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A framework for the unification of statistical and structural information for pattern retrieval based on local feature sets is pre-
sented. We use local features constructed from coefficients of quantized block transforms borrowed from video compression
which robustly preserving perceptual information under quantization. We then describe statistical information of patterns by
histograms of the local features treated as vectors and similarity measure. We show how a pattern retrieval system based on the
feature histograms can be optimized in a training process for the best performance. Next, we incorporate structural information
description for patterns by considering decomposition of patterns into subareas and considering their feature histograms and their
combinations by vectors and similarity measure for retrieval. This description of patterns allows flexible varying of the amount of
statistical and structural information; it can also be used with training process to optimize the retrieval performance. The novelty
of the presented method is in the integration of information contributed by local features, by statistics of feature distribution, and
by controlled inclusion of structural information which are combined into a retrieval system whose parameters at all levels can be
adjusted by training which selects contribution of each type of information best for the overall retrieval performance. The pro-
posed framework is investigated in experiments using face databases for which standardized test sets and evaluation procedures
exist. Results obtained are compared to other methods and shown to be better than for most other approaches.
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1. INTRODUCTION

Visual patterns are considered to be composed of local
features distributed within the image plane. Complexity of
patterns may be virtually unlimited and arises from the
size of the local feature set and location of the features.
Two aspects of feature locations are worth emphasizing
from the description point of view, structural and statistical.
The structural aspect is concerned with precise locations of
features, reflecting geometry of patterns. Statistical aspect
concerns feature distribution statistics. The statistics plays
a descriptive role especially for very complex patterns in
which there are too many features for explicit description. In
real world, the combination of structural and statistical may
provide effective description and thus, for example, a leafy
tree is described by the structure of a trunk and branches
and statistics of features composing leafs. There has been
enormous number of studies in the pattern recognition and
machine learning areas on how to deal with the complexity

of patterns and develop effective methods for handling them,
as summarized in a substantial recent monograph [1]. The
approach presented in this paper is conceptually different in
dealing both with local features and combination with global
description within a unified framework of performance
optimization via training.

While the statistical description is rather easy to produce
by counting the features, the structural one is much more dif-
ficult because of potentially unlimited complexity of geom-
etry of feature locations. This creates a conceptual problem
of how to produce effective structural description harmo-
niously combined with the statistics of features. In this paper,
relation between structural and statistical aspects of pattern
description is studied and a unified framework is proposed.
This framework is developed from the database pattern
retrieval problem using statistics of local features. Robust
local feature set is proposed which is based on quantized
block transforms used in the video compression area. Block
transforms are well-known for excellent preservation of
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perceptual features even under strong quantization [2]. This
property allows efficient description of comprehensive set of
local features while reducing the information needed for the
description. Local feature descriptors are constructed from
the coefficients of quantized block transforms in the form
of parameterized feature vectors. Statistics of feature vectors
describing local feature distributions is easily and conve-
niently picked up by histograms. The histograms are treated
as vectors, and, with suitable metrics, used for comparison
of statistical information between the image patterns. This
allows us to formulate the problem of maximizing statis-
tical information by considering database pattern retrieval
optimization using feature vector parameters as shown in
previous paper [3]. Results of this process show that for
optimized statistical description, the correct retrieval rate for
typical images is high, but obviously the statistical approach
alone cannot account for structural properties of patterns. In
this paper, we aim to incorporate structural information of
patterns extending and generalizing previous results based
only on feature statistics. The development is based on a
framework in which structural information about patterns
is integrated with statistics of features into a unified flexible
description.

The framework is based on the decomposition of visual
patterns into subareas. The description of pattern subareas
by the statistical information is expressed in the form of
feature histograms. As a subarea is localized within the
pattern area, it contains some structural information about
the pattern. Subareas themselves can be decomposed. The
smaller the subarea is, the more structural information about
location of features it may contain. In an extreme case,
a subarea can be limited to single feature and this will
correspond to a single feature location. A pattern could
be described completely by the single feature subareas,
but this would be normally too complex and redundant.
Usually, the subareas used for the description will be much
larger and will only cover highly informative regions of
patterns reflecting important structural information. The
decomposition framework with subarea statistics described
by vectors of feature histograms allows to search for
description with reduced structural information refining the
performance achieved purely from the statistical description.
This is equivalent to searching for the decomposition with
minimal number of subareas. The bigger the subareas are, the
less structural information is included, this makes possible
for different tradeoffs between the structural and statistical
information.

We illustrate our approach on an example of face
image database retrieval task. The face database problem is
selected because of the existence of standardized datasets and
evaluation procedures which allow comparing with results
obtained by others. We present the statistical information
optimization and structural information reduction process
for face databases. Results are compared with other methods.
They show that with only the statistical description, the
performance is good and the introduction of little structural
information by combination of just few subareas is sufficient
to achieve near perfect performance on par with best other
methods. This indicates that little structural information,

combined with statistics of local features, can largely enhance
the performance of pattern retrieval.

2. LOCAL FEATURES FOR PATTERN RETRIEVAL

There has been very large number of local feature descriptors
proposed in the past [4–9]. Many of them consider edges
as most representative, but they do not reflect the richness
of the real world. In this paper, we propose to generate
a comprehensive local feature set based on perceptual
relevancy in describing sets of patterns. Basic requirement
for such feature sets is compactness in terms of size and
description. Such feature sets can be constructed based on
block transforms which are widely used in lossy image
compression. Block transforms based on the discrete cosine
transform (DCT) block transforms are well known for their
preservation of perceptual information even under heavy
quantization. This is very desirable for local feature descrip-
tion since it allows for robust elimination of perceptually
irrelevant information. The quantized transform represents
local features by a small number of transform coefficients
which provides efficient description.

The block transform used in this paper is derived
from the DCT and has been introduced in the H.264
video compression standard [10]. This transform is a 4 ×
4 integer transform and combines simple implementation
with size sufficiently small for describing features. The
forward transform matrix of the H.264 transform is denoted
by B f and the inverse transform matrix by Bi and has the
following form:

B f =

⎡
⎢⎢⎢⎣

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎢⎢⎣

1 1 1 1
1 0.5 −0.5 −1
1 −1 −1 1

0.5 −1 1 −0.5

⎤
⎥⎥⎥⎦ .

(1)

The 4×4 pixel block P is forward transformed to block H
as shown in (2), and the transform block R can subsequently
reconstructed from H using (3):

H = Bf × P × BT
f , (2)

R = BT
i ×H × Bi, (3)

where “T” denotes the transposing operation.
The transformed pixel block has 16 coefficients rep-

resenting block content in a “cosine-like” frequency space
(Figure 1). The first uppermost coefficient after the trans-
form is called DC and it corresponds to the average light
intensity level of a block, other coefficients are called AC
and they correspond to components of different frequencies.
These AC coefficients provide information about the texture
detail of a block. Typically, only lower-order AC coefficients
are perceptually significant, higher-order coefficients can be
eliminated by quantization. The distinctive feature of the
transform (2) is that even after heavy quantization, the
perceptual content is well preserved. On the other hand,
such quantization will also reduce the number of different
types of blocks. For such purpose, it is sufficient to use
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Figure 1: 4× 4 block transform 16 coefficients order.

scalar quantization with single quantization value Q. The
quantization value Q is a parameter used in within our
framework to maximize statistical information. A too small
value of Q results in producing too many local features; while
a too high value will limit the representation ability of the
feature set. For each application, a tradeoff must be made
when selecting proper value of Q. In our implementation,
both the transform calculation and quantization are done
by integer processing, which allows for rapid processing and
iterations with different values of quantization parameter.

3. FEATURE VECTORS ANDHISTOGRAMS

The quantized coefficients of block transforms are used for
the construction of local feature descriptions called feature
vectors. Feature vectors are formed by collecting information
from the coefficients of 3 × 3 neighboring transform blocks.
The ternary feature vector (TFV) described below is a param-
eterized feature vector; such parameterization provides addi-
tional mean for the maximizing statistical information.

3.1. Ternary feature vector

The ternary feature vector, proposed in [11], is constructed
from the collected same-order transform coefficients of nine
neighboring transform blocks. These nine coefficients form a
3× 3 coefficient matrix. The ternary feature vector is formed
by thresholding the eight out-of-center coefficients with two
thresholds resulting in a ternary vector of length eight. The
thresholds are calculated based on the coefficient values and
single parameter. Within each 3 × 3 matrix, assuming the
maximum coefficient value is MAX, the minimum value is
MIN, and the mean value of the coefficients is MEAN, the
thresholds are calculated by

T+ = MEAN + f × (MAX−MIN),

T− = MEAN− f × (MAX−MIN),
(4)

where the parameter f is a real number within the range
of (0, 0.5). Value of this parameter can be established in
the process of statistical information maximization. Our
subsequent experiments have shown that the performance
with the changing value of f has a broad plateau in the range
of 0.2 ∼ 0.4. For this reason, the value f = 0.3 is fixed.
When the thresholds (4) are calculated, the thresholding of

coefficients within the 3 × 3 block is done in the following
way:

0− the pixel value ≤ T ,

1− the pixel value otherwise,

2− the pixel value ≥ T+.

(5)

The TFV vector obtained in this way is subsequently
converted to a decimal number in the range of [0, 6560].
An illustration of the formation of the TFV based on the
0th transform coefficient is shown on example in Figure 2.
In the same way, the TFV vectors can be generated for
each of the other 15 coefficients from the transform shown
in Figure 1. However, many higher-order coefficients values
are practically zeroed after quantization. It has also been
found that some of the coefficients contribute to the retrieval
performance more significantly than others [3]. For this
reason, the TFVs generated from the 0th and 4th transform
coefficients are used in this paper.

3.2. Histograms of TFV

The global statistics of TFV vectors are described by their his-
tograms. The TFV histogram may have in general 6561 bins.
Two examples of such histograms are shown in Figure 3.

Statistical information of patterns can be compared using
the TFV histograms. This is done by calculating the L1 norm
distance (city-block distance) between two histograms (other
distance measures are computationally more complicated
and do not bring clear advantages to the proposed method
[3]). Denoting the histograms by Hi(b) and Hj(b), b =
1, 2, . . . L, the L1 norm distance is calculated as

D(i, j) =
L∑

b=1

∣∣Hi(b)−Hj(b)
∣∣. (6)

It can be seen in Figure 3 that there are large variations
in the values of the bins. The bins in the histograms can
be ordered according to their size. Small bins will not be
contributing significantly to the similarity measure (6) or
even harm its performance. Then the size of the histograms
can be adjusted and treated as parameter for global statistical
information optimization.

As mentioned above, the TFV used in this paper are
based on the 0th and 4th transform coefficients which
represent different types of information about local features.
The histograms for both coefficients can be combined by
forming concatenated vector. The length of the combined
TFV histogram equals to the sum of lengths of the two
subhistograms and the norm distance (6) is still applied as
the similarity measure.

Key aspects of the statistical description of patterns based
on feature vector histograms of presented are worth to
emphasize. The local feature set is derived from perceptually
robust description and it is parameterized by quantization
and thresholds. The form and size of this feature set
can be thus adjusted to from the most relevant set of
features. Features are used for the description of statistical
information by feature histograms. However, not all features
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Max = 17, Min = 10
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Figure 2: Formation of TFV vector: nine 0th coefficients are extracted from the neighboring 3× 3 transformed blocks. The corresponding
TFV is formed based on this 3× 3 coefficient matrix.
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Figure 3: (a) TFV histogram of 0th coefficient; (b) TFV histogram of 4th coefficient. The x-axis shows different TFV vectors. The y-axis
shows their corresponding probability distribution.

from the feature set have equal relevance. The feature
histogram can be adjusted by including only the features
relevant for the performance. There are thus two types
of parameters used for maximizing statistical information,
those acting locally on features and those acting globally
on the feature histograms. The parameters can be adjusted
for best performance using training. Performance can be
evaluated using the test dataset. Details of this process are
explained later in the paper.

4. FRAMEWORK FOR STRUCTURAL DESCRIPTION

The description of patterns by feature histograms does
not include information about the structure since locations
of local features are not considered. In general, structural

information may be very complicated due to the almost
unlimited complexity of patterns. The question is how
structural information could be described in an effective
way and in particular how it could be integrated with the
statistical information. Such description requires flexibility
in using statistics and/or structure which ever is more
appropriate. The framework for such integration of statistical
and structural information is described next.

4.1. Structural description of patterns by
subarea histograms

Assume that a pattern P is distributed over some area C.
Statistical description of the pattern proposed above uses its
feature histogram H calculated over a selected local feature
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The total length is 3M
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Figure 4: The pattern P is covered by the area C. The C is composed of three subareas: C1, C2, and C3. Single histogram is calculated from
each subarea. Each histogram contains M bins, which is corresponding to M features from the feature set F. Finally, the three histograms are
concatenated in a form of [H1 H2 H3], which is description of pattern P.

set F. This histogram can be used for comparison of patterns
based on their statistical content, but it does not provide any
structural description since information about the locations
of features within the area C is not available. To include such
information, we will now define covering of the pattern area
C by a set of subareas C1, . . . ,Cn. The subareas do not have
to be disjoint and they may have any shape and size. For
each subarea Cs, its corresponding subarea feature histogram
Hs, (s = 1, . . . ,n) can be computed. The description of
pattern P can now be done over the set of subareas using
their corresponding histograms H1, . . . ,Hn. This is done
by forming a vector with concatenated histograms HC =
[H1 · · ·Hn]. Patterns can now be compared using the city-
block metrics of their concatenated vectors as illustrated in
Figure 4.

The vector obtained by concatenating histograms of
subareas is not equivalent to the vector of the whole
pattern histogram even in the case when subareas make a
proper partition of the pattern area because the subarea
histograms are normalized. Hence the smaller the subarea,
the more features belonging to it are weighing in the distance
norm of the vector for concatenated histogram. At the
same time, subareas describe structural information due
to the fact that the in smaller subarea features are more
localized. In an extreme case, subareas can cover only a single
feature but such precise description of structural would
normally be not necessary. By increasing the size of subarea,
the structural information about features will be reduced
while the role of statistics will be increased. Combining a
number of subareas will provide combination of structural
and statistical information. Thus the histogram obtained
by concatenation of subarea histograms allows for flexible
description of global statistical and structural information.

4.2. The database retrieval problem and
system architecture

We consider a pattern database D = {P1, . . . ,PM}. The
database retrieval problem is formulated as follows. For some
key pattern Pi, we would like to establish if there are patterns
similar to it in the database under certain similarity criteria.
The similar patterns should be ordered according to the
degree of their similarity to Pi.

A set of b most similar patterns will be the retrieval
result, but sometimes there will be wrong patterns retrieved.
The problem is how to find K, which has small amount of
wrong patterns when compared with certain ground truth
knowledge about them. To solve this problem, the similarity
measure of patterns can be based on the feature histograms
of suitably selected local features set. One can then take
first n patterns for which similarity measure calculated for
all the patterns in the database D and the pattern Pi has
lowest values, these are patterns matching the Pi best. If
the histograms are calculated for the whole patterns, the
retrieval will be based on the statistical information only.
If this would give required performance level, no structural
information about location of features is necessary. This
will not always be the case and then structural information
of our framework has to be used to refine the perfor-
mance. For this, one has to decompose the pattern area
into subareas and form concatenated histograms. When a
proper covering is selected, the retrieval performance will
be improved when a covering maximizing the performance
measure is selected, such covering can be identified by
iterative search over the pattern area. If the covering is
found with minimum number of subareas and maximum
size, it provides minimal structural description needed to
complement the statistical one for a given performance
level. In this case, the overall computational complexity is
not essentially increased since once the covering is found,
the calculation of histograms for subareas is equivalent
to the calculation of a single histogram for the whole
pattern.

The proposed architecture of retrieval system for visual
patterns has several key aspects from the machine learning
point of view. First, the set of local features, which is robust
from perceptual point of view, is not selected arbitrarily
but by adjusting the quantization level of block transforms.
Second, the size of feature histograms is selectable. Third, the
pattern covering, that is, the scope of structural information
matched. The three key parameters: quantization level, size
of the histograms, and the pattern covering are optimized
by running the system on training pattern sets for best
performance under the similarity measure comparing to
the ground truth. The overall layered system architecture
is shown in Figure 5. As can be seen the system parameter
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Figure 5: The system architecture layers.

optimization is done on all layers, local (features), inter-
mediate (histogram), and high (covering), under the global
performance measure. The parameter space is discrete and
finite and thus the best parameters can be found in finite
time. The range of quantization values and histogram sizes
is very limited making only the search for covering more
demanding.

5. RETRIEVAL SYSTEM PERFORMANCE EVALUATION

The proposed system has been extensively tested with
retrieval from face databases. Although the method is not
limited or specialized to faces, the advantage of using face
databases for performance evaluation is the existence of
widely used standardized datasets and evaluation procedures
which enables comparison with other results. This is espe-
cially in the case of FERET face image database maintained
by the National Institute of Standard and Technology (NIST)
[12]. NIST published several releases of FERET database, the
release used in this paper is from October 2003, called color
FERET database. The color FERET database contains overall
more than 10,000 images from more than 1000 individuals
taken in largely varying circumstances. Among them, the
standardized FA and FB sets are used here. FA set contains
994 images from 994 different objects, FB contains 992
images. FA serves as the gallery set, while FB serves as the
probe set.

For the FERET database, standardized evaluation
method based on performance statistics reported as cumu-
lative match scores (CMSs) which are plotted on a graph is
developed [13, 14]. Horizontal axis of the graph is retrieval
rank and the vertical axis is the probability of identification
(PI) (or percentage of correct matches). On the CMS plot,
higher curve reflects better performance. This lets one to
know how many images have to be examined to get a desired
level of performance since the question is not always “is the
top match correct?”, but “is the correct answer in the top
n matches?” (These are the first n patterns with the lowest
value of similarity measure). However, one should notice that
only few publications so far have been made based on release
in 2003, many other references are based on other releases.
For comparison, we also list the results from publications
using both releases. The comparison for different releases
can be only approximate due to the different datasets. In
addition, the detail setup of experimental data of each
method may be different (e.g., preprocessing, training data,

version of test data). Before the experiments, all the source
images are cropped to a rectangle containing face and a
little background (e.g., the face images in Figure 3). They
are normalized to have the same size. Eyes are located in
the similar position according to the information available
in FERET. Such approach is widely used to ensure the same
dimensionality of all the images. However, we did not remove
the background content at the four image corners (using an
elliptical mask), which is believed be able to improve the
retrieval performance [15]. Simple histogram normalization
is applied to the entire image to tackle the luminance
changes.

5.1. The training process for parameter optimization

The training process for parameter optimization for the face
database is shown in Figure 6. A set of FERET face images
is preprocessed by histogram normalization and next the
4× 4 block transform is calculated. Subareas with structural
information are selected, and for specific selection of the
quantization parameter QP the combined TFV histograms
are formed. Based on the histograms, the first b (b = 5)
database picture best matching to query picture are found
and compared to ground truth by calculating the percentage
of incorrect matches. Next, the subareas, the QP, and the
length of the histograms are changed and the process is
repeated until the combination of the parameters is found
providing the lowest percentage of errors.

Since there is no standard training process for the
color FERET database (release 2003), to minimize the
bias introduced by different selection of training data, we
repeated our “training + testing” experiment for five times,
each time with a different training set. The process is

(1) five different groups of images are randomly selected
to be the training sets. Every training set contains 50
pairs of image (all are different from other training
sets); the remaining 944 images in FA and 942 images
in FB are used together as the testing set;

(2) five parameter sets are obtained from the five
training sets, respectively. Each parameter set will
be applied to the corresponding testing set (the
remaining 942/944 images) for evaluation of retrieval
performance. The outcome is five CMS curves;

(3) the resulted five CMS curves are averaged, which is
the final performance result.

The conclusions obtained from these five training indepen-
dent experiments seem to be more robust and effective than
other works which use only one training data set [16–18].
The testing system is illustrated in Figure 7.

5.2. Performance of the retrieval system
using full image

We first studied the system performance without using
subareas, that is, for the full image. Results for different types
of TFV vectors are shown in Table 1. The CMS Rank-1 scores
results based on the DC-TFV, AC-TFV histograms, and their
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Figure 6: The parameter training process.

Table 1: Results of using complete image.

Test-A (the whole image)

DC-TFV AC-TFV DC-TFV + AC-TFV

Rank-1 CMS
score (%)

92.84 64.31 93.65

combination show that the combined histograms based on
the DC and AC coefficients is best and the level of 93% is
quite high. This is the starting point and reference for the
following results. We will refer to this experiment as Test-A in
the following. From the results in Table 1, it can be seen that
DC-TFV histograms provide much better results than AC-
TFV, reason for this is that feature vectors constructed using
DC coefficients pickup essential information about edges.
AC TFV vectors play only complementary role, picking up
information about changes in high-frequency components.

5.3. Performance of TFV histograms
using single subarea

In the next series of experiments, we studied the performance
using single subarea of pictures. The goal was to check if the
performance can be higher than full picture. We will refer to
this experiment as Test-B. Since the numbers of location and
size of possible subareas are very large, we generated a sample
set of 512 subareas defined randomly and covering the image
(Figure 8). The retrieval performance of each subarea is
obtained by one retrieval experiment. Since we have five
training sets for cross-validation, the final result is actually
a matrix of 5 × 512 CMS scores. They are further averaged
to be a 1 × 512 CMS vector. The maximum, minimum, and
mean of these 512 CMS scores is shown in Table 2.

One can see from it that there is very wide perfor-
mance variation for different subareas. The DC-TFV subarea
histograms always perform markedly better than DC-TFV
histograms, but their combination performs still better in the
critical high-performance range. Comparing to the case of
full image histograms before, one can see that performance

Table 2: Results of using single subarea.

Test-B (1-PID)

Rank-1
CMS score
(%)

DC-TFV AC-TFV DC-TFV + AC-TFV

Maximum 93.77 60.77 95.30

Minimum 9.01 1.69 12.94

Mean 56.59 20.99 62.11

Table 3: Results of using two subareas.

Test-C (2-PID)

Rank-1
CMS score
(%)

DC-TFV AC-TFV DC-TFV + AC-TFV

Maximum 97.76 81.94 97.70

Minimum 47.54 13.47 52.50

Mean 79.06 43.89 82.56

for best subareas can indeed be better both for DC-TFV and
combination of DC-TFV and AC-TFV histograms, but not
by high margin. This indicates, however, that even better
performance can be achieved by combining subareas.

5.4. Performance of TFV histograms combined
from two subareas

Selection of subarea can be seen as adding structural
information to the statistical information described by the
feature histogram. This reasoning is justified by comparing
the performance obtained from the best subarea and full
image (Tables 1 and 2). Continuing this line of thinking, a
reasonable way to improve the performance is by increasing
the structural information combining two subareas. To check
for this possibility, an experiment continuing the Test-B was
made by randomly selecting two subareas from different
image regions. Based on the above 512 subareas in Test-
B, 216 combinations of two subareas were used in Test-
C for which results of are shown in Table 3. Even from
this testing of a very limited set of two subareas, one can
see by comparing results from Tables 1, 2, and 3 that
for the best subareas, the performance for two subareas is
significantly improved than using one subarea or full image.
Interpreting this in terms of structural information tells
that introducing additional structural information indeed
improves the system performance.

5.5. Full image by subareas processing

In the above experiments, only the selected subarea(s) was
used, the rest of the image is skipped. It may be argued that
this does not use full image information and may result in
diminished performance. Due to this reason, we consider
here the case when subareas histograms are combined with
the histogram of the rest of the image. We call this case the
full-image decomposition (FID) case, in distinction to the
previous partial-image decomposition (PID) case. The FID
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Figure 7: Training process: the optimal parameter set from five training sets is utilized separately, which give five CMS scores. The overall
performance of given subarea will be evaluated as the average of above five CMS scores. 50 pairs of images selected from FA and FB are
used as the training set. The remaining 944 images in FA and 942 images in FB are used together as the testing set. Such “training + testing”
process has been repeated five times. Since the training sets for each time are different from each other; therefore, the testing sets for each
time are also different from each other. However, the number of different image pairs between any two tests is 50 out of 942.

Figure 8: Some example subareas over the face image.

case can also be compared to retrieval with the full-image
histogram. In the full-image histogram, all features have the
same impact for similarity measure, while in the FID case,
selection of a subarea means increasing the impact of its
features in the similarity measure.

The retrieval performance results of the FID case are
shown in Table 4, which allows us to compare them with
the previous PID cases. In Table 4, Test-D refers to the FID
case with single subarea and Test-E refers to the case with
two subareas, they are called, respectively, 1-FID (1-subarea
FID) and 2-FID (2-subarea FID). One can see that again
the results of the FID case are better than the results of PID
from Tables 2 and 3. Remembering that in both cases of FID
and PID full-image information is taken for retrieval, the

Table 4: Retrieval results of the FID cases.

Test-D (1-FID)

Rank-1
CMS score
(%)

DC-TFV AC-TFV DC-TFV + AC-TFV

Maximum 97.94 82.82 98.06

Minimum 31.49 7.48 35.04

Mean 84.12 51.42 86.48

Test-E (2-FID)

Rank-1
CMS score
(%)

DC-TFV AC-TFV DC-TFV + AC-TFV

Maximum 98.43 89.31 98.71

Minimum 76.15 45.28 80.54

Mean 92.87 71.30 94.14

reason why the FID provides better performance is that the
subarea histograms emphasize information when they are
combined comparing to the histogram of full image and this
contributes to the retrieval discriminating ability. In other
words, subareas in the FID case add structural information
to the statistical information obtained from the processing
of whole image.

5.6. Searching for the best subareas

As can be seen from the previous results, selection of
proper subareas is critical for achieving best retrieval results.
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Figure 9: Example subareas from the first step of searching.

Table 5: Comparison between the results of Test-B and Test-F for the single subarea. The difference between the resulting CMS scores is less
than one percent.

Test-B and Test-D, normal searching Test-F, fast searching

Rank-1 CMS score (%) DC-TFV DC-TFV + AC-TFV DC-TFV DC-TFV + AC-TFV

1-PID 93.77 95.30 92.72 94.70

1-FID 97.94 98.06 97.16 97.52

Table 6: Comparison between the results of Test-C and Test-G for two subareas. The difference between the resulting CMS scores is less than
one percent.

Test-C and Test-E, normal searching Test-G, fast searching

Rank-1 CMS score (%) DC-TFV DC-TFV + AC-TFV DC-TFV DC-TFV + AC-TFV

2-PID 97.76 97.70 96.83 96.31

2-FID 98.43 98.71 98.23 98.37

Table 7: List of the referenced results based on release 2003 of FERET database.

Reference [16] [17] [18] [19]

Method
Landmark bidimensional

Landmark Combined subspace Template matching
Proposed 2-FID method,

regression fast searching

Rank-1 CMS (%) 79.4 60.2 97.9 73.08 98.37

Table 8: List of the referenced results based on different releases.

Reference [20] [21] [22]

Method PCA-L1 PCA-L2 PCA-Cosine ICA-cosine Boosted local features JSBoost

Rank-1 CMS (%) 80.42 72.80 70.71 78.33 94 98.4

Table 9: Comparison of asymptotic behavior between the proposed method against ARENA and PCA-based techniques.

Methods Training time Retrieval time Storage space

PCA-nearest-centroid O(N3 + N2d) O(cm + dm) O(cm + dm)

PCA-nearest-neighbor O(N3 + N2d) O(Nm + dm) O(Nm + dm)

Arena O(Nd) O(Nm + d) O(Nm)

Proposed method O(sNa) O(Nm + a) O(Nm + 4r)

Table 10: Running times of 2 subarea examples.

Running time (sec) Training time Retrieval time Time for retrieving one image

2-PID, one coefficient 0.1908 21.7069 2.304× 10−2

2-FID, one coefficient 0.2946 30.5330 3.433× 10−2

2-PID, two coefficients 1.7172 54.3845 5.773× 10−2

2-FID, two coefficients 3.0340 98.5200 10.459× 10−2
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Since the number of possible subareas is virtually unlimited,
searching for the best ones may be rather tedious. For
specific class of images, like faces, this may not even be
necessary since searching for subareas defining informative
parts of faces can be helped with simple heuristics. We
applied heuristics based on the assumption that informative
areas of faces can be outlined by rectangles covering the
width of images. Search for the best subarea is then limited
to sweeping pictures in the training sets with rectangles of
different heights and widths. In order to speed up the search
procedure, while at the same time keeping the good retrieval
performance, we applied here a three-step searching method
over the training sets. The searching procedure is thus as
follows:

(1) rectangular areas covering the width of images with
different heights are considered in the first step. For
example, in our experiments with images of size
412×556 pixels, the height of areas is ranging from 40
to 160 pixels, with the width fixed at 400 pixels. The
rectangular areas are swept over the picture height
in steps of 40 pixels, as shown in Figure 9. From
here, we have 32 subareas, which is a small subset of
above 512 subareas. The subarea giving best result is
selected as the candidate for the next step;

(2) the vertical position of the above candidate is fixed
and now its width is changed. A number of widths are
tested with the training dataset and the one with best
performance is selected. Here, the number of tested
widths is 16. After this, the subarea giving best result
is selected as the candidate of for the next step;

(3) searching is performed within the small surrounding
area of the best candidate rectangle. The one giving
best result is selected as the final optimal subarea.

The results from the three-step searching are shown in
Test-F and Test-G in Tables 5 and 6 in comparison to Test-B,
-C, -D, and -E, respectively. The three-step searching method
saves a lot of time in searching process, while the differences
between corresponding CMS performances are mostly less
than one percent, which is a very good result due to the large
savings in the computation and the small size of the training
set.

As can be seen from Table 6, the best result of fast
searching is 98.37%. It is obtained for two subareas and
combination of DC and AC TFV vectors. This result is very
close to the overall best result in Test-E in Table 8 which is
98.71% obtained without the fast searching. The results are
much better than obtained by other methods and it is in the
range of best results obtained to date as shown next.

5.7. Comparisonwith othermethods

In order to compare the performance of our system with
other methods, we list below some reference results from
other research for the FERET database. These results are
all obtained by using the FA and FB set of the same
release of FERET database. In [16], the eigenvalue-weighted
bidimensional regression method is proposed and applied

to biologically meaningful landmarks extracted from face
images. Complex principal component analysis is used for
computing eigenvalues and removing correlation among
landmarks. An extensive work of this method is conducted
in [17], which comparatively analyzed the effectiveness of
four similarity measures including the typical L1 norm,
L2 norm, Mahalanobis distance, and eigenvalue-weighted
cosine (EWC) distance. A combined subspace method is
proposed in [18], using the global and local features obtained
by applying the LDA-based method to either the whole or
part of a face image, respectively. The combined subspace
is constructed with the projection vectors corresponding to
large eigenvalues of the between-class scatter matrix in each
subspace. The combined subspace is evaluated in view of the
Bayes error, which shows how well samples can be classified.
The author of [19] employs a simple template matching
method to complete a verification task. The input and model
faces are expressed as feature vectors and compared using a
distance measure between them. Different color channels are
utilized either separately or jointly. Table 7 lists the result of
above papers, as well as the result of 2-subarea FID (2-FID)
case of our method. The results are expressed by the way of
Rank-1 CMS score.

In addition, we also list in Table 8 some results based
on earlier releases of FERET database. They are cited from
publications [20–22] which are using popular methods like:
PCA, ICA, and Boosting. Although they are not strictly
comparable with our results due to the different release used,
they illustrate that our method is among the best to date.

The proposed method has also low complexity and it
is based only on simple calculations without the need for
advanced mathematical operations. In order to compare
the computational complexity and storage requirements of
different approaches, we use the evaluation method from
[23]. The following notations have been defined:

c: number of persons in the training set;

n: number of training images per person;

N: total number of training images: N = cn;

d: each image is represented as a point in Rd, where d is
the dimensionality of the image;

m: dimension of the reduced representation: number of
stored weights, number of pixels (s2), or number of
bins of histogram. Normally, d ≥ m;

s: number of different subarea rectangles applied to
the image during the training process. For the fast-
searching case, s = 64 ∼ 70;

a: number of pixels within (i.e., size of) the applied
subarea(s) a < d;

r: number of subareas utilized. For this paper, r ∈ {0,
1, 2}.

The asymptotic behavior of the various algorithms is
summarized in Table 9. The proposed method is compared
to the results for ARENA [24], PCA-Nearest-Centroid [25],
and PCA-Nearest-Neighbor [26], which is cited from [23].
As one can see, the proposed method is simpler than
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listed PCA-based methods, but is more complicated than
ARENA, especially for the training process. However, one
should also notice that ARENA is an alternative way of
using 0th coefficient here. This is because the 0th coefficient
here actually represents the average of local pixel block. In
addition, the training in [23] requires multiple images per
subject, while in our case we need only two images per
subject.

We also evaluated the running times for the 2-subarea
case using PC with Intel 1.86 GHz CPU and 2GB RAM
is used for testing. Both the 2-FID and 2-PID are tested
with either one coefficient or two coefficients in the TFV.
The comparison between histograms of two images is the
basic unit of the whole training and retrieval process.
The whole training process of one training set contains
20000 interimage comparisons; the whole retrieval process
(942 probe images and 944 gallery images) contains 889248
interimage comparisons. The corresponding running times
are shown in Table 10.

6. CONCLUSIONS

In this paper, a framework for combining statistical and
structural information of patterns for database retrieval is
proposed. The framework is based on combining statistical
and structural aspects of feature distributions. Feature his-
tograms of full images represent purely statistical informa-
tion. Decomposition of images into subareas adds structural
information which is described by combined concatenated
histograms. The number of the subareas as well as their
size, shape, and locations is reflecting the complex nature of
structural information.

In our approach, we reduce information needed for
retrieval on several levels. First, features which are used are
based on the coefficients of quantized block transforms. The
ternary feature vectors are constructed from the coefficients
by thresholding which further reduces feature information.
Next, the information in feature histograms is decreased by
reducing their length during the retrieval training process.
Finally, image subareas are selected and combined to provide
best performance. We present image database retrieval sys-
tem in which parameters at all levels are adjusted by learning
to provide best correct retrieval rate. To illustrate the retrieval
capabilities, experiments are performed using standard face
databases and evaluation methods. Performance evaluation
shows that very good results are obtained with little struc-
tural information which is obtained by combining feature
histograms from two face image subareas and the rest of
the image. The resulting performance obtained is compared
to and shown to be better than for other methods using
the same evaluation methodology with FERET database.
The presented framework is general and allows for flexible
incorporation of structural information by decomposition
into more subareas, resulting in even better performance.
Our results illustrate what can be achieved when structural
information combined into the statistical framework is
minimized, which is equivalent to the reduction of the
number of subareas used in the decomposition. It turns out
that surprisingly little structural information is needed to

achieve better performance than in other existing methods
when statistical and structural information are properly
combined.
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