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problem is also addressed subject to the integer-bit restriction and the optimal discrete solution is examined using combinatorial
optimization methods. Furthermore, we investigate the duality conditions of the rate maximization and margin maximization
problems and we highlight various ideas for low-complexity loading algorithms. This article surveys and reviews existing results
on resource allocation in constrained multicarrier systems and presents new trends in this area.
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1. INTRODUCTION

Multicarrier modulation (MCM) [1, 2] is well recognized
as an efficient and powerful transmission technique that
has been adopted by various standard committees for both
wireless [3–6] and wireline [7–9] systems. MCM provides
important benefits including, among others, efficient band-
width optimization, enhanced spectrum utilization, low
equalization complexity, and multi-user potentiality. More-
over, MCM is widely used in new application fields, such as
powerline communications (PLC) [10, 11], and wireless lo-
cal area networks (WLANs) [12–14] due to its recognized
value to confront various channel impairments, including
frequency selectivity, intersymbol interference (ISI), and im-
pulse noise.

The principle of MCM is the spectrum decomposition
into a set of orthogonal narrowband subchannels by uti-
lizing complex exponentials as information-bearing carri-
ers. Two important MCM techniques have widespread use:
orthogonal frequency-division multiplexing (OFDM) [14]
mainly employed in wireless applications and discrete multi-
tone (DMT) [15] used in wireline systems. Both OFDM and

DMT employ the fast Fourier transform (FFT) for spectrum
decomposition, hence data transmission is performed in
blocks. In order to avoid ISI and to preserve orthogonal-
ity, a cyclic prefix is introduced at the expense of a data
rate loss [16]. Using the cyclic prefix, the system carriers
can be viewed as separate independent channels, on which
different information rates can be transferred by utilizing
constellations of different sizes.

The allocation of bits and power to the subchannels is
a fundamental aspect in the design of multicarrier systems.
The allocation problem is known as bit and power load-
ing and is based on loading algorithms, which aim to dis-
tribute the total number of bits and the available power over
the subchannels in an optimal way that maximizes perfor-
mance and preserves a target quality of service. In fact, the
bit and power loading is a constraint optimization problem
and generally two cases are of practical interest [17]: rate
maximization (RM) and margin maximization (MM), where
the objective is the maximization of the achievable data rate
or the achievable system margin, respectively. In fact, mar-
gin maximization is equivalent to power minimization given
a target data rate. The loading problem defines a set of
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constraints imposed either by recommendation rules and
specifications [18], or by practical limitations and imple-
mentation issues [9]. Such constraints include total available
power budget, power spectral density (PSD) mask, integer
number of bits per subcarrier, and so forth.

Adaptive loading is possible only when channel state
information (CSI) is known both at the transmitter and
the receiver. In wireless applications, the channel is time-
varying and therefore OFDM systems usually employ the
same constellation in all carriers. On the other hand, the
wireline channel is treated either as almost constant or as
slow time-varying, and therefore CSI can be sent to the trans-
mitter by a feedback link. Thus, in DMT applications, the uti-
lization of different signal constellations per subchannel by
adaptive bit and power loading is of great importance, and as
the number of subchannels required in commercial applica-
tions [9, 17] increases, the development of efficient loading
algorithms is a challenging task.

The literature contains several loading algorithms
proposed for DMT-based systems. These algorithms con-
sider either the RM or the MM problem, and two general
classes can be distinguished. The first class of loading algo-
rithms treats the allocation problem using numerical meth-
ods that employ Lagrange optimization, which in general re-
sults in real numbers for optimum bit allocation [19–22].
However, for practical applications, the number of bits per
subchannel is restricted to integer values, and thus, the above
algorithms include a final suboptimum bit-rounding step.
The integer-bit constraint imposes a combinatorial struc-
ture in the loading optimization problem. The second class
of loading algorithms employs discrete greedy-type methods
in order to obtain the optimum integer-bit allocation results
[23–27].

This article aims at providing a tutorial survey on the bit
and power loading in constrained multicarrier systems and at
reviewing the most popular results on the loading algorithms
for the RM and MM problems. We examine the single-
user communications scenario, that is, a point-to-point link
between a DMT-based transmitter and a receiver. We start
out with a short introductory overview of the multicarrier
basics. Then, the loading problem is considered only subject
to a total power constraint and the classical water-filling solu-
tion is discussed using the Lagrange multipliers optimization
approach. Next, the peak-power constraint is included and
the concept of cup-limited water-filling is introduced. The
loading problem is also addressed subject to the integer-bit
restriction and the optimal discrete solution is examined us-
ing combinatorial optimization methods. Moreover, we in-
vestigate the duality conditions of the RM and MM loading
problems and we highlight some ideas for low-complexity
loading algorithms. This article aims to provide the basic
knowledge for more complex and challenging problems of
bit and power allocation in constrained multicarrier systems
under the multi-user context.

2. MULTICARRIER LOADING

MCM decomposes the channel spectrum into a set of N
orthogonal narrowband subchannels of equal bandwidths

[1]. For each subchannel i, where 1 ≤ i ≤ N , a rate function
R(Pi) is defined, which gives the number of bits bi that can
be transmitted using power Pi. The rate function depends on
the maximum probability of error that can be tolerated and
the applied modulation and coding schemes, which we as-
sume to be shared among all the subchannels. In addition, we
assume the existence of the inverse functionR−1(bi), namely,
power function, which gives the power Pi required for the
transmission of bi bits. We consider practical QAM-coded
MCM, where the rate function is given by the following log-
arithmic expression in bits per two-dimensional symbol:

bi = log2

(
1 +

Pi · gi
Γ

)
, (1)

where gi = |Hi|2/Ni is the gain-to-noise ratio of subchannel
i, Hi is the channel frequency response, Ni is the noise power,
and Γ is the SNR gap expressing the loss, in terms of SNR,
between the actual rate bi conveyed by the used transmis-
sion scheme and the theoretical capacity achieved for Γ = 1
(0 dB).

The SNR gap is calculated according to the “gap-
approximation” analysis [15, 28], based on the target error
probability Pe, the applied coding gain γc, and the system
performance margin γm. Some useful comments on the va-
lidity limits of the “gap-approximation” can be found also in
[21]. When QAM transmission is employed, we can write

Γ = 1
3
·
[
Q−1

(
Pe

4

)]2

· γm
γc

, (2)

where Q−1 is the inverse of the well-known Q-function
defined as

Q(x) = 1√
2π

∫∞
x
e−y

2/2 dy. (3)

Note that the margin γm in (2) expresses the SNR degra-
dation immunity, which the system designer tries to achieve,
so that the MCM performance is maintained for the desired
probability of error. The higher the system margin is, the
more power is required for a given probability of error. On
the other hand, as the coding gain γc increases, the transmis-
sion rate approaches the system capacity.

Since OFDM and DMT systems usually require the same
error rate for all subchannels [15], in the rest of this article
we will consider that Γ is embedded in the gis, that is, gi ≡
|Hi|2/(Ni · Γ) for 1 ≤ i ≤ N . From (1), it is clear that the
power function is defined by the exponential expression

Pi = 2bi − 1
gi

(4)

while the total power and the total data rate of the multicar-
rier system are, respectively,

P =
N∑
i=1

Pi, B =
N∑
i=1

bi. (5)
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The loading problem aims at determining the optimal
distribution of the available power in all subchannels. Using
the rate and power functions, (1) and (4), respectively, the
optimal distribution of the available power is transformed
into an optimal distribution of the achievable data rate over
the subchannels, and vice versa. The loading problem is
formulated as a multivariable constraint optimization prob-
lem. The optimization objective is the maximization of the
rate function (RM case), or the minimization of the power
function (MM case), subject to a set of constraint func-
tions that reflect system limitations and restrictions. In the
following sections, we formulate the loading problem, ini-
tially only subject to the total power budget constraint, and
afterwards when the peak-power restriction per subchannel
is also included.

3. TOTAL POWER-CONSTRAINED LOADING

Let Pbudget denote the total power budget and Btarget denote
the desired data rate. The RM and MM loading problems are
formulated as follows.

RM loading problem:

max
N∑
i=1

log2

(
1 + Pi · gi

)
,

subject to
N∑
i=1

Pi ≤ Pbudget,

Pi ≥ 0, ∀i : 1 ≤ i ≤ N.

(6)

MM loading problem:

min
N∑
i=1

2bi − 1
gi

,

subject to
N∑
i=1

bi = Btarget,

bi ≥ 0, ∀i : 1 ≤ i ≤ N.

(7)

We observe that the logarithmic expression in (6) is
a strictly increasing and concave function of Pi, while the
exponential expression in (7) is a strictly increasing and con-
vex function of bi [29]. As a result, we recognize that both
RM and MM belong to the class of convex optimization
problems with convex constraint sets, and therefore a unique
global solution exists. Moreover, we observe that both prob-
lems are nonlinear. The optimal solution is calculated by
forming the corresponding Lagrangian function and apply-
ing the Kuhn-Tucker conditions [30].

From the MM problem formulation in (7), it is clear
that margin maximization is equivalent to power minimiza-
tion. In fact, given a target data rate, the MM objective is
to determine (from all possible bit allocations that corre-
spond to a data rate equal to the target one) the optimum
bit allocation, which requires the least total power. The ad-
ditional power, that is, the difference between the available
power budget and the total power of the optimum bit alloca-
tion, is used in order to increase the system margin γm in (2).

g−1
i

Kr

Pi = Kr − g−1
i

g−1
i

i

Not used Not used

1

Subchannels

N

Figure 1: Water-filling rate maximization. The shaded area
represents the total available power.

Note that for the MM problem, we assume that the available
power budget is sufficient to support the desired target rate,
otherwise the problem in (7) has no solution. Based on this
assumption, a total power budget constraint is not included
in (7).

3.1. Ratemaximizationwater-filling

The optimal solution to the RM problem is given by the
following relation, which is known as the water-filling for-
mula:

Pi =
{
Kr − g−1

i for all used subchannels,

0 otherwise,
(8)

where Kr is a constant value depending on the total power
budget.

The solution in (8) can be best described using Figure 1.
The spectrum can be considered as a vessel and the shape
of the bottom of this vessel is determined by the inverse
of gi values. We can say that the available power is poured
over the spectrum vessel, so that the subchannels covered
by the water-level Kr are assigned power, while the remain-
ing subchannels are not used at all (water-filling is also re-
ferred to as water-pouring). Assuming that the subchannels
are sorted,1 the water-level Kr is

Kr =
Pbudget

Mr
+

1
Mr

Mr∑
i=1

g−1
i , (9)

1 The subchannels are said to be sorted (in descending order) when g1 ≥
gi ≥ gN for 1 ≤ i ≤ N .
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where Mr is the total number of the used subchannels
determined according to the following criteria:

Pbudget

Mr
+

1
Mr

Mr∑
i=1

g−1
i ≥ g−1

Mr
,

Pbudget

Mr + 1
+

1
Mr + 1

Mr+1∑
i=1

g−1
i < g−1

Mr+1.

(10)

An iterative algorithm that determines the water-filling
RM solution by using an initial sorting of the subchannels’
gain-to-noise ratio values is described in [20]. When the
subchannels are sorted, the objective of the loading algo-
rithm is to determine the cut-off subchannel Mr and the con-
stant Kr . Sorting is not a trivial task when the number of sub-
channels is large. In general, this task dominates the com-
putational complexity of all practical algorithms for water-
filling, so the complexity is O(N log2 N).

The optimum bit allocation is derived by (1) and (8),
which results in the following compact formula:

bi =
{

log2(Krgi) ∀i : 1 ≤ i ≤Mr ,

0 otherwise
(11)

while the total data rate is

B =
N∑
i=1

bi =Mr log2

(
Kr
)−

Mr∑
i=1

log2

(
g−1
i

)
. (12)

Remark 1. By combining (8) and (9), we derive that the op-
timal solution uses all the available power budget, that is,
the total power constraint in (6) is met with equality. More-
over, we observe that as more power budget is available,
the water-level in (9) becomes higher and as a consequence,
more subchannels may be turned on, as long as (10) im-
plies a higher value for Mr . Therefore, a higher power budget
corresponds to a higher water-level, which generally results
in the utilization of more subchannels and thus in a higher
data rate.

Remark 2. From (8) and (9), we can write the optimum
power allocation using the following expression:

Pi =
Pbudget

Mr
+

(
1
Mr

Mr∑
m=1

g−1
m − g−1

i

)
, ∀i : 1 ≤ i ≤Mr.

(13)

The first term is a constant power portion, while the
second term is the distance between the mean of the in-
verse gain-to-noise ratios of all used subchannels and the g−1

i

of each subchannel. Figure 2 illustrates this remark, where
the subchannels are sorted. Observe that for subchannel i
the distance of g−1

i to the mean value is positive, while for
subchannel j, the distance is negative.

Remark 3. Figure 2 also illustrates a characteristic feature
of the water-filling allocation strategy: water-filling allocates
more power to the strongest subchannels.

Pbudget

Mr

Subchannels

1 i j Mr + 1 N

g−1
i

Kr

∣∣∣∣∣
1
Mr

Mr∑
m=1

g−1
m − g−1

i

∣∣∣∣∣
∣∣∣∣∣

1
Mr

Mr∑
m=1

g−1
m − g−1

j

∣∣∣∣∣

Pi

g−1
i

P j

g−1
j

Figure 2: Graphical representation of (13).

3.2. Marginmaximizationwater-filling

Using the Lagrange multipliers method and applying the
Kuhn-Tucker conditions, we can derive the optimal solution
to the MM problem in (7) as follows:

bi =
{
Km − log2

(
g−1
i

)
for all used subchannels,

0 otherwise,
(14)

where Km is constant and depends on the target data rate.
Assuming that the subchannels are sorted in a descending

order, Km is given by

Km =
Btarget

Mm
+

1
Mm

Mm∑
i=1

log2

(
g−1
i

)
, (15)

where Mm is the total number of used subchannels
determined according to the following criteria:

Btarget

Mm
+

1
Mm

Mm∑
i=1

log2

(
g−1
i

) ≥ log2

(
g−1
Mm

)
,

Btarget

Mm + 1
+

1
Mm + 1

Mm+1∑
i=1

log2

(
g−1
i

)
< log2

(
g−1
Mm+1

)
.

(16)

The analogy between (9) and (10) of the RM problem
with (15) and (16) will be evident, as soon as we calculate the
power of each subchannel allocated with bi bits according to
(14). Using (4), we get

Pi =
{

2Km − g−1
i ∀i : 1 ≤ i ≤Mm,

0 otherwise.
(17)

In (17), we observe that the optimum bit solution to
the MM problem results in a power distribution that fol-
lows a water-filling power allocation as in the RM problem.
Therefore, a power distribution, similar to the one shown in
Figure 1, holds also for the MM problem. In this case, the
constant water-level is equal to

2Km = 2Btarget/Mm

Mm∏
i=1

(
g−1
i

)1/Mm (18)
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while the total power is given by

P =
N∑
i=1

Pi =Mm2Km −
Mm∑
i=1

g−1
i . (19)

Remark 4. We observe in (18), that the higher the target rate,
the higher the water-level and consequently more subchan-
nels may be used, as long as (16) implies a higher value for
Mm. As a result, a higher target rate requires a higher total
power consumption.

3.3. Duality conditions between RMandMMproblems

The RM and MM problems admit a unique water-filling
solution. The following proposition holds.

Proposition 1. Let (bwi ,Pw
i ), for 1 ≤ i ≤ N , be a water-filling

bit and power allocation, where
∑N

i=1 b
w
i = Bw and

∑N
i=1 P

w
i =

Pw. Then,

Bw = max
Pw

N∑
i=1

bi, Pw = min
Bw

N∑
i=1

Pi. (20)

Proof. We have shown in Section 3.1, that a water-
filling power allocation provides the unique solution that
maximizes the data rate subject to a total power constraint.
In fact, the whole power budget is consumed (see Remark 1).
Therefore, any other allocation (bi,Pi) with

∑N
i=1 Pi = Pw re-

sults in a total rate of
∑N

i=1 bi < Bw. Therefore, the first part
of (20) is true.

Moreover, we have shown in Section 3.2, that a water-
filling bit allocation provides the unique solution that
minimizes the total power subject to a target rate constraint.
Therefore, any other allocation (bi,Pi) with

∑N
i=1 bi = Bw

results in a total power of
∑N

i=1 Pi > Pw. Consequently, the
second part of (20) is also true.

From the analytical expressions derived for the RM and
MM problems, there exists a duality between the RM and
MM problems under specific conditions. We are now in
the position to define these conditions in the form of the
following theorem.

Theorem 1. Let (bri ,P
r
i ), for 1 ≤ i ≤ N , be the solution to the

RM problem, where
∑N

i=1 b
r
i = Br . Then, (bri ,P

r
i ) is also the

solution to the MM problem with Btarget = Br . Equivalently, let
(bmi ,Pm

i ), for 1 ≤ i ≤ N , be the solution to the MM problem,
where

∑N
i=1 P

m
i = Pm. Then, (bmi ,Pm

i ) is also the solution to the
RM problem with Pbudget = Pm.

Proof. Using Proposition 1, for the RM solution (bri ,P
r
i ), we

can write

Pr =
N∑
i=1

Pr
i = min

Br

N∑
i=1

Pi (21)

which implies that (bri ,P
r
i ) is also the solution to the MM

problem, when Btarget = Br .

Similarly, for the MM solution (bmi ,Pm
i ), we can write

Bm =
N∑
i=1

bmi = max
Pm

N∑
i=1

bi (22)

which implies that (bmi ,Pm
i ) is also the solution to the RM

problem, when Pbudget = Pm.

4. TOTAL POWER AND PEAK-POWER
CONSTRAINED LOADING

When introducing the peak-power constraint, the optimiza-
tion problem becomes more complicated. Let Pi, for 1 ≤ i ≤
N , denote the maximum allowable power per subchannel.
In multicarrier systems, a power spectral density (PSD) mask
constraint is usually imposed by regulatory rules in order to
control the level of interference into other communication
systems operating in the neighborhood, for example, [18].
The RM and MM problems are formulated as follows.

RM loading problem:

max
N∑
i=1

log2

(
1 + Pi · gi

)
,

subject to
N∑
i=1

Pi ≤ Pbudget,

0 ≤ Pi ≤ Pi, ∀i : 1 ≤ i ≤ N.

(23)

MM loading problem:

min
N∑
i=1

2bi − 1
gi

,

subject to
N∑
i=1

bi = Btarget,

0 ≤ bi ≤ bi, ∀i : 1 ≤ i ≤ N.

(24)

In the RM problem, we observe that the peak-power con-
straint upper bounds the possible power allocation in each
subchannel. In the MM problem, the peak-power constraint
is transformed into a maximum bit allocation constraint,
denoted as bi for 1 ≤ i ≤ N , which upper bounds the possible
bit allocation in each subchannel and is defined by

bi = log2

(
1 + Pi · gi

)
. (25)

The RM and MM problems in (23) and (24) also belong
to the class of convex optimization problems with convex
constraint sets, and therefore a unique global solution exists.
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Max-filled Max-filled

Bottom

Cover
P

Not used Not used

1

Subchannels

N

g−1
i

Kr

Figure 3: The concept of “cap-limited” water-filling.

(1) sort gis in descending order

(2) set j = 1
(3) apply WATER-FILLING (8)–(10),

over subchannels j, . . . ,N
(4) if Pj > P j then

(5) set Pj = P j

(6) reduce the available power

Pbudget = Pbudget − P j

(7) update j = j + 1
(8) go to step (3)

(9) end if

Algorithm 1: Cap-limited water-filling.

4.1. Ratemaximizationwater-filling

By using the Lagrange multipliers approach and applying the
Kuhn-Tucker conditions, we can derive the optimal solution
to the RM problem in (23) as follows2:

Pi =
⎧⎨
⎩
Pi if

∑N
i=1 Pi ≤ Pbudget,

[Kr − g−1
i ]Pi

0 if
∑N

i=1 Pi > Pbudget,
(26)

where Kr is a constant and is determined by the solution to
the following nonlinear equation:

N∑
i=1

[
Kr − g−1

i

]Pi

0 = Pbudget. (27)

The RM solution in (26) is again water-filling, however
in this case, the spectrum vessel has a limited depth of Pi and

2 The following notation is used, where x, a, and c are real numbers with

a > c: [x]ac =

⎧⎪⎪⎨
⎪⎪⎩
a, x ≥ a,

x, c < x < a,

c, x ≤ c.

g−1
1

P1 Pi

g−1
i

Kw

g−1
i

1 i

Subchannels

M + 1 N

Figure 4: The optimal water-filling.

is covered by a cap. When Pi = P for all subchannels, then
the shape of the cap is identical to the vessel’s bottom, that
is, the inverse of the gis. The concept of the “cap-limited”
water-filling is illustrated in Figure 3 subject to a common
PSD mask for all subchannels.

In order to obtain the solution in (26), we need to
determine the constant Kr . In Section 3.1, an iterative al-
gorithm for the calculation of the water-level of the total
power constrained RM was presented. When the peak-power
constraint is introduced, the RM problem in (23) can be
treated using an iterative water-filling process [21], which is
described using the pseudocode of Algorithm 1.

Algorithm 1 is optimal, however its direct implementa-
tion is not efficient and presents O(N2) complexity. In or-
der to overcome such a high computational load, an iterative
algorithm of reduced complexity can be constructed by ex-
ploiting the fact that in every new iteration of Algorithm 1,
the participating subchannels are allocated more power with
respect to the previous iteration.

First, consider the optimal water-filling solution in
Section 3.1, which is described in Figure 4, where the sub-
channels are sorted. Denoting as PN = [P1,P2, . . . ,PN ] the
optimum N-point water-filling power vector, PN satisfies the
following set of equations:

P1 + · · · + PM = Pbudget,

Pi > 0, ∀i : 1 ≤ i ≤M,

Pi + g−1
i = Kw, ∀i : 1 ≤ i ≤M,

(28)

where Kw is the water-level and subchannels from M+1 to N
are turned off, that is, they are loaded with zero power, and
the following proposition holds.

Proposition 2. Given the sorted water-filling power alloca-
tion vector PN , if one removes subchannels 1, . . . ,L and reduces
Pbudget by

∑L
i=1 Pi, then the new optimal water-filling solution

is the (N −L)-point power vector PN−L = PN −{P1, . . . ,PL} =
[PL+1, . . . ,PN ].
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(1) sort gis in descending order

(2) set j = 1
(3) apply WATER-FILLING (8)–(10),

over subchannels j, . . . ,N
(4) set M = j
(5) if Pj > P j then

(6) update M =M + 1
(7) if PM > PM then

(8) go to step (6)

(9) else

(10) set Pi = Pi, for i = j, . . . ,M− 1
(11) reduce the available power

Pbudget = Pbudget −
∑M−1

i= j Pi

(12) set j =M
(13) go to step (3)

(14) end if

(15) end if

Algorithm 2: Low-complexity cap-limited water-filling.

Proof. We prove for L = 1. Let P′N−1 = [P′2, . . . ,P′N ] be the
optimum vector. Then, P′N−1 should satisfy (28):

P′2 + · · · + P′M′ = P′budget,

P′i > 0, ∀i : 2 ≤ i ≤M′,

P′i + g−1
i = K ′w, ∀i : 2 ≤ i ≤M′,

(29)

where P′budget = Pbudget−P1, K ′w=(P′budget+
∑M′

i=2 g
−1
i )/(M′−1),

and subchannels from M′ + 1 to N are turned off.
For M′ =M, the constant K ′w becomes

K ′w =
1

M − 1

(
Pbudget − P1 +

M∑
i=2

g−1
i

)

= 1
M − 1

[(
Pbudget +

M∑
i=1

g−1
i

)
−
(
g−1

1 + P1

)]

= 1
M − 1

(
M · Kw − Kw

) = Kw.

(30)

From (28) and (30), we derive that the power vector
PN−1 = [P2, . . . ,PN ] satisfies (29) and therefore PN−1 is the
optimal vector. The proof for L > 1 is similar.

As suggested by Algorithm 1, if the power allocated to
subchannel i (staring from the one with the highest gi) ex-
ceeds Pi, then we set Pi = Pi, reduce Pbudget by Pi, ex-
clude subchannel i from the optimization problem, and per-
form water-filling to the remaining subchannels. Since Pbudget

is reduced by an amount of power less than the optimal
power assigned by the previous water-filling, then according
to Proposition 2 and Remark 1, the new solution has higher
Kw and additional subchannels may be turned on. As a re-
sult, all subchannels participating in the next water-filling
will be assigned additional power. Based on this remark, the
new optimal algorithm is described by the pseudocode in
Algorithm 2.

Algorithm 2 is explained using Figure 5 subject to
common PSD mask for all subchannels. Given the initial

g−1
1

P1

Pi

g−1
i

P

Knew
w

Kw

g−1
i

M
new

1 i M

Subchannels

M + 1 N

Mnew + 1

Figure 5: Graphical representation of iterative water-filling.

water-filling solution with cut-off subchannel index M and
water-level Kw, the algorithm determines the first subchan-
nel, denoted as M, where the power assignment does not
violate P. Then, it upper bounds all subchannels from 1 to
M−1 with P and reduces the power budget by the total power
assigned so far. At the next step, the algorithm proceeds to
successive water-filling over the subchannels ranging from M
to N . The new water-filling solution determines a new higher
water-level, Knew

w , corresponding to new subchannel indexes
M

new
> M and Mnew ≥ M. This procedure is repeated until

the water-filling allocation does not violate P in any of the
subchannels involved in the new iteration.

The complexity improvement of the iterative water-
filling scheme described by Algorithm 2 compared with
Algorithm 1 depends on the total number of iterations that
water-filling has executed. If L ≤ N is the number of itera-
tions, then the computational complexity of Algorithm 2 is
O(N(L + log2 N)). The lower is L compared to N , the higher
is the computational complexity improvement. In [21], a
suboptimum algorithm for the RM problem in (23) is de-
scribed that uses an iterative search-secant method to deter-
mine the root of (27), by noting that (27) admits a root when∑N

i=1 Pi > Pbudget. The search-secant process is subject to a
tolerance variable that affects the speed of convergence, as
well as the accuracy of the final result. Generally, there is a
tradeoff between the speed of convergence and accuracy. The
method presents a computational complexity that grows lin-
early with L′N , where L′ is the number of the search-secant
iterations.

Remark 5. Similar to Remark 1, we observe from (26) and
(27) that the optimal “cap-limited” water-filling solution
consumes the total available power budget.

4.2. Marginmaximizationwater-filling

In order to obtain the optimal solution to the peak-power
constrained MM problem, we will use the duality between
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the RM and MM problems developed in Section 3.3. We
have shown in Section 3.2 that the optimal bit solution for
the MM problem under a total power constraint results in
a power allocation, which follows a water-filling distribu-
tion. Given a peak-power constraint, this power allocation
should also follow the “cap-limited” water-filling concept of
Figure 3. The optimal bit solution to (24) is therefore given
by

bi =
[
Km − log2

(
g−1
i

)]bi
0

, ∀i : 1 ≤ i ≤ N , (31)

where Km is the solution to the following nonlinear equation:

N∑
i=1

[
Km − log2

(
g−1
i

)]bi
0
= Btarget. (32)

It can be easily verified that Theorem 1 applies also for
the total and peak-power constrained RM and MM prob-
lems.

5. INTEGER-BIT CONSTRAINED LOADING

The Lagrangian methods described in the previous sections
provide the optimal loading solutions, where generally the
bit assignment in each subchannel takes real values. How-
ever, due to implementation constraints, only integer bit val-
ues are of practical interest, that is, design of realistic con-
stellation encoders and decoders. As a consequence, the pro-
posed Lagrangian algorithms in the literature include a final
suboptimal bit-rounding step with appropriate power scal-
ing to preserve the power budget and target error rate con-
straints.

The integer-bit constrained loading problem, also re-
ferred to as discrete loading, belongs to the class of combi-
natorial optimization problems. The RM and MM formula-
tions of the previous sections apply here, along with the ad-
ditional integer-bit constraint: bi ∈ Z+ for 1 ≤ i ≤ N .

Remark 6. The monotonicity and concave nature of the rate
function in (1), along with the monotonicity and convex
nature of the power function in (4), as well as of the cor-
responding discrete incremental (33) and decremental (34)
power cost functions defined below, guarantee the existence
of a unique optimum solution for each of the RM and MM
discrete loading problems based on appropriate greedy algo-
rithms. The optimality is addressed in [26, 31, 32], using the
matroid theory.

5.1. Optimumgreedy algorithms

The solution to the integer-bit loading problem is provided
using a greedy algorithm, which defines an appropriate bit al-
location cost function and iteratively assigns one bit at a time
to the least cost-expensive subchannel. In general, a greedy
algorithm is characterized by the following two properties
[33]. First, at each step, the algorithm always moves its op-
erating point along the direction that guarantees the largest
increment (decrement) to the assigned objective function
to be maximized (minimized). Second, a greedy algorithm

proceeds only in a forward way, that is, it never tracks back.
Two greedy loading methods are used: the bit-filling [23, 31]
and the bit-removal [25, 32].

Considering that subchannel i carries bi bits, the power
needed to transmit one more bit in this subchannel is given
by

ΔP+
i

(
bi
) = 2bi

gi
, ∀bi : 0 ≤ bi < bi (33)

while the power saved by removing one bit from this
subchannel is given by

ΔP−i (bi) = 2(bi−1)

gi
, ∀bi : 0 < bi ≤ bi (34)

and the maximum3 number of bits that can be assigned to
each subchannel is

bi =
⌊

log2

(
1 + Pi · gi

)⌋
. (35)

The incremental power in (33) constitutes the cost func-
tion of the bit-filling process, while the decremental power
in (34) constitutes the cost function of the bit-removal pro-
cess. In particular, the bit-filling algorithm starts from an
initial all-zero bit allocation, bi = 0 for 1 ≤ i ≤ N , and
then adds one bit at a time to the subchannel that requires
the minimum additional power until the total power bud-
get is consumed (RM case) or the target rate is achieved
(MM case). On the other hand, the bit-removal algorithm
starts from an initial maximum bit allocation, bi = bi for
1 ≤ i ≤ N , and then removes one bit at a time from the
subchannel that saves the maximum power until the target
rate is achieved (MM case). Note that if

∑N
i=1 Pi ≤ Pbudget,

the maximum bit allocation bi = bi used initially by the bit-
removal algorithm, is the direct solution to the RM case. In
Appendix A, the following theorem is proved.

Theorem 2. Given a target rate Btarget, the bit-filling and bit-
removal algorithms result in the same optimum bit and power
allocation.

The following remarks are also in order.

Remark 7. For the nondiscrete RM problems formulated in
the previous sections, we have noted that the optimal solu-
tion results in the consumption of the total available power
budget. In the discrete RM problem, however, the optimum
integer-bit solution results in total power that is generally less
or equal to the power budget.

Remark 8. Although bit-filling and bit-removal provide the
same solution, the computational load associated with each

3 In practice, a maximum size in the embedded constellation is also im-
posed [7]. Let bmax denote the maximum number of bits that can be allo-
cated in a subchannel. Then, (35) is written as bi = min(bmax, 
log2(1 +
Pi · gi)�).
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method mainly depends on the target data rate. The com-
plexity of the bit-filling is O(BtargetN), while the complexity
of the bit-removal is O((Bmax − Btarget)N), where Bmax is the
data rate corresponding to the bi bit-profile. If Btarget is close
to Bmax, then bit-removal converges faster.

Remark 9. If bit-filling is left free to proceed above Btarget, by
adding one bit at a time to the least power cost-expensive
subchannel, then it will terminate at the bi allocation.

Also for the discrete loading RM and MM problems,
there exist exact conditions for their equivalence, as in the
water-filling case. Theorem 1 developed in Section 3.3 holds
also for the case of discrete loading, where the only differ-
ence is that due to the integer-bit allocation, the MM solution
under the duality conditions is also the RM solution with
Pbudget ≥ Pm (see Theorem 1 for details). The proof is given
in Appendix B. Another approach is provided in [34].

5.2. Efficient integer-bit allocation profiles

The high computational load of the greedy bit-filling and bit-
removal algorithms is an important disadvantage for prac-
tical systems with large number of subchannels and high
data rate demands. In [27], an efficient discrete bit allocation
profile was developed by recognizing that the order of the
subchannels, which participate in the single-bit incremental
process of bit-filling, is specific and includes a characteristic
circular repetition.

The characteristic bit allocation profile is calculated as
follows:

b′i =
{⌊

log2

(
kimin

)⌋
+ 1, i = imax,⌊

log2

(
kimin

)⌋− ⌊ log2

(
ki
)⌋

otherwise,
(36)

where imax = arg max{gi}, imin = arg min{gi}, and ki =
gimax /gi for 1 ≤ i ≤ N .

The allocation b′i depends only on the system gi values
and presents an optimum bit allocation profile of a con-
tinuous greedy bit-filling process, where any total power or
peak-power constraints are at the moment ignored. In other
words, if bit-filling is continuously applied, then it will reach
the allocation b′i after

∑N
i=1 b

′
i steps, where

∑N
i=1 b

′
i is the data

rate that corresponds to the b′i profile. From (36), we observe
that b′i = 0 for i = imin. Depending on the value of ki, b′i
may be zero for other subchannels as well. Assuming that the
subchannels are sorted, that is, imax = 1 and imin = N , the
following remarks are in order.

Remark 10. Given allocation (36) and assuming that bit-
filling is applied, then one bit has to be added to all the
subchannels i : 2 ≤ i ≤ N , before we can further increase
the bits in subchannel i = 1 by one. The order, in which the
subchannels are assigned by one more bit, depends on the
power cost function (33) of each subchannel and generally it
does not coincide with the descending order of the gi values.

Remark 11. If bit-removal is applied in (36), then one bit is
first removed from subchannel i = 1 and then, one bit has

to be removed from all the subchannels i : 2 ≤ i ≤ N∗,
before we can further decrease the bits in subchannel i = 1
by one, where N∗ corresponds to the first nonzero bit-loaded
subchannel.

The importance of allocation (36) in providing low com-
plexity bit loading follows from Remarks 10 and 11 along
with the next theorem.

Theorem 3. The integer bit allocation bi = [b′i + z]bi0 , for 1 ≤
i ≤ N and z ∈ Z, is efficient [35]:

ΔP+
i

(
bi
) ≥ ΔP+

j

(
bj − 1

)
, ∀i, j : 1 ≤ i, j ≤ N. (37)

Proof. This theorem is proved by substituting bi = [b′i + z]bi0

in (33) and showing that (37) is true,∀i, j : 1 ≤ i, j ≤ N .

Theorem 3 states that every up- or downshift of (36) cor-
responds to an optimum discrete bit allocation under the
power minimization goal, taking also into account the low
(all-zeros) and the upper (bi) bounds of the valid bit vectors.
In [27], the following theorem was proven.

Theorem 4. b′imax
− bimax = max

{
b′i − bi},∀i : 1 ≤ i ≤ N .

According to Theorem 4, if (36) is shifted by Δb = b′imax
−

bimax , then bi ≥ b′i − Δb, ∀i : 1 ≤ i ≤ N , where the sign
of Δb determines the up- or downshift. This is illustrated in
Figure 6 for the two possible cases, where the subchannels are
sorted. In Figure 6(b), the b′i profile violates the maximum
allowable allocation bi in some of the subchannels. This is
due to the fact that profile (36) does not include any power
or PSD restrictions.

Using Theorem 4, along with Remarks 10 and 11, we can
use the bit-profile b′i as an initial optimum allocation and
then perform a multiple-bit addition or removal process, that
converges to the optimum bit solution with no more than
a single bit difference per subchannel. In the following sec-
tion efficient loading algorithms for the discrete RM and MM
problems are presented.

6. LOW-COMPLEXITY INTEGER-BIT LOADING

In the previous section, it was made clear that in each allo-
cation step, the greedy algorithm updates the bit-profile ac-
cording to a power cost function until the system constraints
are met, that is, the total power budget is consumed for the
RM case or the target data rate is achieved for the MM case.
At the end of the greedy process, the respective objective is
satisfied, that is, rate maximization or margin maximization.
The system constraints define a pair of low and maximum
bit allocation limits. The greedy loading process can be de-
scribed as a continuous bit-by-bit allocation procedure, since
at each step it updates the bit-profile by moving on efficient
bit allocations, see (37), within the set of all possible bit-
profiles. For the RM problem, the upper bit allocation limit
is determined by the total power budget constraint, while for
the MM problem the upper bound is directly calculated by
(35). In fact, the upper bound forthe RM problem coincides
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Figure 6: Examples of the b′i bit-profile with respect to the bi upper bound.

with the rate maximization solution. In the rest of this sec-
tion, we present efficient discrete loading algorithms by ex-
ploiting the characteristic bit-profile b′i defined in (36). These
algorithms are based on a multiple-bit loading process that
moves the b′i profile towards the optimum solution.

6.1. Discrete ratemaximization

First, we address the total power constrained problem. In
contrast to the case of a PSD mask, where the maximum
allowable bit allocation is directly determined by (35), the
bit upper limit in the total power constrained problem is
not straightforward. However, we know from Theorem 3 that
every shift of the b′i bit-profile corresponds to an efficient al-
location. Thus, if the available power budget is not exceeded,
the new bit allocation is valid within the system constraints.

Since there is no explicit bit upper limit defined, we will
use notation [x]ac with a = ∞, that is, [x]∞0 = max(x, 0). The
data rate and total power of bit allocation b′i +α, where α ∈ Z,
are, respectively,

B(α) =
N∑
i=1

[
b′i + α

]∞
0 , P(α) =

N∑
i=1

2
[
b′i +α
]∞

0 − 1
gi

. (38)

Let P(0) < Pbudget. In order to obtain the maximum pos-
sible data rate, we want to upshift profile b′i by α ≥ 0, so that

P(α) ≤ Pbudget < P(α + 1). (39)

From (38), we can write

P(α) = 2α
(
P(0) +

N∑
i=1

g−1
i

)
−

N∑
i=1

g−1
i . (40)

Using (40), we derive the integer solution of (39) as

α =
⌊

log2

(
Pbudget +

∑N
i=1 g

−1
i

P(0) +
∑N

i=1 g
−1
i

)⌋
. (41)

The difference between the total power budget and the
power corresponding to the b′i profile upshifted by (41) may
allow the allocation of a limited number of additional bits,
less than N . We can use the greedy bit-filling process to allo-
cate these bits.

If P(0) > Pbudget, then we want to downshift profile b′i
by α ≤ 0, so that (39) also holds. Note that |α + 1| < |α|,
when α ≤ 0. It turns out that α is given by (41). Since the
value of |α| may be greater than the smallest nonzero value
of b′i for 1 ≤ i ≤ N , the total power of the downshifted bit-
profile [b′i + α]∞0 may be higher than expected and therefore
additional downshifting may be necessary. In this case, the
new value of α is calculated using (41), where the upper limit
of the summations is replaced by N∗, which denotes the to-
tal number of nonzero bit-loaded subchannels, and P(0) is
replaced by the total power P(α), which corresponds to the
downshifted bit profile of the previous step. At the end of the
downshift process, we use greedy bit-filling to add any addi-
tional bits less than N∗ if there is available power. The pseu-
docode in Algorithm 3 describes the low-complexity discrete
loading for the total power constrained RM problem.

In the case of a peak-power constraint, the optimum RM
solution can be calculated by directly allocating bi bits and
then, if necessary, we perform bit-removal in order to discard
the most power-expensive bits until the total power con-
straint is met.
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(1) calculate initial bit-profile b′i
(2) calculate total power P(0) from (38)
(3) calculate α from (41)
(4) if α 
= 0 then

(5) set b′i = max(0, b′i + α) for 1 ≤ i ≤ N
(6) calculate P(α) from (38)
(7) go to step (3)

(8) else if power available then

(9) do GREEDY BIT-FILLING
(10) end if

Algorithm 3: Discrete total power constrained rate maximization.

6.2. Discretemarginmaximization

In the MM problem, we assume that the total power budget is
sufficient in order to support the desired target rate. As in the
previous section, we first address the total power-constrained
loading. Given the initial bit-profile b′i with a total data rate
of B(0), see (38), we can perform multiple-bits loading by
directly calculating the allocation bi = [b′i + α]∞0 , where

α =
⌊
Btarget − B(0)

N∗

⌋
. (42)

In (42), N∗ is the total number of nonzero bit-loaded
subchannels, as defined in Remark 11, and the sign of α
depends on whether data rate increase (if Btarget > B(0)) or
decrease (if Btarget < B(0)) is required. The new bit allo-
cation bi = [b′i + α]∞0 is efficient according to Theorem 3
and optimum under the power minimization goal. How-
ever, when downshift is performed, the resulting data rate
might be greater than expected due to the low (zero) bit-
limit. Therefore successive, but limited, number of multiple-
bits loading steps may be necessary until α becomes zero.
Then, according to Remarks 10 and 11, the bit-profile allo-
cated so far differs from the target rate solution at most in
a single bit per subchannel. The remaining bits can be allo-
cated to the appropriate subchannels based on the respective
cost function (33) or (34). The pseudocode in Algorithm 4
describes the low-complexity MM loading.

The above results also hold for the peak-power con-
strained loading. However, in this case, two important points
should be noted. First, an explicit bit upper limit exists and
the data-rate expression in (38) becomes

B(α) =
N∑
i=1

[
b′i + α

]bi
0 . (43)

Second, in (42), the value of α is calculated by the
difference between the desired rate and the rate of the
bounded b′i profile. Since the difference between b′i and [b′i ]

bi
0

may be large, a result of a = 0 may not indicate the maxi-
mum of one bit difference convergence. In order to overcome
such a situation, if b′imax

violates the upper limit bimax , we apply
Theorem 4 and move the b′i bit-profile within the bit-limits.

(1) calculate initial bit-profile b′i
(2) calculate total rate B(0) from (38)
(3) calculate α from (42)
(4) if α 
= 0 then

(5) set b′i = max(0, b′i + α) for 1 ≤ i ≤ N
(6) calculate B(α) from (38)
(7) go to step (3)

(8) else if target rate not met then

(9) do GREEDY BIT-FILLING
(10) end if

Algorithm 4: Discrete total power-constrained margin maximiza-
tion.

6.3. Numerical example

Figure 7 shows an example of bit and power allocation us-
ing the CSA(6) standard ADSL loop in Table 47 of ANSI
T1.413-1995 [36]. The system parameters are: N = 256 sub-
channels, subcarrier spacing 4.3125 kHz, −140 dBm/Hz ad-
ditive white Gaussian noise (AWGN) plus near-end crosstalk
(NEXT) generated by 20 high-rate DSL (HDSL) neighbor-
ing lines, and a 40-kHz lower band edge. The loading con-
straint values are: −40 dBm/Hz PSD mask, 100 mWatt total
power budget, and bmax = 15. We also consider 6 dB margin
and 3 dB coding gain. Assuming a maximum bit-error rate of
10−7, the corresponding SNR gap equals 12.8 dB.

Figure 7 shows the maximum bit allocation, bi, the ini-
tial bit allocation, b′i , and the target bit allocation that cor-
responds to 80% of the maximum possible data rate, that is,
Btarget = 0.80 ·∑N

i=1 bi. Figure 7 also shows the transmit PSD
that corresponds to the maximum and the target rate alloca-
tion. The sawtooth shape of the PSD is common to all dis-
crete bit-loading algorithms and is the result of the stepwise
power distribution due to the integer bit constraint. Since
there is a 40-kHz lower band edge, subchannels 1–9 are not
used. Also, note that for the requested target rate, the loading
algorithm does not utilize subchannels 28–52. The remaining
power, that is, the difference between the total power of the
target rate allocation and the power budget, can be used in
order to increase the system margin in all subchannels.

In [27], numerical results show that exploiting the effi-
cient bit allocation profile described in Section 5.2, a compu-
tational complexity improvement of up to 6 times compared
with the greedy bit-filling and the bit-removal methods is
achieved. Although the results correspond to the case of to-
tal and peak-power constraints, the complexity improvement
for the total power constraint is only the same or higher. In-
deed, in the latter case, the algorithm experiences less differ-
ences between the actual and the expected power or rate (step
6 of Algorithms 3 and 4), thus the optimum bit-allocation is
reached with less shifting operations of the b′i profile. It has
to be noted that according to Remarks 10 and 11, the shifting
of the b′i profile converges to the target rate with only one
bit difference per subchannel. Therefore, the final greedy bit-
filling or bit-removal steps in Algorithms 3 and 4 require only
the calculation of the cost function (33) or (34) and the deter-
mination of the least or most power-expensive subchannels,
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Figure 7: Example of bit and power allocation using the CSA(6)
standard ADSL loop.

respectively. As a result of Remarks 10 and 11, after each sub-
channel selection, there is no need to update the correspond-
ing cost function, thus the total complexity of the final greedy
process is reduced.

6.4. When perfect CSI is not known

The bit and power loading algorithms described in the
previous sections presume that an estimation of the instanta-
neous CSI, that is, the subchannel gain-to-noise ratio values,
is available. When the channel is constant or slow time vary-
ing, this is not a complex task. For “always on” links, such
as DSL, CSI is obtained during the modems’ training. For
burst transmission, such as in wireless LANs, CSI can be esti-
mated using a suitable preamble structure or inbound train-
ing information. However, in order to account for the limi-
tations imposed by the time-varying behavior of the wireless
channels, such as noisy or outdated CSI, alternative adaptive
MCM schemes have gained research attention, for example,
statistical adaptive MCM and adaptive MCM with partial
CSI. References [37–39] can motivate the interested reader
on this topic.

7. CONCLUSIONS

In this work, we surveyed the area of bit and power loading
in constrained multicarrier communication systems in the
single-user context. We discussed the optimal solutions to the
main classes of loading problems, namely, rate maximization
and margin maximization, under a set of specification and
implementation constraints. We presented the water-filling
power allocation policy under a total power constraint and

the cap-limited water-filling concept was introduced when
the peak-power constraint is included. Moreover, the loading
problem was addressed subject to the integer-bit restriction
and the optimal discrete solution was examined using combi-
natorial optimization methods. We reviewed existing loading
algorithms and highlighted some ideas for low-complexity
solutions.

APPENDICES

A. PROOF OF THEOREM 2: EQUIVALENCE OF
BIT-FILLING AND BIT-REMOVAL

We denote as b ∈ ZN
+ the N-point bit vector calculated in

each allocation step by the bit-filling method. Then for all
components of b = [b1, . . . , bN ], the following relation holds:

ΔP+
i

(
bi
)
> ΔP+

j

(
bj − 1

)
, ∀i, j : 1 ≤ i, j ≤ N (A.1)

and the bit-distribution vector b is said to be BF-efficient.
The above definition was first used by Campello [35]. On
the other hand, if b ∈ ZN

+ is the N-point bit vector calculated
in each allocation step by the bit-removal method, then the
following relation holds:

ΔP−m
(
bm
)
< ΔP−n

(
bn + 1

)
, ∀m,n : 1 ≤ m,n ≤ N. (A.2)

Similarly, we define that bit vector b ∈ ZN
+ is BR-efficient

if equation (A.2) holds.
In order to show that the bit-filling and bit-removal

methods are equivalent, we have to prove that for a given
target rate Btarget =

∑N
i=1 bi, there exists only one BF-efficient

solution and only one BR-efficient solution and that an N-
point BF-efficient vector is also BR-efficient.

We assume that there exist two different BF-efficient vec-
tors b = [b1, . . . , bN ] and r = [r1, . . . , rN ], so that Btarget =∑N

i=1 bi =
∑N

i=1 ri. Consequently, there exist at least two
points, named i0 and j0, where bi0 > ri0 and bj0 < rj0 , oth-
erwise the above bit-distributions are equal.

Since r is BF-efficient, then

ΔP+
i0

(
ri0
)
> ΔP+

j0

(
r j0 − 1

)
. (A.3)

From the inequality bj0 < rj0 , we have

ΔP+
j0

(
r j0 − 1

) ≥ ΔP+
j0

(
bj0

)
. (A.4)

Combining (A.3) and (A.4), we get

ΔP+
i0

(
ri0
)
> ΔP+

j0

(
bj0

)
. (A.5)

From the inequality bi0 > ri0 , we have

ΔP+
i0

(
bi0 − 1

) ≥ ΔP+
i0

(
ri0
)
. (A.6)

Combining (A.5) and (A.6) we get

ΔP+
i0

(
bi0 − 1

)
> ΔP+

j0

(
bj0

)
, (A.7)

which means that vector b is not BF-efficient and this is in
contradiction to our initial assumption. Therefore, there is
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only one bit-profile that is BF-efficient for a given target rate.
A similar proof can be derived for the uniqueness of the BR-
efficient bit solution.

Next, we consider a bit distribution vector b, which is BF-
efficient, that is,∀i, j : 1 ≤ i, j ≤ N :

ΔP+
i

(
bi
)
> ΔP+

j

(
bj − 1

) =⇒ 2bi

gi
>

2bj−1

gj

=⇒ 2(bi+1)−1

gi
>

2bj−1

gj

=⇒ ΔP−i
(
bi + 1

)
> ΔP−j

(
bj
)
,

(A.8)

therefore b is also BR-efficient.

B. PROOFOFTHEOREM 1:DUALITY CONDITIONS FOR
THE DISCRETE RMANDMMPROBLEMS

Let (bGi ,PG
i ), for 1 ≤ i ≤ N , be efficient greedy bit and power

allocation profiles that satisfy (37) and let
∑N

i=1 b
G
i = BG and∑N

i=1 P
G
i = PG. From the definition of the greedy bit alloca-

tion process in Section 5.1, we have

PG
i = min

bGi

Pi, ∀i : 1 ≤ i ≤ N , (B.1)

PG = min
BG

N∑
i=1

Pi. (B.2)

For a given subchannel gi, the data rate function bi =
log2(1 + Pi · gi) is strictly increasing with respect to Pi, while
the integer function 
bi� is increasing with respect to Pi.
Therefore,

PG
i =min

bGi

Pi, ∀i =⇒ bGi =max
PG
i

bi, ∀i =⇒ BG = max
PG

N∑
i=1

bi.

(B.3)

Let (bRi ,PR
i ), for 1 ≤ i ≤ N , be the optimum greedy

solution of the integer RM problem, where
∑N

i=1 b
R
i = BR and∑N

i=1 P
R
i = PR. Then according to (B.2), we can write

PR = min
BR

N∑
i=1

Pi (B.4)

which means that (bRi ,PR
i ) is also the solution to the integer

MM problem subject to a target rate of BR.
Similarly, let (bMi ,PM

i ), for 1 ≤ i ≤ N , be the optimum
greedy solution of the integer MM problem, where

∑N
i=1 b

R
i =

BR and
∑N

i=1 P
R
i = PR. Then according to (B.3), we can write

BM = max
PM

N∑
i=1

bi (B.5)

which means that (bMi ,PM
i ) is also the solution to the integer

RM problem subject to a total power of PM .
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