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In many ensemble classification paradigms, the function which combines local/base classifier decisions is learned in a supervised
fashion. Such methods require common labeled training examples across the classifier ensemble. However, in some scenarios,
where an ensemble solution is necessitated, common labeled data may not exist: (i) legacy/proprietary classifiers, and (ii) spatially
distributed and/or multiple modality sensors. In such cases, it is standard to apply fixed (untrained) decision aggregation such
as voting, averaging, or naive Bayes rules. In recent work, an alternative transductive learning strategy was proposed. There,
decisions on test samples were chosen aiming to satisfy constraints measured by each local classifier. This approach was shown
to reliably correct for class prior mismatch and to robustly account for classifier dependencies. Significant gains in accuracy over
fixed aggregation rules were demonstrated. There are two main limitations of that work. First, feasibility of the constraints was not
guaranteed. Second, heuristic learning was applied. Here, we overcome these problems via a transductive extension of maximum
entropy/improved iterative scaling for aggregation in distributed classification. This method is shown to achieve improved decision
accuracy over the earlier transductive approach and fixed rules on a number of UC Irvine datasets.

Copyright © 2008 David J. Miller et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In paradigms such as boosting [5], all the classifiers are

There has been a great deal of research on techniques
for building ensemble classification systems, (e.g., [1-10]).
Ensemble systems form ultimate decisions by aggregating
(hard or soft) decisions made by individual classifiers. These
systems are usually motivated by biases associated with
various choices in classifier design [11]: the features, statis-
tical feature models, the classifier’s (parametric) structure,
the training set, the training objective function, parameter
initialization, and the learning algorithm for minimizing
this objective. Poor choices for any subset of these design
elements can degrade classification accuracy. Ensemble tech-
niques introduce diversity in these choices and thus mitigate
biases in the design. Ensemble systems have been theoreti-
cally justified from several standpoints, including, under the
assumption of statistical independence [12], variance and
bias reduction [9, 10], and margin maximization [8]. In
most prior research, an ensemble solution has been chosen
at the designer’s discretion so as to improve performance.

generated using the same training set. This training set could
have simply been used to build a single (high complexity)
classifier. However, boosted ensembles have been shown in
some prior works to yield better generalization accuracy than
single (standalone) classifiers [13].

In this work, we alternatively consider scenarios where,
rather than discretionary, a multiple classifier architecture
is necessitated by the “distributed” nature of the feature
measurements (and associated training data) for building
the recognition system [1, 14, 15]. Such applications include:
(1) classification over sensor networks, where multiple sensors
separately obtain measurements from the same object or
phenomenon to be classified, (2) legacy or proprietary
systems, where multiple proprietary systems are leveraged to
build an ensemble classifier and (3) classification based on
multiple sensing modalities, for example, vowel recognition
using acoustic signals and video of the mouth [16] with
separate classifiers for each modality, or disease classification
based on separate microarray and clinical classifiers. In each
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of these scenarios, it is necessary to build an ensemble
solution. However, unlike the standard ensemble setting,
in the scenarios above, each classifier may only have its
own separate training resources, that is, there may be no
common labeled training examples across all (or even any
subset of) the classifiers. Each classifier/sensor may in fact
not have any training resources at all—each sensor could
simply use an a priori known class-conditional density
model for its feature measurements, with a “plug-in” Bayes
classification rule applied. We will refer to this case, of
central interest in this paper, as the distributed classification
problem.

This problem has been addressed before, both in its
general form (e.g., [1]) and for classification over sensor
networks (e.g., [14]). Both [1, 14] developed fixed combining
rule techniques. In [1], Bayes rule decision aggregation
was derived accounting for redundancies in the features
used by the different classifiers. This approach requires
communication between local classifiers to identify the
features they hold in common. In [14], fixed combining was
derived under the assumption that feature vectors of the
local classifiers are jointly Gaussian, with known correlation
structure over the joint feature space (i.e., across the local
classifiers). Neither these methods nor other past methods
for distributed classification have considered learning the
aggregation function. The novel contribution of [15] was
the application and development of suitable transductive
learning techniques [17-19], with learning based on the
unlabeled test data, for optimized decision aggregation
in distributed classification. In this work, we extend and
improve upon the transductive learning framework from
[15].

Common labeled training examples across local classi-
fiers are needed if one is to jointly train the local classifiers
in a supervised fashion, as done, for example, in boosting
[5] and mixture of experts [20]. Common labeled training
data is also needed if one is to learn, in a supervised
fashion, the function which aggregates classifier decisions
[7, 21-23]. These approaches treat local classifier hard/soft
decisions as the input features to a second-stage classifier
(the ensemble’s aggregation function). Learning this second
stage in a supervised fashion can only be achieved if there is
a pool of common labeled training examples where, for each
labeled instance, there is a realization of each local classifier’s
input feature vector (based upon which each local classifier
can produce a hard/soft decision).

Consider legacy/proprietary systems. Multiple organi-
zations may build separate recognition systems using “in-
house” data and proprietary designs. The government or
some other entity would like to leverage all the resulting
systems (i.e., fuse decisions) to achieve best accuracy. Thus
an ensemble solution is needed, but unless organizations are
willing to share data, there will be no common labeled data
for learning how to best aggregate decisions. Alternatively,
if organization A shares its design method (features used,
classifier structure, and learning method) with organization
B, then B can build a version of A’s classifier using B’s data
and then further use this data as a common labeled resource
for supervised learning of an aggregation function.

As a second example, consider diagnosis for a much-
studied disease. Different institutions may publish studies,
each evaluating their own test biomarkers for predicting
disease presence. Fach study will have its own (labeled)
patient pool, from which a classifier could be built (working
on the study’s biomarker features). If each study measured
different features, for different patient populations, it is not
possible to pool the datasets to create a common pool of
labeled examples. Now, suppose there is a clinic with a
population of new patients to classify. The clinic would like
to leverage the biomarkers (and associated classifiers) from
each of the studies in making decisions for its patients. This
again amounts to distributed classification without common
labeled training examples.

In all of these cases, without common labeled training
data, the conventional wisdom is that one must apply a fixed
(untrained) mathematical rule such as voting [12], voting
with abstention mechanisms [24], fixed arithmetic averaging
[25], or geometric averaging; Bayes rule [26]; a Bayesian
sum rule [27]; or other fixed rules [3] in fusing individual
classifier decisions. Fixed (untrained) decision aggregation
also includes methods that weight the local classifier deci-
sions [28] or even select a single classifier to rely on [29]
in an input-dependent fashion, based on each classifier’s
local error rate estimate or local confidence. Such approaches
do give input-dependent weights on classifier combination.
However, the weights are heuristically chosen, separately by
each local classifier. They are not jointly trained/learned to
minimize a common mathematical objective function. In
this sense, we still consider [28, 29] as fixed (untrained)
forms of decision aggregation. Alternatively, in [15], it was
shown that one can still beneficially learn a decision aggrega-
tion function, that is, one can jointly optimize test sample-
dependent weights of classifier combination to minimize a
well-chosen cost function and significantly outperform fixed
aggregation rules. A type of transductive learning strategy
[17-19] was proposed [15], wherein optimization of a well-
chosen objective function measured over test samples directly
yields the decisions on these samples. This work built on [18],
which applied transductive learning to adapt class priors
while making decisions in the case of a single classifier.
While there is substantial separate literature on transduc-
tive/semisupervised learning and on ensemble/distributed
classification, the novel contribution in [15] was the bridging
of these areas via the application of transductive learning to
decision aggregation in distributed classification.

There are two fundamental deficiencies of fixed com-
bining which motivated the approach in [15]. First, local
classifiers might assume incorrect class prior probabilities
[15], relative to the priors reflected in the test data [18].
There are a number of reasons for this prior mismatch, for
example, it may be difficult or expensive to obtain training
examples from certain classes, (e.g., rare classes); also, classes
that are highly confusable are not easily labeled and, thus,
may not be adequately represented in a local training set.
Prior mismatch can greatly affect fused decision accuracy.
Second, there may be statistical dependencies between the
decisions produced by individual classifiers. Fixed voting
and averaging both give biased decisions in this case [30]
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and may yield very poor accuracy. This was demonstrated
in [15] considering the case where some classifiers are
perfectly redundant, that is, identical copies of each other.
Suppose that in the ensemble there are a large number of
identical copies of an inaccurate classifier and only a single
highly accurate classifier. Clearly, the weak classifiers will
dominate a single accurate classifier in a voting or averaging
scheme, yielding biased, inaccurate ensemble decisions.
Standard distributed detection techniques—which make the
naive Bayes assumption that measurements at different
sensors are independent given the class [31]—will also fare
poorly when there is sensor dependency/redundancy. More
localized schemes (e.g., [29]) can mitigate “dominance of
the majority” in an ensemble, giving the most relevant
classifiers (even if a small minority) primary influence on
the ensemble decision making in a local region of the feature
space. However, these methods are still vulnerable to the
first-mentioned problem of class prior mismatch. In [2, 4],
ensemble construction methods were also proposed that
reduce correlation within the ensemble while still achieving
good accuracy for the individual local classifiers. However,
these methods require availability of a common labeled
training set and/or common features for building the local
classifiers.

Alternatively, [15] proposed a transductive, constraint-
based (CB) method that optimizes decision aggregation
without common labeled training data. CB resolves both
afore-mentioned difficulties with fixed combining: in mak-
ing fused decisions, it effectively corrects for inaccurate local
class priors; moreover, it accounts for dependencies between
classifiers and does so without any communication between
local classifiers. In CB, each local classifier contributes
statistical constraints that the aggregation function must
satisfy through the decisions it makes on test samples. The
constraints amount to local classifier “confusion matrix”
information—the probability that a local classifier chooses
class k given that the true class is ¢. The aggregation
function is learned so that the confusion statistic between the
aggregation function’s predicted class ¢ and a local classifier’s
predicted class k matches the confusion statistic between
the true class ¢ and the local classifier’s predicted class k.
Constraint-based learning is quite robust in the presence
of classifier dependency/redundancy—if local classifiers A
and B are perfectly redundant (i.e., if B yields an identical
classification rule as A), then so are their constraints. Thus, if
the aggregation function is learned to satisfy A’s constraints,
B’s are automatically met as well—B’s constraints will not
alter the aggregation function solution, and the method
is thus invariant to (perfectly) redundant classifiers in
the ensemble. More generally, CB well handles statistical
dependencies between classifiers, giving greater decision
accuracy than fixed rule (and several alternative) methods
[15].

Some of the key properties of CB are as follows
[15]: (1) it is effective whether classifiers produce soft or
hard decisions—the method (implicitly) compensates local
classifier posteriors for inaccurate priors even when the
local classifiers only produce hard decisions (to explicitly
correct a local classifier for incorrect class priors, one

must have access to the local class posteriors, not just to
the hard decision output by the local classifier; e.g., the
method in [18] performs explicit prior correction and thus
requires access to soft classifier decisions); (2) CB works
when local classifiers are weak (simple sensors) or strong
(sophisticated classifiers, such as support vector machines);
(3) CB gives superior results to fixed combining methods
in the presence of classifier dependencies; (4) CB robustly
and accurately handles the case where some classes are
missing in the test data, whereas fixed combining methods
perform poorly in this case; (5) CB is easily extended to
encode auxiliary sensor/feature information, nonredundant
with local classifier decisions, to improve the accuracy of
the aggregation [32]. The original method required making
decisions jointly on a batch of test samples. In some applica-
tions, sample-by-sample decisions are needed. In particular,
if decisions are time-critical (e.g., target detection) and in
applications where decisions require a simple explanation
(e.g., credit card approval). Recently, a CB extension was
developed that makes (sequential) decisions, sample by
sample [33].

There are, however, limitations of the heuristic learning
applied in [15]. First, in [15], there was no assurance
of feasibility of the constraints because the local classifier
training set support (on which constraints are measured)
and the test set support (on which constraints are met by
the aggregation function) are different. In the experiments
in [15], constraints were found to be closely approximated.
However, infeasibility of constraints could still be a problem
in practice. Second, constraint satisfaction in [15] was
practically effected by minimizing a particular nonnegative
cost function (a sum of cross entropies). When, and only
when, the cost is zeroed, the constraints are met. However,
the cost function in [15] is nonconvex in the variables
being optimized, with, thus, potential for finding positive
(nonzero) local minima, for which the constraints are
necessarily not met. Moreover, even in the feasible case,
there is no unique feasible (zero cost) solution—feasible
solutions found by [15] are not guaranteed to possess any
special properties or good test set accuracy. In this paper,
we address these problems by proposing a transductive
extension of maximum entropy/improved iterative scaling
(ME/IIS) [34-36] for aggregation in distributed classifica-
tion. This approach ensures both feasibility of constraints
and uniqueness of the solution. Moreover, the maximum
entropy (ME) solution has been justified from a number
of theoretical standpoints—in a well-defined statistical sense
[37], ME is the “least-biased” solution, given measured
constraints. We have found that this approach achieves
greater accuracy than both the previous CB method [15] and
fixed aggregation rules.

The rest of the paper is organized as follows. In
Section 2, we give a concise description of the distributed
classification problem. In Section 3, we review the previous
work in [15]. In Section 4, we develop our transductive
extension of ME/IIS for decision fusion in distributed
classification. In Section 5, we present experimental results.
The paper concludes with a discussion and pointer to future
work.
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2. DISTRIBUTED CLASSIFICATION PROBLEM

A system diagram for the distributed classification problem
is shown in Figure 1. Each classifier produces either hard
decisions or a posteriori class probabilities Pj[éj = C |
x] e [0,1], ¢ = Ne j = 1,...,M,, where N, is
the number of classes, M, the number of classifiers, and

x7) € Ry the feature vector for the jth classifier. Each local
clas51ﬁer is designed based on its own (separate) training

set X = {(Nf] ,C; ])), i = 1,...,N;}, where &,»J) € R
and Fl is the class label. We also denote the training set

excluding the class labels by X; = {N(] }. The local class
priors, as reflected in each local tralnlng set, may differ from
each other. More importantly, they will in general differ from
the true (test set) priors. While there is no common labeled
training data, during the operational (use) phase of the
system, common data is observed across the ensemble, that
is, for each new object to classify, a feature vector is measured
by each classifier. If this were not the case, decision fusion
across the ensemble, in any form, would not be possible. We
do not consider the problem of missing features in this work,
wherein some local feature vectors and associated classifier
decisions are unavailable for certain test instances. However,
we believe our framework can be readily extended to address
the missing features case. Thus, during use/testing, the input
to the ensemble system is effectively the concatenated vector
x = (x1,x@, ..., xM)), but with classifier j only observing
%),

A key aspect is that we learn on a batch of test samples,
Xiest = 1X1,Xs,...,Xy,, J—since we are learning solely from
unlabeled data, we at least need a reasonably sizeable batch
of such data, if we are to learn more accurate decisions
than a fixed combining strategy. The transductive learning
in [15] required joint decision making on all samples in
the batch. In some applications, sequential decision making
is instead required. To accomodate this, [33] developed a
sequential extension wherein, at time t, a batch of size
N is defined by a causal sliding window, containing the
samples {X;_ni1>X; N12>- - - > Xp_ 1> X; ). While the transductive
learning produces decisions on all samples in the current
batch, only the decision on x, is actually used since decisions
on the past samples have already been made [33].

Before performing transductive learning, the aggregation
function collects batches of soft (or hard) decisions conveyed
by each classifier, for example, in the batch decision making
case {{Pj[(A?j = C | &51)] vl jo= Lo, M, i =
1,..., Niest}. We ignore communication bandwidth consid-
erations, assuming each classifier directly conveys posteriors
(if, instead of hard decisions, they are produced), without
quantization.

3. PRIOR WORK ON TRANSDUCTIVE LEARNING FOR
DISTRIBUTED CLASSIFICATION

3.1. Transductive maximum likelihood methods

In [15], methods were first proposed that explicitly correct
for mismatched class priors in several well-known ensemble

combining rules. These methods extended [18], which
addressed prior correction for a single classifier. These
methods are transductive maximum likelihood estimation
(MLE) algorithms that learn on X and treat the class
priors as the sole model parameters to be estimated. There are
three tasks that need to be performed in explicitly correcting
for mismatched class priors: (1) estimating new (test batch)
class priors P.[C = ¢], ¢ = 1,...,N,, (2) correcting local
posteriors Pj[éj = ¢ | &51)] Ve, j = L...,M,, i =
1,..., Niest to reflect the new class priors, and (3) aggregating
the corrected posteriors to yield ensemble posteriors P,[C =
clx] Vic.

In [15], expectation maximization (EM) algorithms
[38] were developed that naturally accomplish these tasks
for several well-known aggregation rules when particular
statistical assumptions are made. The M-step re-estimates
class priors. Interestingly, the E-step directly accomplishes
local classifier aggregation, yielding the ensemble posteriors
and, internal to this step, correcting local posteriors. As
shown in [15], these algorithms are globally convergent, to
the unique MLE solution. At convergence, the ensemble
posteriors produced in the E-step are used for maximum a
posteriori (MAP) decision making.

For the naive Bayes (NB) case where local classifiers’
feature vectors are assumed to be independent conditioned
on the class, the following EM algorithm was derived [15]:

E-step(NB):
(t=1) - 7 (1)
PY[C=c|x] = Ife (t_[f clp Ve, Vi,
Zzilpe [C=1]p”
where p’ denotes ]_[ﬁwel(P [@ =c| x(j)]/P-[A = c]), and
p'" denotes [T}, (P (C; = 11 x"1/P;[C; = 1),
1 Niest

M-step: Pét)[C =c] = ZP OC=clx] Ve (2)

The form of the ensemble posterior in (1) is the standard
naive Bayes form, albeit with built-in prior correction.

In [15], it was also shown that aggregation based
on arithmetic averaging (AA), again with built-in prior
correction, is achieved via transductive MLE under different
statistical assumptions. For this model, the M-step is the
same as in (2), but the E-step now takes the (arithmetic
averaging) form:

E-step(AA):
P(t) C =cC | X
e[ x;] 3)
_ PVC=dum)g
Sy Ve =nuMyg T
where g" denotes Z] ‘1 (P; [ =c| x ]/P [C =c]),and q"

denotes 3%, (P;[C; —llx])]/P [C; = 1)).
These two algorlthms do adapt the decision rule to new
class priors (as reflected in a test data batch). However,
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P,[C = c|x]

Local Local
classifier classifier

Aggregation center

Test data
X € Xtest

Local
classifier
M.

FiGure 1: Distributed ensemble classification system.

unlike CB, they cannot be applied if classifiers solely
produce hard decisions. Correction of local posteriors for
mismatched priors can only be achieved if there is access
to local posteriors—if each classifier is a “black box” solely
producing hard decisions, the transductive MLE methods
cannot be used for prior correction. More importantly, the
ML methods are limited by their statistical assumptions,
for example, conditional independence. When there are
statistical dependencies between local classifiers, failing to
account for them will lead to suboptimal aggregation. In
[15], the following extreme example was given: suppose there
are M, — 1 identical copies of a weak (inaccurate) classifier,
with the M,-th classifier an accurate one. Clearly, if M, is
large, the weak classifiers will dominate (1) and (3) and yield
poor accuracy [15]. Thus, CB was proposed to properly
account for classifier redundancies, both for this extreme
example and more generally.

3.2. Transductive constraint-based learning

CB differs in important aspects from the ML methods.
First, CB effectively corrects mismatched class priors even if
each local classifier only produces hard decisions. Second,
unlike the transductive ML methods, CB is spare in its
underlying statistical assumptions—the sole premise is that
certain statistics measured on each local classifier’s training
set should be preserved (via the aggregation function’s deci-
sions) on the test set. As noted earlier, learning via constraint
encoding is inherently robust to classifier redundancy. In the
case of the degenerate example from the last section, the
M, — 1 identical weak classifiers all have the same constraints.
Thus, as far as CB is concerned, the ensemble will effectively
consist of only two classifiers—one strong, and one weak.

The M, — 2 redundant copies of the weak classifier do not
bias CB’s decision aggregation [15].

3.2.1. Choice of constraints

In principle, we would like to encode as constraints joint
statistics that reduce uncertainty about the class variable as
much as possible. For example, the joint probability P[C = 1,
Ci = 1,6, = 0] = 0is quite informative about the
true class variable (C). However, in our distributed setting,
with no common labeled training data, it is not possible
to measure joint statistics involving two or more classifiers
and C. Thus, we are limited to encoding pairwise statistics
involving C and individual decisions (éj). Each classifier
j, using its local training data, can measure the pairwise
pmf Pé] lc, éj] with “g” indicating “ground truth” This
(naively) suggests choosing these probabilities as constraints.
However, Pg ) [C, éj] determines the marginal pmfs P‘é] ) [C]
and P‘é] ) [é ;1. Via the superscript (j), we emphasize that these

marginal pmfs are based on X j and are thus specific to local
classifier j. Thus, choosing test set decisions to agree with

Pg )[C, éj] forces agreement with the local class and class
decision priors. Recall that these may differ from the true

(test) priors. The local class priors Péj)[C], j=1...,M,,
also may be inconsistent with each other. Thus, encoding
{Pg )[C, éj]} is ill-advised. Instead, it was suggested in
[15] to encode the conditional pmfs (confusion matrices)
{Péj )[éj = ¢ | C = ¢] Vc}. Confusion matrix information
has been applied previously (e.g., in [39]) where it was used
to define class ranks within a decision aggregation scheme
and in [18] where it was used to help transductively estimate
class prior probabilities for the case of a single classifier. In
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[15], alternatively, confusion matrices were used to specify
the constraints in our CB framework. These pmfs specify the

pairwise pmfs {Pfgj ) [C,C i1} except for the class priors.
The constraint probabilities are (locally) measured by

N U
2 s Pi[Cj=¢| &1(])] (4)

are

Vj, Ve, Ve
(5)

In principle, then, the objective should be to choose
the ensemble posteriors {{P.[C = ¢ | x;]}Vi} so that the
transductive estimates match the constraints, that is,

P[C;=¢lC=c]=P{’[C;=¢IC=¢] Vjci (6)

However, there is one additional complication. Suppose
there is a class ¢ that does not occur in the test batch. Both
the particular class and the fact that a class is missing from
the test batch are of course unknown. It is inappropriate to
impose the constraints Pé(,])[@j =c| C=7¢C]VE Vj—
in doing so, one will assign test samples to class ¢, which
will lead to gross inaccuracy in the solution [15]. What
is thus desired is a simple way to avoid encoding these
constraints, even as it is actually unknown that ¢ is void
in the test set. A solution to this problem was practically
effected by multiplying (6), both sides, by P.[C = ¢] =
(1/Ntest)ZﬁTtPg[C = ¢ | x;], that is, by expressing the relaxed
constraints

Pe[@j =C|C=c]-P[C=(]
, (7)
=P [Cj=¢lC=c]-P[C=c] Vjcb

Note that (7) is equivalent to (6) for ¢ such that P,[C = ¢] >
0, but with no constraint imposed when P, [C = ¢] = 0. Thus,
if the learning successfully estimates that ¢ is missing from
the test batch, encoding the pmf {Péj) [éj =c|C=7c]Vc}
will be avoided. In [15], it was found that this approach
worked quite well in handling missing classes.

3.2.2. (Blearning approach

In [15], the constraints (7) were practically met by choosing
the ensemble posterior pmfs on X, {P.[C = ¢ | x;]}, to

minimize a nonnegative cost consisting of the sum of relative
entropies:

R="3D(P[C; | CIP[C]IP{’[C; | CIP.[C))
j=1
o A DA
= P.[C = cID(P[C; | C = c]IP[C; | € = c]),
j=lc=1

(8)

based on the left- and right-hand sides of (7). Here,
relative entropy is defined as D(P[X]|IQ[X]) =
> cesP[x]log(P[x]/Q[x]), 4 the (common) support.
Note that if R is driven to zero such that P,[C = ¢] > 0 V¢,
the constraints are all met. Thus, minimizing (driving to
zero) R can be used to effect satisfaction of the constraints. To
ensure that P.[C = ¢ | x;] is preserved as a pmf throughout
the optimization, the posterior was parameterized using
a softmax function, P.,[C = ¢ | x;] = eri/> e,
with {y.i, V¢, i = 1,...,Nwst} the scalar parameters to
be optimized. Minimization of R with respect to these
parameters was performed by gradient descent.

This CB learning was found to give greater decision
accuracy than both fixed naive Bayes, arithmetic averag-
ing and their transductive ML extensions (1) and (3).
However, there are three important limitations. First, the
given constraints (6) may be infeasible. Second, even when
these constraints are feasible, there is no assurance that the
gradient descent learning will find a feasible solution (there
may be local minima of the (nonconvex) cost, R). Finally,
when the problem is feasible, there is a feasible solution
set. Minimizing R assures neither a unique solution nor one
possessing good properties (accuracy). We next address these
shortcomings.

4. TRANSDUCTIVE CB BY MAXIMUM ENTROPY

The standard approach to finding a unique distribution satis-
fying given constraints is to invoke the principle of maximum
entropy [37]. In our distributed classification setting, given
the constraints (6) and the goal of transductively satisfying
them in choosing test set posteriors, application of this
principle leads to the learning objective:

Problem 1.

max H(CIX):—Z !

{Pe[clx] Vc,xEXrest }

XEXK e L5t

9)
> "Pe[c | x]log Pe[c | x]
c
subject to
Zpe[c | X] =1 VK € Xtesty
P[Cj=clC=c]=P)[C;=¢lC=c] Vj, Ve V5
(10)
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where PJ'[C; = ¢ 1 C = cJand P[C; = € | C = (]
are measured by (4) and (5), respectively. In (9), we have
assumed uniform support on the test set, that is,

1
> X € xtesta
Niest (11)

0, else,

Pe[X] =

which constrains the joint pmf to the form

PE[C | X]) VC)X € xtesb
P.[c,x] = { Neest (12)

0, else.

A serious difficulty with Problem 1 is that the constraints
may be infeasible. An example was given in [15]. The
difficulty arises because the constraints are measured using
each local classifier’s training support 3@-, but we are
attempting to satisfy them using different (test) support. To
overcome this, we propose to augment the test support to
ensure feasibility. We next introduce three different support
augmentations. In Section 4.1, we augment the test support
using the local training set supports. In Section 4.2, we
construct a more compact support augmentation derived
from the constraints measured on the training supports.
Both these augmentations ensure constraint feasibility. In
Section 4.3, we discuss maximizing entropy on the full
(discrete) support.

4.1. Augmentation with local classifier supports

The most natural augmentation is to add points from
the training set supports (3@ Vj) to the test set support.
Since the constraints were measured on each local classifier’s
support, augmenting the test set support to include local
training points should allow constraint feasibility. Note that
this will require local classifiers to communicate both their
constraints and the support points used in measuring them
to the aggregation function. Consider separately the cases
of (i) continuous-valued features x'/) € Ry Vj and (ii)
discrete-valued features x'/) € sj, A; a finite set. In the
former case, there is zero probability that a training point
%7 occurs as a component vector x/) of a test point x.
Thus, in this case, we will augment the test support with
each local classifier’s full training support set %J_, and in
doing so we are exclusively adding unique support points
to the existing (test) support, that is, we assign nonzero
probability to the joint events {C = ¢,X = X} VX € Xrest
and {C = ¢, {x: x0) = ¥} v3?) e %j, Vj. Note that
each test point is a distinct joint event, with the other joint
events consisting of collections of the joint feature vectors
sharing a common component vector that belongs to a local
training set. Even if different local classifiers observe the same
set of features, unless these classifiers measure precisely the
same values for these features for some training examples
(which should occur with probability zero in the continuous-
valued case, assuming training sets are randomly generated,
independently, for each local classifier), these classifiers will
supply mutually exclusive additional support points.

Now consider the latter (discrete) case. Here, it is quite
possible ?bhlt?;that a training point %7 will appear as a

component vector of a test point. In this case, it is redundant

to add such points to the test support. Let Xiés)t denote the
set of component vectors for classifier j that occurred in the

test set and Yﬁg; the complement set. Then, in the discrete-

valued case, we will add j(%]— ﬂyt(is)t) to the test support.
In the following, our discussion is based on the continuous
case.

We further note that some care must be taken to ensure
that sufficient probability mass is allocated to the training
supports to ensure constraint feasibility, for example, a
uniform (equal) mass assignment to all support points, both
test and training, will not in general ensure feasibility. Thus,
we allow flexible allocation of probability mass to the training
supports (both the total mass allocated to the training
supports and how it is distributed across the different
training support points are flexibly chosen), choosing the
joint pmf to have the form

r P
“Pelclx], Y&X€E X,
Ntest
~(7) ~(j) NG )
P(x/,c|, x:xV =x""14,
Pule fx)] = { TR 8 e =X
V(i(]))E(J)) € %]) V]>
L0, else.
(13)
Here, the total mass allocated to X 1S P, =

D xe Xy 2cPel6,X], each fest sample is assigned equal
mass P,/Nes (we allow flexible allocation of mass to the
training support points in order to ensure feasibility of the
constraints: some points are pivotal to this purpose and
will need to be assigned relatively large masses, while other
points are extraneous and hence may be assigned small
mass; for the test set support, on the other hand, unless there
are outliers, these points should contribute “equally” to
constraint satisfaction (just as each sample was given equal

mass in measuring the constraints Péj)[-]); accordingly,
we give equal mass to each test support point) and for

#7 € %, PRV, c] = PEP]P[c | 2], where

~(j) v
. 1, (x7,c) eX;,
Plc |3V = ! (14)
0, else,

that is, we exploit knowledge of the training labels in making
exclusive posterior assignments on the training support.
Here, P,, {P.[c | x]}, and {P[X(]),EU)]} are all parameters
whose values will be learned.

For P,[c, {x}] defined by (13), we would like to satisfy the
constraints (6). Accordingly, we need to compute the trans-
ductive estimate Pe[éj =c¢c|C=¢c = Pe[@j =6C =]
/P.[C = c], using the joint pmf (13). However, a difficulty
here is that (13) is defined on the support set Xiest U X,
but the posterior Pj[éj = ¢ | x¥] can only be evaluated
on the support subset where classifier j’s feature vector is
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observed, that is, over X5 U X;. For X, k # j, we only
have instances of classifier k’s feature vector, not j’s. This
means we cannot use the full support to measure P,[C ;=
G C = c]. Formally, we resolve this issue by conditioning. Let

= {{x € Xest) Uix: 2 € X ;}}. Then, we measure

P i
=K' o S Plelxl+ > PRV D],
NteStXEX(est Z(J)exj,EUEc
(16)
where
P, A A
Ko=ZZ(N” Pi[C =2l xD]P.le | x]
c ¢ teStXEXtes!

= N > Pelelx]+ Z P[&”l?“]

¢ XE Xest %W €X;,

(17)

Note that from (17), we see that the same normalization
constant K, appears in both pmfs given in (16), ensuring that

these pmfs both sum to 1.

Letting Ne[éj =56C=c|x¢€ xﬁ”] = KOPe[éj =
C:clgexy)],andNe[C:cIgexw] = KyP.[C =c |
X € x(rj)],wehave

—clxe x| (18)

The notation N,[-] reflects the fact that this quantity
represents the expected number of occurrences of the event

given x € X
problem.

. We can thus now define the following

Problem 2.

max ‘ H(C,X)
(P {Pelclx], XEXien}, (PR, 11}

:_Z ZP clxlog(P
testc Niest

XE Kest

*ZZ

j ( )ex

P.[c | X]) (19)

P[Z(j)y e logp[z(j)) &0

subject to

Vj, Ve, VG,
p+> > PRV D] =1, (20)
7 @V 0)eX;

X € Xest-

DPJ[C=clx]=1,

We emphasize that in this problem the constraints are
guaranteed to be feasible. In particular, they can always be
satisfied via an exclusive assignment of all probability mass
to the labeled supports (i.e., via the choice P, = 0). A proof
is provided in Appendix A.1.

4.2. Augmentation with support derived
from constraints

The previous augmentation seems to imply that the local
training set supports {% j} need to be made available to the
decision aggregation function. Actually, only the posteriors
(soft decisions) made on ’D\CJJ» Vj, and the associated class
labels are needed by the aggregation function. However,
even this may not be realistic in distributed contexts
involving proprietary classifiers or distributed multisensor
classification. Suppose instead that the only local classifier
information communicated to the aggregation function is
the set of constraints Pg [C c| C=c]Vj VY Ve
We would still like to augment the test support to ensure a
feasible solution. This can be achieved as follows.

First, note that xU) determines the local posterior
{P;(C [A ¢ | x], Vc} and that the joint probability
P[N(] )& (7] can thus be equivalently written as P[({P; [C =C
| X9, V&1, 80)]. In other words, the method in the last
subsection assigns nonzero joint probability only to the pos-
terior pmfs and conjoined class labels {({Pj[éj =C| Z(])],
Ve, ey, @7, e 7)€ X} that are induced by the
local training set X j- An alternative support augmentation
ensuring feasibility is thus specified as follows.

Consider all pairs (¢, ¢) such that ngf )[éj =c| C =]
> 0. For each such pair, introduce a new support point
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(0,...,0,1,0,...,0],c) with “1” in the ¢-th entry, that is, the
joint event that C = c and

Pi[C=¢1%7] = {1’ (21)

IfP‘éj)[@j =¢C| C=c] >0V(c0), there are N2 such support
points added for each local classifier C i. We assert that adding
these support points, as an alternative to the training set
supports, ensures feasibility of the ME constrained problem.
A proof sketch is given in Appendix A.2. In Section 5, we
will demonstrate experimentally that there are only small
performance differences in practice between the use of these
two support augmentations.

4.3. Full support in the hard decision case

Suppose each local classifier makes a hard decision, that is,
x determines a discrete-valued joint decision vector ¢(x) =
(¢1,...,¢m,)- In this case, we wish to transductively learn the
joint pmf P,[C = ¢,C = &(x)] = Pe[C = ¢ | C = Ex)|P[C =
C(x)] to meet the local classifier constraints {Péj )[éj = |
C = c]}. Itis instructive to consider what happens if we meet
constraints on the full space C X Crx---X% @ME, that s, if we
allow assigning positive values to P,[C = ¢, C =21 V(0),
rather than restricting nonzero probability to the test set via
Pe[c = C)Q = E(X)]

1

N, test

0, CE {0(x) : XE Xest -
(22)

Pe[c =cC | Q = E(K)]: X € xtest:

We have the following proposition.

Proposition 1. The ME joint pmf P,[C = c, Q = C] consistent

with the specified constraints Pe[@j =c|C=c]= Péj)[éj =C
| C = c] Vj,c, ¢ has the naive Bayes joint pmf form

Il
o
(@)

I
AR
I

P.[C

The proof follows the proof given in [40] that the ME
solution given conditional probability constraints has the
naive Bayes joint pmf form and, further, uses the fact that,
given only conditional probability constraints, a uniform
class prior pmf P.[C = ¢] = 1/ N, maximizes entropy. Thus,
satisfying the constraints on the full discrete support leads
to the naive Bayes solution and to (assumed) conditional

independence of local classifier decisions. This is clearly
undesirable, as the local classifier decisions may in fact be
strongly dependent.

As a simple example, just consider the case
where the classifiers in the ensemble are perfectly
dependent, that is, identical copies. In this case, there
is only nonzero support P,[c] on ¢ € Cident =
{(1,1,...,1),(2,2,...,2)y...,(N,Ni,...,N:)}. It can be
shown that the ME posterior satisfying the constraints
Pe[éj |C=c] = Pg[@j | C = c] Vj using only the nonzero
support set Cigent 1s the posterior

P[C=c|C=¢]= = , any j.
Zc’Pg[ j =€ CZC,]
(25)

This is in fact the true posterior in the perfectly
dependent case and correctly captures the fact that there
is effectively only a single classifier in the ensemble. This
solution is wholly different from that obtained by plugging
€ € Cigent in (24), which yields

Ci=¢|C=ch™ ~ (26)
: : )Me > € € Cident.

Note that (26) is highly biased, treating classifier decisions
as conditional-independent when they are in fact perfectly
dependent. A related point of view on the solution (24) is
that it will have higher entropy H(C, X) than a solution that
maximizes entropy on a reduced support set. Lower entropy
is, in fact, desirable because although we choose distributions
to maximize entropy while satisfying constraints, we should
choose our constraints to make this maximum entropy
as small as possible, that is, a min-max entropy principle
[41]. Restricting support to the test set imposes additional
constraints on the solution, which reduces the (maximum)
entropy.

The previous discussion instructs that the test set support
contains vital information, and the only information, that
we possess about statistical dependencies between local
classifiers. Satisfying constraints on the full support set
discards this information, and will increase entropy. Even
augmenting the test set support less dramatically, for exam-
ple, by adding the training set supports, could affect accuracy
of the posterior—(over)use of the training set support
augmentation (high (1 — P,)) may allow satisfying the
constraints essentially only using the training set supports.
Since the objective is to maximize H(C, X), the optimization
would, in this case, choose posteriors on the test set to be
as uniform as possible (while still satisfying the constraints).
These test set posteriors could be quite inaccurate. In other
words, too much reliance on training supports makes it
less imperative to “get things right” on the test set. To
make test set posteriors as accurate as possible, we believe
they should contribute as much as possible to constraint
satisfaction, for example, we have the following loosely
stated learning principle: seek the minimal use of the extra
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1. Initialize
Ba — 0, By — alarge negative number.
2. Do

(a) B = (1/2)(Ba + Bo)-

iterations is less than &;. Measure P,,.

while (| Ba — Bb |< €3).
3. Output
c(x) = argmax P,[c | x], X € Xest

(b) Run TIS algorithm at the given f until AD, the difference in the Deviation D (defined in Section 4.8) between successive

(c)If(1 - P, >8 AND D < &), then 8, — f3, otherwise 8, — j3.

ArcoriTHM 1: ETIS algorithm pseudocode.

support necessary to achieve the constraints. To capture this
learning principle mathematically, we propose the following
extension of Problem 2.

Problem 3.

max » H(C,X)
(P {P.lelx], XEX e}, (PIEY ,20)], BV,201)eX ;1)

=- 2 I\l,:” 2 Pe[c | x]log (;“ Pe[c|X]) (27)

XEXest - 1S ¢ test

-3

7@V einex;

P[E(j), ol 1ng[g(j), &0

subject to

| (28)

—-P[C;j=¢IC=¢] Vj Ve V5
P+ 3 Pl@V.E)] =1, (29)

j (E(j)f(]‘))eyj
ZP@[C =clx]=1, X€ Xest> (30)
c
and subject to

1-P, =P, (31)

In this objective, we modify Problem 2 to also constrain the
total probability allocated to the labeled training supports
to some specified value P,. In Section 4.7, we will develop
an algorithm seeking to find the minimum value P, = P}
such that the constraints are still feasible. When the test set
support is sufficient by itself to meet the constraints, P} = 0,
otherwise, P¥ > 0. In the sequel, we will invoke the method
of Lagrange multipliers and introduce a Lagrange multiplier
B associated with (31) to set the level 1 — P,. Thus, for the
algorithm in Section 4.7, the search for P;* will be realized by
varying f3. In our experimental results, we will demonstrate
that as 1 — P, is reduced, the entropy H(C,X) decreases,
and moreover, the test set classification accuracy tends to
increase.

4.4. Constraint relaxation

In the sequel, we develop a transductive extension of
iterative scaling (IS) techniques [35, 36] for solving the ME
constrained problem for fixed 1 — Py, that is, for fixed 8. To
apply IS, the ME problem must be convex in all parameters
and the constraints must be linear in the probabilities P, ¢, X]
[34, 36]. The function H(C,X) is convex; however, the
constraints (28) are nonlinear in the parameters since P,[C =
¢ | x;] appears in both the numerator and denominator
in (15). However, it is possible to relax the constraints (28)
to linear ones. In particular, assuming N,[C = ¢ | x €

(,j)] > 0, if we plug the right-hand side Qf (18) into (28)
and multiply through by N.[C =c¢ | x € xﬁf’], we then have
the equivalent linear constraints

N[C=tC=clxe x|

, , (32)
=pP/[Cj1C=cN[C=clxex/] Ve
Further, note that
Ne[éj =5C=cl|xe€e §j)]
(33)

=P[Ci=¢lC=cIN.[C=clxe x|

Thus, comparing (32) and (33), we see that whenever

N, [C =¢ | x € ng)] > 0, the relaxed constraints (32)
are equivalent to the original constraints (28), as desired.
This is reminiscent of the constraint relaxation built into
[15]. However, in some cases, if it is not possible to satisfy
the original constraints at the given value 1 — P,, the
constraints (32) can in principle still be satisfied by choosing
N, [C = ¢ | x € ng)] = 0 for some ¢ and j. This
would amount to removing the associated pmf constraint
{Péj)[éj = ¢ | C = c] V¢}. Thus, setting N.[C = ¢

| x € X? )] = 0 would preserve feasibility of the
linearized constraints (32) and amount to satisfying only a
subset of the original constraints (28), those being jointly
feasible. It is quite conceivable that this type of constraint
relaxation would be undesirable—it amounts to encoding
less constraint information, which could have a deleterious
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effect on decision fusion accuracy. However, we emphasize
that while in principle this “constraint relaxation” appears
possible, this phenomenon has never occurred in any of
our experiments, even those in which some classes were
missing completely from the test batch, where we might
have expected to observe this relaxation phenomenon. One
explanation for why constraint relaxation never occurred in

our experiments is that a solution with N,[C = ¢ | x € ng )]
= 0 is intrinsically a low entropy solution, which will always
be rejected in favor of solutions with higher entropy, so long
as such solutions exist. Since, for example, in the missing
class case, there will always be augmented support points
from class C = ¢ (the missing test class), it is plausible that
constraints involving C = ¢ can still be met through almost
exclusive use of these augmented support points (i.e., even
if very little ensemble posterior probability in class C =
is assigned to any of the unlabeled test set points). In fact,
this is what we have experimentally observed in the missing
class case—on the test set, very little probability is assigned
to the missing class, but positive mass is allocated to the
augmented support points that are labeled by the missing
class, and constraints involving the missing class are always
met. Thus, at least in all of our experiments, the “linearized”
constraints (32) were always found to be equivalent to the
original constraints (28), as is desired.

4.5. Transductive iterative scaling (TIS) algorithm

The Lagrangian cost function corresponding to Problem 3
with the “relaxed constraints” is

LB == &

XE Ntest

-2 >

7@ 20)eR,

ZP [c | x]logP.[c | x] — P,log Pu

Niest Niest

P[&,&0 ] log P[x), 0]

+ > )L(x)(ZPcIX 1)+[3(1 P,).

XE XNtest

(34)

Here, {y(é,- = C = ¢), Vj,c,c} are the Lagrange
multipliers associated with the local classifier constraints,
which need to be learned. The Lagrange multipliers « and
Ax) VX € Xiest Will be automatically chosen to satisfy the
pmf sum constraints. The Lagrange multiplier f3 is treated as
an “external” parameter and chosen to set the value of 1 — P,
as previously discussed. The transductive iterative scaling
(TIS) algorithm for minimizing L(f) consists of alternating

(i) optimization of P,, {P.[c | x]}, and {P[ZU),EU)]} given

{y(@j = ¢,C = ¢)} held fixed, followed by (ii) update of
{y(éj = (,C = c)} given the other parameters fixed. In
step (ii), we update a single Lagrange multiplier (with the
Lagrange multipliers selected in a fixed, cyclical order), that
is, we have implemented a “sequential” TIS algorithm, akin
o [42], rather than a batch algorithm where all Lagrange
multipliers are updated in parallel. We believe there are no
difficulties inherent to a batch version—we simply chose a
sequential algorithm.

For fixed {y(éj = ¢, C = ¢)}, the globally optimal values
for the remaining parameters, determined by taking partial
derivatives of L(f3) and setting to zero, are found to be

’

a
Pelc|x] = =

rr

VC)X S Xtest) (35)

=1

where a’ denotes exp(Z?/i"lzgily(éj =:C = c)(Pj[éJ =
C = c])), and a” denotes

R N |
exp(SH SN y(Cj = 6,C = ) (P[C; = ¢ 2] -PY[C) =

CIC—C]))

(36)
! Niest exp(—f3)
u Z(y) test EXP
-eXp( Z ZP [c | x]logP, [clx])
Ntestxgxw P
eXp(Zy(éjzf > P[C=c|x]
jaol N teSt x e Xpest
(|G =c1x0] - PG =¢lC= c])),
(37)
where
Z(y) = Neest exp(—p)
-exp( N, > P CX]logP[c|x]>
test y e oy
exp <ZY(@ =6C=0¢) ! > P[C=c|x]
j,c,f Ntest XE Xrest
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~0) M)y e T
T @7e0)ex;

- exp (%y[@] =6C= F(f)]

c=1
x(P;[Cj=¢13] - P{'[C; =2 czzw])).
(38)

Given these parameters held fixed, we optimize a single
Lagrange Multiplier, for example, y(C; = ¢,C = ¢), via the
TIS update:

(39)

In Appendix A.3, we give a simple proof that the TIS updates
(39) are descent steps in the Lagrangian cost. Thus, both
the alternating steps (35)—(37) (which are globally optimal)
as well as (39) are descent steps in the Lagrangian. These
alternating steps are performed until the constraints are well
met (a convergence criterion is introduced in Section 4.8).
Note that while descent in the Lagrangian is assured, we do
not provide a proof in this paper that the TIS algorithm
described above converges to the ME solution satisfying
the constraints. This requires a more detailed technical
argument. However, we do believe that such a proof can
be developed, following along the lines of the technical
approaches taken in [22, 36, 42].

4.6. Commentson TIS algorithm

(1) The algorithm solves a convex optimization problem
with linear constraints, with, therefore, a unique solution at
each f3 for which the constraints are feasible [43].

(2) The TIS algorithm descends in the Lagrangian cost
function for a given f.

(3) If the problem is infeasible at a given 3, convergence
of the algorithm is not guaranteed.

(4) When f8 — — o0, P, = 1, and we are seeking a solution
that only relies on the test set support.

(5) When f3 -0, P, = 0, and we are not using the test
support at all.

(6) When = 0, there is no constraint on P,—this
solution thus achieves highest entropy H(C, X), compared to
solutions at other f3 values.

4.7. Extended TIS (ETIS) algorithm

Problem 3, but with the constraints (28) replaced by the
relaxed constraints (32) and seeking 1 —P, = P¥, is addressed
by Algorithm 1 on page 10. This method solves the ME
problem for fixed f3 using the TIS algorithm and embeds TIS
within a search for P} by varying f3 via a bisection search.

4.8. Comments on ETIS algorithm

At fixed f3, the TIS algorithm is run until practical constraint
satisfaction is achieved. We measure the squared deviation

D=3, :NIC=6C=c|xe X -PIC =

C| C=¢INJC =¢c | x € xﬁ”])z, and stop when the
change in deviation (AD) is less than a threshold value.
The overall algorithm terminates when one of the following
two conditions is satisfied. (1) At the current f, constraint
satisfaction is not achieved. This indicates that P; is greater
than the value 1 — P, associated with the current 5. (2) At
the current f3, at termination of TIS, 1 — P, < &, where § is
a small number. In this case, we have essentially found that
there is an ME solution satisfying the constraints using only
the test support, (i.e., P} = 0).

5. RESULTS

We next present both illustrative results and experiments
comparing the TIS algorithm (Section 4.5, with the choice
B = 0) and ETIS algorithm with a variety of alternative
transductive and fixed combining schemes.

5.1. Aninfeasible constraint example

« | »

There are 2 classes (“+” and “(0”) in two dimensions, with
local classifiers 1 and 2, shown in Figure 2. Suppose each local

classifier makes hard decisions, that is, Pé] )[éj =c|C=cle
{0,1} V¢ c.
Letlocal classifier 1 achieve perfect training accuracy, that

PO[C =11C=1]=1, PV[C=2]1C=1]=0,

PO[C =21C=2]=1
(40)

PO[C =11C=2]=0,

Let local classifier 2 have

PO[C=11C=1]=1, PP[C=2]C=1]=0,

A 1 A 1
P§2>[cz=1|C=z]=5, P§2>[C2:2|C=2]=§.
(41)

As Figure 2 shows, we let the test set be the same as the
training set except that it contains four additional points
from class 2 that are all correctly classified by both classifiers.
In this case, it is not possible to choose {{P.[C = ¢ |
x]}, X € Xt} to satisfy all the conditional constraints
(6). Thus, Problem 1 is infeasible. We first evaluated the TIS
algorithm specialized to the case where no training support
augmentation is used, that is, seeking to solve Problem
1. We measured the Lagrangian cost function (34) and
the deviation. In Figure 3, we can see the Lagrangian cost
function monotonically decreases without convergence and
the deviation approaches a fixed value above zero.

We next applied the TIS method (8 = 0) with local train-
ing set support augmentation. As Figure 4 demonstrates, a
feasible solution is achieved in this case.
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Training data set

— Local classifier 1
---= Local classifier 2
~~~~~~ Local classifier 2
+ Class 1 point
O Class 2 point
72 Class 1 area by classifier 1
[ Class 1 area by classifier 2

(a)

Test data set

—— Local classifier 1
---= Local classifier 2
~~~~~~ Local classifier 2
+ Class 1 point
O Class 2 point
EZZ2 Class 1 area by classifier 1
[ Class 1 area by classifier 2

(b)

FIGURE 2: An Example of constraint nonsatisfiability.
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FIGURE 3: Infeasibility of TIS for Figure 2 example when no support augmentation is used.

5.2. Real data experimental results

We evaluated on datasets from the UC Irvine machine learn-
ing repository in Table 1 and we followed the experimental
protocol from [15].

To simulate a distributed classification environment, we
used five local classifiers, each a naive Bayes classifier working

on a randomly selected subset of features. Thus, for the
conditional independence model of Section 3.1, both the
local classifiers and the combining rule are based on naive
Bayes. For example, Segment has 7 classes and 19 continuous
features. The first local classifier used 15 randomly selected
features while the second classifier used 16. Since all the
classifiers use a significant fraction of all the features, this
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F1GURE 4: Feasible TIS solution for Figure 2 example when support augmentation is used.
TaBLE 1: UC irvine machine learning datasets that were evaluated.
Dataset No. of class No. of feature Feature subspace size
Vehicle 4 18 [15, 14, 15, 16, 17]
Segment 7 19 [15, 16, 15,17, 18]
Liver disorder 2 [5,4,5,4,5]
Diabetes 2 7 [6,3,4,5,6]
Sonar 2 60 [52, 54, 56, 58, 59]
Ionosphere 2 32 [28, 27,29, 30, 31]
TABLE 2: Average test set class priors and mismatch values for different datasets.
Dataset Class priors on the total dataset Mismatch Preset class priors on the test set
0.98 [0.10.40.11 0.39]
Vehicle [0.24 0.26 0.25 0.25] 2.73 [0.04 0.46 0.05 0.45]
Missing [00.50.05 0.45]
0.066 (0.140.140.130.17 0.16 0.16 0.1]
Segment [0.140.140.14 0.14 0.14 0.14 0.14] 141 [0.050.08 0.270.05 0.24 0.26 0.05]
2.40 [0.03 0.24 0.03 0.04 0.3 0.05 0.31]
Missing [00.24 0.03 0.04 0.33 0.05 0.31]
0.34 (0.6 0.4]
Liver disorder [0.42 0.58] 1.79 [0.80.2]
3.56 [0.90.1]
Missing [10]
0.74 (0.4 0.6]
Diabetes [0.67 0.33] 143 [0.307]
2.57 (0.2 0.8]
Missing [10]
0.32 (0.3 0.7]
Sonar [0.47 0.53] 0.89 [0.20.8]
2.28 [0.10.9]
Missing [01]
0.21 [0.50.5]
Ionosphere [0.36 0.64] 1.24 [0.10.9]
2.25 [0.05 0.95]
Missing [01]
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introduces statistical dependencies between local classifier
feature vectors and, thus, between the local classifiers.
All features in the datasets are continuous-valued and
were modeled by (class-conditional) Gaussian densities. We
performed five replications of two-fold cross-validation for
all datasets. For each replication, the dataset was randomly
divided into two equal-sized sets. In the first fold, one set
was used as training and a subset of the other was used
for testing, with these roles reversed in the second fold. We
averaged test error rates over all replications and folds. For
a given fold, only a subset was used for testing in order to
introduce a controlled level of prior mismatch between the
training and testing sets. This was accomplished as follows.
The original test set priors and training set priors are very
similar since they are based on a random, equal-sized split
of the whole dataset. To introduce more prior mismatch and,
thus, to test the robustness of the various combining schemes
to incorrect local class priors, we performed resampling on
the test data. For example, suppose in the original test set
that there are two classes with priors [0.5,0.5]. To increase
the prior mismatch, we set the new test set priors as [«, 1 —
a]. The new test set is then obtained by sampling with
replacement from the original test set (to create a dataset of
size equal to the original test set size), based on these new
priors. Note that sampling with replacement does introduce
significant sample duplication in some cases. For example,
on diabetes, for test class prior distribution [0.2 0.8] (used
in Table 2) with 92 unique samples from class 2 and 266 test
samples to be drawn, all samples from class 2 are likely to
have a duplicate in the resampled test data. Sampling with
replacement was used because of the small sample sizes of
some of the datasets—sampling without replacement would
have severely constrained the test set prior distributions that
could have been achieved on these small datasets. Table 2
shows the class priors chosen for the test set, for different
datasets, averaged over the ten experimental trials. We
quantified the mismatch between test set priors (Peest[C = ¢])
and local training set priors (PEJQ[C = c]) by the sum of
cross-entropies:

¢ ) (42)
c]

These are also shown in Table 2. An extreme case of prior
mismatch is when there are no examples from one of the
classes in the test batch—this class has a zero test set prior
probability. We refer to this case as the missing class case,
also indicated in Table 2. In “missing class” experiments, we
randomly selected a single class to be missing from the test
batch. The missing class case is interesting for several reasons.
First, it represents an extreme case of prior mismatch and
thus a severe test of the robustness of a method to prior
mismatch. Second, in an application scenario, it may be
important to recognize that one of the classes is wholly
not present in the testing data. This may provide valuable
actionable information beyond mere class decisions. We also
note that missing classes during testing is wholly different
from the anomaly detection problem, wherein a class is

M, N .
M= SPIIC = cllog (
j=1lc=1 PtEST[C

present in test data but missing in the training data. The
anomaly detection problem is not within the scope of this
work.

Finally, we note that some datasets used in our experi-
ments are relatively small, which makes it difficult to obtain
accurate estimates of generalization accuracy. In particular,
for liver disorder, sonar, and ionosphere, the test set size
Niest does not meet the requirement from [44] that Niese >
100/P,, P, the optimal error rate for the problem. Even when
accurate error rate estimates are difficult to obtain, we would
like to have statistical confidence on the relative performance
of the combining schemes. Accordingly, to test the statistical
significance of head-to-head comparison of two schemes, we
performed the 5 X 2 cv F test, proposed in [45]. According to
[45], we can reject the hypothesis that two algorithms have
the same error rate with 95% confidence if the F statistic is
greater than 4.74. As seen in the sequel, this testing indicates
that there are statistically significant gains in accuracy of
our transductive CB method over fixed combining and over
the previous CB methods [15] in many of the mismatch
experiments.

5.3. Augmentation with support derived
from constraints

We first compared the results obtained for TIS using local
training support and training support derived from the
constraints. We measured classification error rate on the test
set and the joint entropy on the test and training supports.
The TIS algorithm allocated probability mass between the
training sets and test set without any constraint, that is, by
letting 8 = 0.

From the results of Table 3, we see that the classification
performance of TIS with derived training support is very
similar to that of TIS with local training support, but with
lower joint entropy. The mass allocation on the test set for
TIS with local training support is much less than that with
derived training support. The reason, we believe, is that since
the derived training support is much smaller than the local
training support and test support, entropy maximization
in the derived support case requires heavy use of the test
support, whereas in the local training support case, entropy is
maximized making much more use of the augmented (local)
training supports. In spite of this disparity in P, for these
two cases, both approaches give very similar classification
accuracy.

Note also that on some datasets, for example, diabetes
and liver disorder, the error rate in high mismatch and
missing class cases is significantly lower than for low mis-
match values. This is explained by recognizing that altering
the class priors changes the Bayes-optimal error rate of the
classification problem. In some case, the Bayes error rate is
made much lower. In the missing class case, it can be further
recognized that if the transductive method is successful in
identifying that a class is missing (or, at any rate, has very
few test instances), the classification problem is effectively
made “easier”, with fewer classes to discriminate between in
classifying the test samples.
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TABLE 3: Average classification performance (test error rate) and joint entropy using local training support and support derived from

constraints.
Dataset Mismatch Local training support Derived training support
Err J-Ent P, Err J-Ent P,
0.98 0.531 8.065 0.311 0.532 6.854 0.857
Vehicle 2.73 0.490 8.035 0.285 0.494 6.669 0.813
Missing 0.478 8.022 0.273 0.480 8.945 0.773
0.066 0.176 8.934 0.219 0.172 7.413 0.884
1.41 0.212 8.940 0.221 0.218 7.370 0.860
Segment
2.40 0.107 8.908 0.200 0.105 7.307 0.867
Missing 0.129 8.906 0.198 0.101 7.280 0.857
0.34 0.424 7.067 0.254 0.478 5.711 0.873
. . 1.79 0.318 7.063 0.249 0.373 5.700 0.868
Liver disorder
3.56 0.248 7.055 0.239 0.290 5.653 0.848
Missing 0.159 7.050 0.233 0.180 5.621 0.835
0.74 0.269 7.478 0.239 0.269 5.994 0.896
. 1.43 0.262 7.472 0.232 0.265 5.934 0.882
Diabetes
2.57 0.211 7.461 0.221 0.241 5.856 0.872
Missing 0.027 7.426 0.187 0.010 5.680 0.856

TABLE 4: Average classification performance (test error rate) and
joint entropy for ETIS and naive Bayes in the hard decision case.

Dataset Mismatch ETIS Naive Bayes
Err J-Ent Err J-Ent
0.98 0.580  2.782 0.588 5.882
Vehicle 2.73 0.534 2527 0.612  5.882
Missing 0.542 2.381 0.643 5.882
0.066 0.190 2.885 0.190 4.001
1.41 0.270 2.844 0.275 4.001
Segment
2.40 0.118 2.482 0.209  4.001
Missing 0.093 2.763 0.229  4.001
0.34 0.430 2.191 0.415 3.641
Liver disorder 1.79 0.337  2.050 0.377  3.641
3.56 0.278 1.907 0.375 3.641
0.74 0.306 2.365 0.282 3.440
. 1.43 0.298 2.380 0.297 3.440
Diabetes
2.57 0.239 2.331 0.306 3.440
Missing 0.006 2.123 0.189 3.440
0.32 0.340 1.360 0.353 3.246
0.89 0.313 1.315 0.372 3.246
Sonar
2.28 0.209 1.259 0.378 3.246
Missing 0.148 1.960 0.402 3.246
0.21 0.168 1.394 0.164 2.806
1.24 0.151 1.187 0.205 2.806
Ionosphere
2.25 0.055 1.075 0.201 2.806
Missing 0.006 1.449 0.198 2.806

5.4. Full support in the hard decision case

We next considered the case where local classifiers produce
hard decisions. We compared ETIS and the naive Bayes
solution (see Section 4.3) with respect to test error rate and

joint entropy. For the naive Bayes method, since the test set
class priors are unknown, a uniform class prior was assumed.
From Table 4, we can see the classification performance of
ETIS is better than naive Bayes and with much lower joint
entropy, as expected based on the discussion in Section 4.3.
Note also that we again see the phenomenon of lower error
rates in the high mismatch cases on some datasets, especially
for the ETIS method.

5.5. Influence of

Figure 5 shows the influence of 8 on the TIS algorithm for
diabetes. We measured four different values: deviation, joint
entropy on the test and training set support, classification
error rate on the test dataset, and probability mass allocation
(P, on the test set support and P; = 1 — P, on the training
set support). We plotted curves for four different mismatch
cases. Each curve is based on an average of five replications
of two-fold cross-validation. We changed f3 from —20 to 10
with A = 1 and, for each f3, we ran the TIS algorithm until
the stop criterion AD < 1077,

We can see that when 8 < -6, the deviation does
not approach 0 when TIS terminates. This demonstrates
constraint infeasibility at finite 5. As 8 becomes more
negative, the test set support gets more probability mass
allocation P,.. However, the rate of P, increase decreases as
S becomes more negative; this occurs because it is difficult
to satisfy the local constraints if the TIS algorithm assigns
too much probability mass to the test set. The TIS algorithm
achieves peak entropy at § = 0 (as must be the case). When 8
goes either negative or positive, the joint entropy decreases—
there is no constraint on entropy maximization in this case.
Note also that for all mismatch values, the best test set
error occurs for negative f§ and the smallest f satistying the
constraints achieves accuracy close to this best error rate.
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F1GURE 5: The influence of 8 on TIS algorithm (Diabetes).

As noted in Section 4.7, we used an ETIS bisection
search to find the smallest § for which the constraints
are satisfied. For this f3, the least mass is allocated to
the extra support points. The initial search range is
from , = —100 (a nonsatisfiable ) to f, = 0
(a satisfiable ). For all the datasets we experimented
on, Problem 1 was in fact infeasible. Moreover, for
each dataset, § = —100 was negative enough such
that the TIS algorithm could not satisfy constraints.
We used the deviation as the criterion to determine

whether the constraints are satisfied or not; here we chose
D/N? <1077,

Table 5 gives a comprehensive performance comparison
between TIS (f = 0) and the ETIS algorithm (which stopped
at the most negative 3 at which the constraints were met).
ETIS guarantees more mass allocation on the test set support
and smaller joint entropy. It has competitive classification
performance with TIS and performs especially well in the
missing class case. (We again emphasize that, in the missing
class case, constraint relaxation never occurred in any of
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TABLE 5: Average classification performance (test error rate), joint entropy, and mass allocation comparison between TIS and ETIS

algorithms.
Dataset Mismatch TIS (B = 0) ETIS (negative f)
Err J-Ent P, B Err J-Ent p,
0.98 0.531 8.065 0.311 —2.746 0.529 7.536 0.752
Vehicle 2.73 0.490 8.035 0.285 —2.868 0.490 7.503 0.712
Missing 0.478 8.022 0.273 -3.114 0.470 7.512 0.664
0.066 0.176 8.934 0.219 —1.516 0.171 8.691 0.519
1.41 0.212 8.940 0.221 —1.354 0.217 8.742 0.474
Segment
2.40 0.107 8.908 0.200 —1.386 0.0978 8.685 0.466
Missing 0.128 8.906 0.198 —1.415 0.0970 8.672 0.461
0.34 0.424 7.067 0.254 —8.629 0.453 5.940 0.879
. . 1.79 0.318 7.063 0.249 —9.092 0.360 6.010 0.836
Liver disorder
3.56 0.248 7.055 0.239 —13.593 0.271 5.819 0.848
Missing 0.159 7.050 0.233 —-16.821 0.138 5.683 0.847
0.74 0.269 7.478 0.239 —9.790 0.264 6.191 0.909
. 1.43 0.262 7.472 0.232 —11.185 0.253 6.155 0.895
Diabetes
2.57 0.211 7.461 0.221 —10.668 0.206 6.127 0.881
Missing 0.027 7.426 0.187 —11.946 0.015 5.915 0.886
0.32 0.325 6.529 0.233 -7.916 0.324 5.211 0.942
Sonar 0.89 0.305 6.520 0.224 —8.666 0.276 5.201 0.926
2.28 0.226 6.509 0.212 —13.305 0.200 5.169 0.895
Missing 0.168 6.501 0.204 —15.334 0.157 5.167 0.865
0.21 0.157 7.038 0.226 —11.103 0.153 5.670 0.953
1.24 0.130 7.007 0.200 —6.312 0.115 5.589 0.944
Ionosphere
2.25 0.066 6.999 0.191 —8.860 0.070 5.491 0.949
Missing 0 6.987 0.179 —14.942 0.009 5.495 0.896

our experiments.) However, neither method dominates the
other.

5.6. Comparisons between ETIS, TGD, TML,
and fixed rules

In Table 6, we compare transductive ME (ETIS) with the
transductive gradient descent (TGD) CB method and the
transductive maximum likelihood (TML) algorithms pro-
posed in [15] and also with the fixed rules Sum, Product,
Max, and Min [3]. Note that Tables 5 and 6 have some
common columns because ETIS results appear in both tables.
We can see ETIS achieves overall better error rates than the
previous transductive methods and is uniformly better than
the fixed rules. In Table 7, we evaluate statistical significance
of the gains of ETIS compared head-to-head against the fixed
combining methods and the previous CB method. Note that
the F-statistic is much larger than 4.74 in many of these
comparisons, indicating that gains of ETIS are statistically
significant in most mismatch cases compared with fixed
methods, and in high mismatch cases compared with TGD
and the TML methods, on most of the datasets.

Instead of measuring joint entropy (27), we measured
conditional entropy (9) to make a fair entropy comparison
between ETIS and TGD. Because TGD only uses the test
support set to satisfy constraints, we only measured entropy
on the test set as in (9). Note that ETIS has higher conditional

entropy than TGD, as we would expect, since TGD does not
perform entropy maximization while satisfying constraints.

6. CONCLUSIONS

In this work, we have proposed a new ME framework for
transductive learning of decision aggregation rules when
there is no common labeled data across local classifiers.
The new approach overcomes constraint infeasibility and
nonuniqueness of the solution and achieves better results
than [15]. While our approach can be directly applied
also to the single classifier case, which amounts to a
semisupervised learning problem, it remains to be seen
whether our transductive ME approach offers benefits in
classification accuracy over standard supervised learning in
this case. Future work should also develop a proof that TIS
converges to the ME solution satisfying the constraints, as
well as investigate application contexts for the distributed
classification problem studied here.

APPENDIX
A. PROOFS
A.1. Proof of feasibility of Problem 2

First, assign all probability mass to the training set supports,
that is, choose P, = 0. Further, assign this mass to the
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TaBLE 6: Classification performance (test error rate) and conditional entropy comparison between ETIS, TGD, TML, and Sum, Prod, Max,

and Min fixed rules.
Dataset Mismatch ETIS TGD TML Err Fix Err .
Err C-Ent Err C-Ent NB AA Sum Prod Max Min
0.98 0.529 0.861 0.587 0.083 0.579 0.589 0.577 0.579 0.575 0.587
Vehicle 2.73 0.490 0.765 0.603 0.105 0.597 0.600 0.614 0.614 0.617 0.619
Missing 0.47 0.728 0.623 0.091 0.62 0.631 0.639 0.639 0.638 0.640
0.066 0.171 0.409 0.187 0.135 0.204 0.218 0.210 0.203 0.201 0.205
Seament 1.41 0.217 0.455 0.239 0.105 0.320 0.307 0.347 0.342 0.365 0.338
§ 2.40 0.098 0.315 0.173 0.101 0.148 0.133 0.171 0.164 0.188 0.159
Missing 0.097 0.312 0.169 0.107 0.161 0.127 0.195 0.186 0.216 0.179
0.34 0.453 0.498 0.447 0.431 0.382 0.388 0.361 0.389 0.379 0.377
. . 1.79 0.360 0.474 0.357 0.321 0.289 0.285 0.355 0.356 0.363 0.342
Liver disorder
3.56 0.271 0.391 0.288 0.249 0.242 0.219 0.377 0.373 0.392 0.355
Missing 0.138 0.344 0.170 0.226 0.190 0.138 0.380 0.380 0.403 0.370
0.74 0.264 0.429 0.276 0.025 0.266 0.268 0.285 0.286 0.280 0.299
Diabetes 1.43 0.253 0.386 0.282 0.002 0.276 0.238 0.312 0.316 0.300 0.336
2.57 0.206 0.303 0.271 0.01 0.271 0.196 0.349 0.357 0.349 0.367
Missing 0.015 0.112 0.177 0.014 0.183 0.061 0.323 0.302 0.414 0.251
0.32 0.324 0.375 0.341 0.027 0.351 0.350 0.358 0.358 0.358 0.357
Sonar 0.89 0.276 0.329 0.316 0.001 0.371 0.368 0.382 0.382 0.382 0.381
2.28 0.2 0.251 0.333 10°° 0.375 0.371 0.398 0.397 0.407 0.397
Missing 0.157 0.212 0.341 10°° 0.400 0.381 0.439 0.732 0.448 0.437
0.21 0.153 0.345 0.16 1074 0.169 0.172 0.159 0.159 0.161 0.164
1.24 0.115 0.204 0.200 107¢ 0.209 0.171 0.239 0.237 0.255 0.231
Ionosphere
2.25 0.07 0.148 0.193 10°° 0.203 0.162 0.245 0.238 0.261 0.231
Missing 0.009 0.069 0.189 107° 0.199 0.146 0.253 0.245 0.271 0.232
TABLE 7: 5 X 2 cv F test comparing ETIS head-to-head versus TGD, TML, and 4 fixed rules (Sum, Prod, Max, and Min).
Dataset Mismatch TGD TML-NB TML-AA Sum Prod Max Min
. 0.98 2.96 3.63 5.02 5.95 6.88 3.99 5.28
Vehicle
2.73 5.16 4,94 5.19 23.15 22.20 33.84 15.33
0.066 1.51 3.63 9.27 5.50 2.99 3.13 4.24
1.41 1.95 11.68 7.83 19.49 17.68 51.34 22.22
Segment
2.40 1.11 0.74 0.61 1.10 0.96 1.74 0.89
Missing 7.85 5.90 1.75 6.62 7.77 7.96 6.16
0.34 0.61 1.00 0.94 1.01 0.93 1.01 0.94
. . 1.79 0.61 0.66 0.65 0.60 0.60 0.60 0.60
Liver disorder
3.56 0.65 0.67 0.68 0.68 0.67 0.74 0.64
Missing 0.62 0.63 0.61 1.17 1.16 1.56 1.08
0.74 1.91 0.81 1.15 4.48 10.59 1.31 491
. 1.43 10.05 6.21 1.09 47.99 62.03 10.62 23.28
Diabetes
2.57 6.07 5.46 0.63 29.55 36.44 8.17 28.94
Missing 23.14 40.47 2.27 150.60 89.70 111.60 168.84
0.32 0.85 0.88 0.89 1.04 1.01 0.92 1.07
0.89 1.05 1.88 1.87 1.83 1.83 1.77 2.06
Sonar
2.28 2.21 3.52 3.66 3.79 3.84 3.92 3.93
Missing 2.14 3.27 3.68 3.76 3.67 3.65 3.81
0.21 0.99 1.35 1.42 0.82 0.82 1.11 1.00
Ionosphere 2.25 7.35 7.39 1.78 10.31 10.37 12.16 11.09
Missing 9.51 9.75 2.40 18.88 15.02 20.27 14.68
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training supports in a uniform manner, that is, by the choice
PRV, ] = (1/Nj)-(1/M,) V&Y, ) e XU, With this
choice, we have

P[Ci=¢IC=c x€ xﬁ”]

1 (UN;)- (l/M) "

VC=clc=c,

where f” denotes 2 ¥ ye ». Thus, Problem 2 is feasible.

A.2. Proofsketch of feasibility of the problem
with support augmentation derived from
the constraints

This proof follows the same strategy as Appendix A.l.
We again first let P, = 0, assigning all probability
to the support points derived from the constraints. On
these support points, we make the probability assignments
P[[0,0,...,0,1,0,...0],c] = (I/NJP[C; = ¢ | C =
c], where the “1” is in the ¢-th entry V(c,¢). With these
assignments, one again finds, similar to Appendix A.1, that

PICi=¢lC=c, xeXx1=P/[C;=¢IC=c]

A.3. Proofthat TIS updates descend in the Lagrangian

For fixed P, [c | x], P[X ]) cu, Pu, andﬁ when updating any

single Lagrange multlpher y(CJ = ¢,C = ¢) using the TIS
update rule (39) given the remaining Lagrange multipliers
held fixed, the change in the Lagrangian (34) can be written
as

where k' denotes log(Pg)[éj =C|C=¢|NJC=c|x€
XVUNIC =6C=clxe x)).

The final inequality is verified as follows. First, note that
N C=c|x € X(rj)] andNe[éj =¢5C=c|x¢€ Xij)]
are both nonnegative and Pg)[éj =Cc|C=c] €]01]
Thus, the logarithm is well defined. Next, observe that if
NIC =86C=clxex'] < P(”[c &l cC =
NJC = ¢ | x € X(rj>], then log(Pg [Cj =C | C =]

NlC =clxe X)UNIC; = 6C = c | x e X))
is positive, otherwise, it is negative. Thus, in either case,
LIp(C;=6C=0¢) + Ay(C;j=&C=0¢)] - LIy(C; =6C =
c)] is negative, and the Lagrangian is thus decreasing with
TIS updates.
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