments regarding the MMSE-CDIT beam-
forming algorithm are necessary. First, it is important to
reinforce that for simulation purposes, the weights found
from the iterative MMSE-CDIT algorithm are treated like
standard beamforming weights of CO-RCI. In other words,
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the algorithm is used to find a single set of weights, and these
weights are fixed as the nodes move throughout the system.
No adaptive beamforming is considered for either case.
Second, one might consider using CDIT knowledge directly
with either DPC or CO-RCI. However, we have observed
that the resulting performance is lower than that obtained
from either the MMSE-CDIT beamformer or TDMA, and
therefore these approaches are not considered further in this
work.

6. SIMULATION RESULTS

Full assessment of the performance of the algorithms con-
sidered in this paper requires sweeping over a large number
of independent parameters, including available power at the
transmitter, number of transmit and receive antennas, node
velocities, channel spatial correlation, number of users, and
type of scattering environment. For measured channel data,
certain parameters (number of antennas, transmit power)
can be altered to some degree while others (scattering envi-
ronment, node velocities, number of users) are determined
by the operational environment. In this section, the SET
is examined for a fixed number of antennas and transmit
power level. The following conditions are imposed on the
simulations undertaken.

(i) Although the ordering of users could be optimized
to maximize information throughput [1], this paper
is focused on the performance degradation due to
channel-time variation for a specified ordering, and
therefore user signal encoding is performed in a fixed
order.

(ii) The measured data can accommodate a maximum of
six users in the broadcast channel.

(iii) Prior to node movement, both transmitter and
receiver share perfect (i.e., channel estimation error-
free) knowledge of the channel. As nodes move, the
receiver is assumed to always have the current CSI
while the transmitter only has the initial channel
state. This assumption suggests embedded training
symbols in the transmitted signal and error-free
channel estimation at the receiver with limited feed-
back to the transmitter.

(iv) Only a single, outdoor environment is used for the
measured data. The environment used in these sim-
ulations consists of pedestrian velocities in an urban-
like area surrounded by buildings and stationary
vehicles.

(v) When spatial correlation is used with the modeled
channel, the transmit correlation matrix is taken
from estimates generated by the measured channel.
Although results in this section are focused on the
measured data, we also provide results for the mod-
eled channel (i.e., spatially correlated Jakes’ model)
which allows for contrast between the two channels.

Figure 6 shows the SET of the four transmit precoders
examined in this work, namely nonlinear optimal DPC,
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FIGURE 5: Sample expected throughput versus displacement for

N; = N, = 4 antennas, K = 5 users, and P = 10 in Jakes’ model

with exponential spatial correlation and various transmit precoding
schemes.
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FIGURE 6: Sample expected throughput (SET) for N; = N, = 4,
K = 5,and P = 10 in the measured channel with various transmit
precoding schemes.

linear optimal BF (CO-RCI), the iterative beamformer
presented in this paper (MMSE-CDIT), and time division
multiple access (TDMA). The simulation uses the measured

data with N; = 4 transmit antennas and K = 3 users
each with N; = 4 antennas. The total available power is
fixed at P = 10 and nodes are displaced at a constant

pedestrian velocity. These results reveal that while DPC has
the highest possible throughput, it is also the most sensitive
to outdated CSIT as measured by the SET. Optimal CSIT
beamforming achieves an initial performance that is near
that of DPC and has a more graceful loss in performance
as nodes move. MMSE-CDIT beamforming throughput
performance is initially suboptimal, but remains constant
throughout the length of the simulation. It is clear that
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TaBLE 1: Performance metrics for three transmit precoders with two channel realizations.
DPC CO-RCI MMSE-CDIT
Modeled 1.43X\ 1.1 > 3A 1.327 > 3A 1.50
Measured 0.3\ 0.79 > 3A 1.17 > 3A 1.37
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FiGure 7: Sample expected throughput versus the number of users
for Ny = N; = 4 and P = 10 in the measured channel. There is no
lag between channel acquisition and use.

the SET crossover distance for MMSE-CDIT is beyond the
simulation region and is much larger than that of any other
precoder. As a reference, the SET crossover distance (dr)
and normalized ASET (S«/Stpma) for each of the transmit
precoders and channel models are provided in Table 1.
The differences between the results for the measured and
modeled channels stem from the fact that the model does
not necessarily capture the actual effects (such as temporal
correlation) present in the measured channels. Despite these
differences, the results for the two channel types suggest
the same performance trends with the most notable one
being that MMSE-CDIT beamforming outperforms all other
schemes for the metrics presented. Furthermore, it appears
that linear precoding even with outdated CSI provides some
robustness to channel temporal variations for the given
antenna correlations while the self-interference caused by
nonlinear precoding significantly degrades the system.

Figure 7 demonstrates scalability of the network for
different types of precoding when both transmitter and
receiver are equipped with perfect channel knowledge. The
simulation uses measured data with Ny = N, = 4 and
P = 10 with a variable number of receivers. These results
confirm the finding from Figure 1l that all schemes that
use some form of channel knowledge scale in throughput
versus the number of users. Figure 8 shows the results of
the same simulation performed with a displacement of

Number of users

FiGure 8: Sample expected throughput versus number of users for
N, = N; = 4 and P = 10 in the measured channel. There is a lag of
1.5\ between channel acquisition and use.

A = 1.5 between channel update and transmission. This
intriguing result reveals that the performance degradation
for DPC worsens as the network size increases. MMSE-
CDIT beamforming is impervious to mobility in the network
within the channel stationarity time and is the only precoder
that provides significant increase in performance with the
number of nodes for outdated transmit channel information.

7. CONCLUSION

This paper has examined the performance loss of transmit
precoding techniques in the multiuser, time-varying, MIMO
broadcast channel. The performance of the optimal transmit
precoding schemes was shown to be sensitive to both node
movement and increasing number of users when CSIT
is outdated. An iterative beamforming technique (MMSE-
CDIT) was developed that uses linear preprocessing to
maximize the average sample expected throughput of the
system. Simulation results using both modeled and measured
channels revealed that MMSE-CDIT beamforming provides
high stability in terms of throughput while offering higher
ASET and increased performance with the number of
users when compared to TDMA. The results suggest that
multiuser signaling strategies based on channel distribution
information can provide good performance for multiuser
mobile networks.
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APPENDIX 10!
AVERAGE SAMPLE EXPECTED THROUGHPUT
(ASET) BOUNDS T 0
= 107 ¢
Consider parameterizing the single-user, MISO, beamform- %
ing channel ergodic capacity into a function of scalar =
quantities as G 107
g
ols e
C=E[log (1+0:,2n>]’ (A.1) éo 102t
where s and n are random variables representing the signal 1o

and interference, respectively, and specific realizations are
assumed known at the receiver. The quantities ¢ and o?
are normalizing factors corresponding to the signal and
interference powers. Equation (A.1) is the composition of a
concave (log{-}) and quasiconvex (SINR) function leading
to the constrained bounds

2
CoPPer = Jog (1 + E[?]), (A.2)
ain
clover — Jog (14 ZEL] (A3)
= log o2En] )’ .

Equation (A.2) is always a true upper bound from Jensen’s
inequality and the concavity of the logarithm. The lower
bound is conditionally true since the composed ergodic
capacity is a quasiconvex function [29]. A straightforward
example of when the lower bound holds is when s is held
constant (i.e., signal power equalization over all time channel
realizations). Although the lower bound fails when the
interference is held constant, we later show numerically that,
since the distribution on the SINR is a function of both
channel realizations and beamforming weights, the lower
bound will hold for the channels of interest in this work.
Therefore, (A.3) is a constrained lower bound.

Since the MMSE-CDIT beamforming algorithm maxi-
mizes a bound rather than the exact ergodic capacity, we
are interested in the tightness of each bound. For small
SINR ¢2/0? < 1 the ergodic capacity can be approximated
using a first-order Taylor series expansion on the natural
logarithm

1=00 1 1
(-1) (025> o2s
= E s , s 1 (A.4)
Z; (2i)! ain a2 <
2
o ] = o

where the final approximation comes from applying the same
expansion to (A.2). For larger SINR 02/02 > 1, the ergodic
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02/02 (dB)
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Figure 9: Ergodic capacity with upper and lower bounds in an
interference limited, single-user system with m = 3 degrees of
freedom.

capacity can be approximated by

S
- E[log (%)] — E[ log (2n)]

= log (02) — log (07) + E[ log(s)] — E[ log(n)]

_ OSZE[S]> . lower
=lo (a,%E[n] =

(A.5)

where E[log(s)] — E[log(n)] = 0 if we assume that s and n are
i.i.d. random variables. Figure 9 plots ergodic capacity with
upper and lower bounds as a function of SINR when s and
n are chi-squared random variables each with three degrees
of freedom and a base-2 logarithm. Figure 10 results are for
measured data with various initial positions for N; = 4,
Ny = 1, K = 6, and P = 10. The optimal beamforming
weights are found using the CO-RCI algorithm and then
fixed as the channel changes over time. Similar results were
demonstrated for a variety of different datasets over all
possible starting displacements and various beamforming
algorithms.

The results show that C"PP¢" is tight for small SINR
while C'oY* is a better approximation for large SINR.
Since this work focuses on the high-capacity, multiuser,
broadcast channel, the high SINR region in Figure 9 is of
interest, suggesting that the lower bound provides a tighter
approximation to the actual ergodic (or sample) capacity
and should be used for the MMSE-CDIT beamforming
algorithm. It should be noted that (1) with beamforming the
signal gains will not necessarily follow the same distribution
as the interference plus noise and (2) the bound results from
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Figure 10: The average sample expected throughput (ASET) with
upper and lower bounds for various initial displacements. The
measured channel was used for a system with Ny = 4,N, = 1, K = 6,
and P = 10.

Figure 9 suggest performance in an ideal case. Even with
these limitations, however, the results in Figure 10 on bound
tightness still hold.
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