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1. INTRODUCTION

An attractive scheme to make spatial multiplexing more
robust against rank deficient channels, and to reduce the
receiver complexity, is linear precoding. The linear precoding
matrix is a function of the channel state information (CSI),
which is, in general, only available at the receiver. Thus,
the required information to calculate the precoding matrix
must be fed back to the transmitter over a feedback link,
which is assumed to be data-rate limited. An important
approach to improve the performance of linear precoded
spatial multiplexing is optimizing the exploitation of the
limited data rate on the feedback link.

The notion of linear precoding was introduced in [1],
where the optimal linear precoder that minimizes the
symbol mean square error for linear receivers under different
constraints was derived. The bit-error-rate (BER) optimal
precoder was introduced in [2], and the capacity optimal
precoder in [3]. The first use of partial CSI at the transmitter
was presented in [4], where the Lloyd algorithm is used to
quantize the CSI. Other approaches focused on feeding back
the mean of the channel [5], or the covariance matrix of
the channel [6]. An overview of the achievable channel
capacity with limited channel knowledge can be found in

[7]. Schemes that directly select a quantized precoder from
a codebook at the receiver, and feed back the precoder index
to the transmitter have been independently proposed in
[8, 9]. There, the authors proposed to design the precoder
codebooks to maximize a subspace distance between two
codebook entries, a problem which is known as the Grass-
mannian line packing problem. The advantage of directly
quantizing the precoder is that the unitary precoder matrix
[1] has less degrees of freedom than the full CSI matrix,
and is thus more efficient to quantize. Several subspace
distances to design the codebooks were proposed in [10],
where the selected subspace distance depends on the function
used to quantize the precoding matrix. In [11], a precoder
quantization design criterion was presented that maximizes
the capacity of the system and also the corresponding
codebook design. A quantization function that directly
minimizes the uncoded BER was proposed in [12].

This paper presents existing and novel schemes for linear
precoding in the well-known vector quantization framework.
We present the most popular selection and distortion criteria
used for linear precoding, but also novel techniques like
entropy coding, and finite state vector quantization. Further,
we show how these schemes can be adapted to changing
channel statistics, that is, to nonstationary sources.
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Figure 1: System model of the linear precoded spatial multiplexing
MIMO system with limited feedback.

Notation

We use capital boldface letters to denote matrices, for
example, A, and small boldface letters to denote vectors, for
example, a. The Frobenius norm and the 2-norm of a matrix
A are denoted as ‖A‖F and ‖A‖2, respectively. E(·) denotes
expectation and P(·) probability. [A]m,n is the element in the
mth row and nth column of A. The n × n identity matrix is
denoted as In, and Um×n is the set of unitary m× n matrices.
tr(A) is the trace of A, and det(A) the determinant of A.

2. SYSTEMMODEL

Throughout the paper, we assume a narrowband spatial
multiplexing MIMO system with NT transmit and NR receive
antennas, transmitting NS ≤ min(NT ,NR) symbol streams,
as depicted in Figure 1. The system equation at time instant
n is

y[n] = H[n]F[n]s[n] + ν[n], (1)

where y[n] ∈ CNR×1 is the received vector, ν[n] ∈ CNR×1 is
the additive noise vector, s[n] ∈ CNS×1 is the data symbol
vector, H[n] ∈ CNR×NT is the channel matrix, and F[n] ∈
CNT×NS is the linear precoding matrix. We assume the data
symbol vector s[n] is zero mean spatially and temporally
white distributed over a complex finite alphabet, for example,
the entries belong to a QAM alphabet A, and the noise vector
ν[n] is zero mean spatially and temporally white complex
Gaussian distributed. The channel matrix H[n] is zero
mean possibly spatially and temporally correlated complex
Gaussian distributed. The spatial correlation can be modeled
using [13], H[n] = R1/2

r Hw[n]R1/2
t , where Rr is the receive

covariance matrix, Rt the transmit covariance matrix, and
Hw[n] the possibly temporally correlated channel matrix. We
assume without loss of generality that the symbols and the
noise have unit variance.

The singular value decomposition (SVD) of H[n] is

defined as H[n] = U[n]Σ[n]V
H

[n], where U[n] ∈ UNR×NR ,
V[n] ∈ UNT×NT , and Σ[n] is a real nonnegative diagonal
NR × NT matrix (the diagonal starts in the top left corner)
with nonincreasing diagonal entries. The columns of U[n]
and V[n] are called the left and right singular vectors,
respectively, whereas the diagonal entries of Σ[n] are the
corresponding singular values. Only focusing on the NS

strongest modes of the channel (the ones with the largest
singular values), let us define U[n] = [U[n]]:,1:NS

∈ UNR×NS ,
V[n] = [V[n]]:,1:NS

∈ UNT×NS , and Σ[n] = [Σ[n]]1:NS,1:NS
,

where [A]a:b,c:d selects the submatrix of A on the rows a to

b and the columns c to d, and the range indices are omitted
when all rows or columns should be selected.

Many studies have been carried out to derive the optimal
precoding matrix for a certain performance measure, see [1–
3, 14]. In general, the optimal precoding matrix looks like

Fopt[n] = V[n]Θ[n]M[n], (2)

where Θ[n] ∈ CNS×NS is a diagonal power loading matrix,
and M[n] ∈ UNS×NS is a unitary mixing matrix. For some
performance measures, the mixing matrix is arbitrary,
whereas for other performance measures its value matters.
In any case, it has been shown that for low-rate feedback
channels, it is better not to feed back the power loading
matrix and to stick to feeding back a unitary precoder [15].
That is why we will limit the precoding matrix F to be
unitary, F ∈UNT×NS .

The maximum data rate on the feedback link is R bits per
channel use, and the feedback is assumed to be instantaneous
and error free. We consider two different types of feedback
channels: a dedicated feedback channel and a nondedicated
feedback channel. A dedicated feedback channel is only used
to transmit the precoder index to the transmitter, whereas
a nondedicated feedback channel is also used for data
transmission. The transmission is organized in a blockwise
fashion, that is, feedback is only possible at the beginning of
each new block, and every block has a duration of Tf . We
assume the channel is perfectly known at the beginning of
every block.

3. VECTOR QUANTIZATION

The data-rate-limited feedback link requires quantization
of the channel matrix, resulting in a unitary precoder. The
simplest approach is to use memoryless VQ, which quantizes
every channel matrix H[n] separately. Hence, we can drop
the time index n everywhere in this section. In memoryless
VQ, we select a unitary NT × NS matrix Fi from a codebook
C = {F1, . . . ,FK} that minimizes or maximizes a given selec-
tion function S. We will denote Q(H) as the quantized
version of the channel matrix, but note that it actually
represents the unitary precoder. More specifically, for a given
selection function S and a given codebook C, Q(H) can be
defined as

Q(H) = arg min/max
F∈C

S(H,F), (3)

where we take the minimum or the maximum depending
on the selection function S. The quantization process can
be further separated into an encoding step and a decoding
step. The encoder α maps the channel into one of K precoder
indices, which for simplicity reasons can be represented by
the set I = {1, 2, . . . ,K}:

α(H) = arg min/max
i∈I

S
(
H,Fi

)
. (4)

The decoder β simply maps the precoder index into one of
the K precoders:

β(i) = Fi. (5)
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Table 1: Example of a 4-entry (K = 4) codebook for a nonded-
icated and dedicated feedback link.

Precoders Bitwords nondedicated Bitwords dedicated

F1 w1 = 00 w1 = /

F2 w2 = 01 w2 = 0

F3 w3 = 10 w3 = 1

F4 w4 = 11 w4 = 00

So we actually have

Q(H) = β
(
α(H)

)
. (6)

Note that the index i ∈ I is transmitted over the feedback
channel as a bitword wi. What type of bitwords we have to
feed back strongly depends on the type of feedback link:
dedicated or nondedicated. In case of a nondedicated feed-
back channel, the transmitter has to be able to differentiate
between a bitword and the data. This means the bitwords
should be instantaneously decodable and thus prefix-free
(PF), that is, a bitword can not contain any other bitword as
a prefix. This is not the case in a dedicated feedback channel,
where we can use non-prefix-free (NPF) bitwords. If the
quantizer is well designed, all precoders Fi have more or less
the same probability. Under that assumption, we can think
of two ways to design our bitwords wi. For a nondedicated
feedback link, we can take K equal-length PF bitwords,
leading to a feedback rate of �log2K� bits per channel use.
For a dedicated feedback link, however, we can take any
K bitwords with the smallest average length, leading to an
average feedback rate of 1/K

∑K
i=1�log2i�. An example is given

in Table 1, where we assume a codebook with K = 4 entries.
Next we focus on a number of selection functions for linear
precoding, and we discuss the design of precoder codebooks.

3.1. Precoder selection

In this section, we will give an overview of some common
selection functions S that have been proposed in recent
literature. Whether we have to minimize or to maximize
the selection function will be clear from the context.
In [10], selection criteria are derived based on different
performance measures. Optimizing the performance of the
maximum likelihood (ML) receiver is related to maximizing
the minimum Euclidean distance between any two possible
noiseless received vectors:

SML(H,F) = min
s1,s2∈ANS×1, s1 /=s2

∥
∥HF

(
s1 − s2

)∥∥
2. (7)

For linear receivers, two performance measures are consid-
ered in [10], the minimum SNR on the substreams and the
trace or determinant of the MSE matrix. Maximizing the
first measure for the zero forcing (ZF) receiver is related
to maximizing the minimal singular value (MSV) of the
effective channel HF:

SMSV(H,F) = λmin{HF}, (8)

where λmin{A} denotes the MSV of the matrix A. Minimizing
the second measure for the minimum mean square error
(MMSE) receiver, leads to minimizing the following selection
function;

SMSE(H,F) = m
(
INS + FHHHHF

)−1
, (9)

where m = tr or m = det. Finally, [10] also proposes to
maximize the mutual information (MI) between the trans-
mitted symbol vector s and the received symbol vector y over
the effective channel HF:

SMI(H,F) = log2det
(
INS + FHHHHF

)
. (10)

It has been shown in [10] that the above performance
measures can be associated to a subspace distance between
the right singular vectors of H, collected in V, and F. As
such, this subspace distance could also be used as selection
function to be minimized. The performance of the ML
receiver, the minimum SNR on the substreams for the ZF
receiver, and the trace of the MSE matrix for the MMSE
receiver are all related to the projection 2-norm distance:

SP2(H,F) = dP2(V,F) = ∥∥VVH − FFH
∥
∥

2, (11)

whereas the determinant of the MSE matrix for the MMSE
receiver and the MI criterion can be connected to the Fubini-
Study distance:

SFS(H,F) = dFS(V,F) = arccos
∣
∣det(VHF)

∣
∣. (12)

Next to minimizing those subspace distances, minimizing
the chordal distance is also used as selection criterion,

SC(H,F) = dC(V,F) = 1/
√

2
∥∥VVH − FFH

∥∥
F

=
√

tr
(
INS −VHFFHV

)
.

(13)

This function is related to the performance of an orthogonal
space-time block code (OSTBC) that is used on top of the
precoder [16].

For all the above selection criteria (for the ML criterion
this is only approximately true), the optimal unitary pre-
coder is given by VM, where M is an arbitrary NS×NS unitary
matrix, that is, M ∈ UNS×NS . This unitary ambiguity can
be a problem when we are interested in other performance
measures, such as uncoded bit-error-rate (BER), for instance.
We know that in that case, the actual structure of the
ambiguity matrix becomes important [12]. One solution
could of course be to simply minimize the BER:

SBER(H,F) = BER (H,F). (14)

However, this is often difficult to compute. A simpler solut-
ion might be to encode V using VQ and to adopt the optimal
(or a suboptimal) unitary mixing matrix M according to
[12]. Hence in that case we do not use Fi but FiM as a
precoder at the transmitter. We could encode V for instance
by minimizing the Frobenius norm between V and F [16].

SF(H,F) = dF(V,F) = ‖V− F‖F

=
√

2tr
(
INS −R

(
VHF

))
.

(15)
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This selection function is however not invariant to a phase
shift of the singular vectors collected in V. That is why, the
Frobenius norm has been extended to the so-called modified
Frobenius norm [17],

SMF(H,F) = dMF(V,F) = argmin
Θ∈DNS

∥
∥VΘ− F

∥
∥
F

= ∥∥Vdiag
(
VHF

)
diag

(∣∣VHF
∣
∣)−1 − F

∥
∥
F

=
√

2tr
(
INS −

∣
∣VHF

∣
∣),

(16)

where Dn ⊂ Un×n is the set of all diagonal unitary n × n
matrices. Notice how through the use of the real or absolute
value of VHF, instead of the product VHFFHV in (13), we
truly encode V instead of its subspace. Let us now discuss the
codebook design.

3.2. Codebook design

In general, a codebook design aims at finding a set of prec-
oders C that minimizes some average distortion,

Dav =
∫

CNR×NT
D
(
H,Q(H)

)
p(H)dH, (17)

where D(H,Q(H)) is the distortion between H and Q(H),
and p(H) is the probability density function (PDF) of the
channel matrix H. The distortion function D can take many
different forms depending on the performance measure we
are interested in (as was the case for the selection function).
In [10], it has been shown that if we are interested in
the performance of the ML receiver, the minimum SNR
on the substreams for the ZF receiver, or the trace of
the MSE matrix for the MMSE receiver, we can take as
distortion function, the squared projection 2-norm distance
between V and Q(H): DP2(H,Q(H)) = d2

P2(V,Q(H)). On the
other hand, if we care about the determinant of the MSE
matrix for the MMSE receiver or the MI, we should take
the squared Fubini-Study distance between V and Q(H) as
distortion function, DFS(H,Q(H)) = d2

FS(V,Q(H)). Finally,
the distortion function related to the performance of an
orthogonal space-time block code (STBC) that is used on
top of the precoder is presented in [16] as DC(H,Q(H)) =
d2
C(V,Q(H)) = tr(INS − VHQ(H)Q(H)HV). The reason why

squared subspace distances are used as distortion functions
(and not the performance measures themselves) is because
they lead to simpler design procedures as detailed later on.

In [11], an alternative and more exact distortion measure
for the MI is proposed, namely, the capacity loss introduced
by quantization,

DCL
(
H,Q(H)

) = tr
(
Λ−ΛVHQ(H)Q(H)HV

)
, (18)

where Λ = (INS +Σ2)−1Σ2. Note that this distortion function
converges to the squared chordal distance DC when the
diagonal elements of Σ2 go to infinity.

All the above distortion functions are invariant to a left
multiplication of the precoder with a unitary matrix. As
already indicated in the previous section, this could create
a problem when performance measures like the uncoded

BER are considered. Taking the distortion function equal
to the BER, that is, DBER(H,Q(H)) = BER (H,Q(H)) leads
to a difficult codebook design. But as before, we could take
the squared Frobenius norm or squared modified Frobenius
norm between V and Q(H) as a distortion function to
solve this complexity problem, DF(H,Q(H)) = 2tr(INS −
R(VHQ(H))), DMF(H,Q(H)) = 2tr(INS−|VHQ(H)|). In this
case, our goal is again to feedback V, and we will not use the
precoder Q(H) but Q(H)M at the transmitter, where M is the
optimal (or a suboptimal) unitary mixing matrix [12].

Now, the question is how we can solve (17) for a certain
distortion function. We can basically distinguish between
three different approaches: Grassmannian subspace packing,
the generalized Lloyd (GL) algorithm, and the Monte-Carlo
(MC) algorithm.

3.2.1. Grassmannian subspace packing

In case the distortion function is a subspace distance and the
channel is spatially white, we can simplify (17) by means
of a Grassmannian subspace packing problem. In such a
problem, the objective is to find a set of unitary precoders
that maximizes the minimal subspace distance between them
[10, 16],

max
C

min
Fi,F j∈C
Fi /=F j

d
(
Fi,F j

)
, (19)

where d is any of the subspace distances we discussed above.
Of course, such a codebook can also be used when the
channel is not spatially white, but the performance will
decrease with an increased spatial correlation of the channel.

3.2.2. Generalized Lloyd algorithm

The generalized Lloyd (GL) algorithm tries to solve (17) by
iteratively optimizing the encoder and the decoder [18, 19].
For a given decoder β, the encoder is optimized by taking
the precoder index leading to the smallest distortion (the so-
called nearest neighbor condition):

α(H) = argmin
i∈I

D
(
H,β(i)

)
, (20)

thereby splitting the space of channel matrices into K
channel regions Ri, i ∈ I;

Ri =
{
H : D

(
H,Fi

) ≤ D
(
H,F j

)
, Fi,F j ∈ C, Fi /=F j

}
. (21)

On the other hand, for a given encoder α, the decoder β
is optimized by taking the centroid of the related channel
region (the so-called centroid condition),

β(i) = argmin
F∈UNT×NS

∫

Ri

D(H,F)p(H)dH. (22)

Although not rigorously proven, the GL algorithm converges
to a local minimum, which might not necessarily be the
global minimum. To avoid working with the continuous
channel distribution, the GL algorithm makes use of a set
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Table 2: Example of feedback compression through entropy coding.

Codebook P(Q(H[n]) = Fi | Q(H[n− 1]) = F8) Huffman code NPF code

F8 0.25 01 /

F2 0.20 11 0

F7 0.18 000 1

F4 0.16 001 00

F3 0.10 101 01

F6 0.08 1000 10

F5 0.02 10010 11

F1 0.01 10011 000

of training channels T = {H(r)}, where r is the realization
index. This set can be interpreted as the discrete channel dis-
tribution that approximates the continuous one. The more
training vectors in the set, the better the approximation.
Computing the exact centroid based on T is not always
easy [20]. For the squared subspace distances as well as
the capacity loss distortion function in (18), closed form
expressions for the centroid exist. However, for the BER
and even the squared Frobenius norm or squared modified
Frobenius norm, a closed form expression does not exist.
For those distortion functions, we simply apply a brute
force (approximate) centroid computation by exhaustively
searching the best possible candidate among the set of
matrices V(r) for which H(r) belongs to the related region.

3.2.3. Monte-Carlo algorithm

Another interesting approach is the pure Monte-Carlo based
design. Instead of trying to optimize an existing code-
book, this design randomly generates codebooks, checks
the average distortion (17) of these codebooks, and keeps
the best one. As for the GL algorithm, we will make use
of the set of training channels T to approximate the
continuous channel distribution. Although this algorithm
becomes computationally expensive for large dimensions, for
small dimensions we have observed that the MC algorithm is
a very good alternative to Grassmannian subspace packing or
the GL algorithm.

4. FEEDBACK COMPRESSION THROUGH
ENTROPY CODING

This section explores methods to compress the feedback
requirements on the feedback link, without sacrificing perf-
ormance. It uses variable-rate codes to encode highly prob-
able precoder matrices with small bitwords and less probable
precoder matrices with longer bitwords. This is called
entropy coding [18]. However, as we already indicated in
Section 3, if the memoryless VQ is well designed, all pre-
coders Fi have more or less the same probability. We therefore
try to exploit the time correlation of the channel and make
use of the transition probabilities between precoders instead
of the occurrence probabilities. Hence, instead of assigning
a bitword wi to a precoder Fi, we assign a bitword wi, j to a

precoder Fi if the previous precoder was the precoder F j . Our
goal then is to minimize the average length

K∑

i=1

l
(
wi, j
)
P
(
Q
(
H[n]

) = Fi | Q
(
H[n− 1]

) = F j
)
, (23)

where l(wi, j) is the length of the bitword wi, j and
P(Q(H[n]) = Fi | Q(H[n − 1]) = F j) is the transition
probability from F j to Fi. Depending on the type of feedback
channel, we obtain a different solution for (23). For a
nondedicated feedback link, or in other words for PF
bitwords, the solution of (23) is given by the Huffman code
[21]. For a dedicated feedback link, or in other words for NPF
bitwords, the solution of (23) is simply given by selecting
any K bitwords with the smallest possible average length,
and assigning the longest (smallest) bitwords to the lowest
(highest) transition probabilities.

An example of a codebook for a dedicated feedback link
and a nondedicated feedback link is depicted in Table 2.
The transition probabilities are estimated through Monte-
Carlo simulations. This example assumes that the previous
quantized precoder is Q(H[n − 1]) = F8. Due to the time
correlation of the channel, the most probable precoder in this
example at time instant n is then again F8. Thus, the most
probable precoder matrix F8 gets a short bitword assigned,
whereas the precoders with lower probabilities get longer
bitwords assigned.

Please note that for OFDM, where several precoder
matrices for different tones are transmitted at the same time
instant, the individual precoding matrices do not need to be
instantaneously decodable. They can be jointly encoded, for
example, through the use of arithmetic coding.

The scheme can be extended to incorporate error corr-
ecting codes to make it robust against errors on the feedback
channel.

The above techniques rely on the exact knowledge or
the knowledge of the order of the transition probabilities
between the past precoder Q(H[n − 1]) and the actual
precoder Q(H[n]). Unfortunately, a closed form expression
of the transition probabilities is not known, and difficult
to derive due to the nonlinearity of the quantization. For
the special case of known channel statistics, they can be
estimated offline through a Monte-Carlo approach [22].
However, in practice the underlying channel statistics are
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unknown, or are changing at runtime. The next section
provides a solution to this problem.

4.1. Adaptive entropy coding

In [23], we introduced a novel scheme to adaptively estimate
the transition probabilities. The presented scheme is able
to estimate the transition probabilities at runtime, and to
adapt to changing channel statistics. The algorithm starts by
assuming that all the different transitions are equiprobable.
Then it counts the different transitions at both the decoder
and the encoder, and updates the transition probabilities
after each new feedback. Assuming a transition between the
precoder F j and the precoder Fk happens, the transition
probability Pk, j[n] = P(Q(H[n]) = Fk | Q(H[n − 1]) = F j)
is updated as [18]

Pk, j[n] = (N − 1)Pk, j[n− 1] + 1

N
,

Pi, j[n] = (N − 1)Pi, j[n− 1]

N
for i /= k.

(24)

The factor N controls how fast or how accurate the
probabilities are estimated. Larger values of N lead to a
smaller increase or decrease after each iteration, and thus, to
a slower, but more accurate estimation.

Instead of updating the transition probabilities, one can
also directly update the Huffman code, in the case of a
nondedicated feedback link [24–26]. However, the effect
is very similar to the two-step approach of first updating
the transition probabilities and then computing the new
Huffman code.

5. FINITE-STATE VECTOR QUANTIZATION (FSVQ)

In this section, we will look at a number of methods to
improve the performance exploiting the maximal data rate
of R bits per channel use on the feedback channel. We
will present the different methods in the well-developed
framework of finite-state vector quantization (FSVQ), and
we closely follow [18].

Before introducing FSVQ, let us consider a so-called
switched VQ, consisting of a finite number of memoryless
VQs and a classifier that periodically decides which memo-
ryless VQ is best and feeds back the index of this VQ to the
decoder. The decision of the classifier is generally based on an
estimate of the statistics of the channel. An example of this
approach is given in [27], where the different memoryless
VQ codebooks are constructed by rotating and scaling a
specific root codebook. The drawback of this approach is
of course the additional feedback overhead due to the fact
that the classifier periodically feeds back the index of the best
memoryless VQ.

FSVQ solves this problem since it does not require any
additional side information. An FSVQ has some built-in
mechanism to determine which of the memoryless VQs
should be used to transform the current channel into a
quantization index. It is the current state that determines
which memoryless VQ to employ, and that is why the

related codebook is called the state codebook. The current
state together with the obtained quantization index then
determines the next state through the so-called next-state
function. This is explained in more detail next.

Suppose we have a set of K states, which without loss of
generality can be denoted as S = {1, 2, . . . ,K}. Every state
s ∈ S is related to a state codebook Cs = {F1,s,F2,s, . . . ,FN ,s}.
The encoder α maps the current channel and state into one of
N quantization indices, which for simplicity reasons can be
represented by the set I = {1, 2, . . . ,N}. Assume for instance
that at time instant n the channel and state are given by H[n]
and s[n], respectively, then we can describe our encoder as

α
(
H[n], s[n]

) = argmin
i∈I

S
(
H[n],Fi,s[n]

)
, (25)

where S is one of the selection functions described in
Section 3.1. The decoder β simply maps the current quan-
tization index and state into one of the N precoders of the
related state codebook. Assume for instance that at time
instant n the quantization index and state are given by i[n]
and s[n], respectively, then our decoder can be expressed as

β
(
i[n], s[n]

) = Fi[n],s[n]. (26)

So the overall quantization procedure can be written as

Q
(
H[n], s[n]

) = β
(
α
(
H[n], s[n]

)
, s[n]

)
. (27)

Finally, we need a mechanism that tells us how to go from one
state to the next. This is obtained by the next-state function.
Keeping in mind that both the encoder and decoder should
be able to track the state, the next-state function f can only
be guided by the quantization index. Assume that at time
instant n the current quantization index and state are given
by i[n] and s[n], respectively, then the next-state function can
be expressed as follows:

s[n + 1] = f
(
i[n], s[n]

)
. (28)

An FSVQ is now completely determined by the state
space S = {1, 2, . . . ,K}, the state codebooks Cs =
{F1,s,F2,s, . . . ,FN ,s} for all s ∈ S, the next state function f ,
and the initial state s[0]. Note that the union of all state
codebooks is called the super codebook C = ⋃s∈SCs, which
contains no more than KN precoders.

As in memoryless VQ, we can consider two ways to
assign bitwords wi to the indices i ∈ I. We can use N
equal-length PF bitwords (for a nondedicated feedback link),
with a feedback rate of �log2N� bits per channel use, or N
increasing-length NPF bitwords (for a dedicated feedback
link), with an average feedback rate of 1/N

∑N
i=1�log2i�. This

assignment is again based on the assumption that for a
certain state s, the precoders Fi,s have more or less the same
probability.

Two special classes of FSVQs are the labeled-state and
the labeled-transition FSVQs. Basically, every FSVQ can
always be represented in either form and as a result, these
classes are not restrictive. In a labeled-state FSVQ, the states
are basically labeled by the quantized precoders, and the
quantized precoder that is produced depends on the arrival
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state. In other words, the labeled-state FSVQ decoder β only
depends on the next state:

β
(
i[n], s[n]

) = Fi[n],s[n] = φ
(
f
(
i[n], s[n]

)) = φ
(
s[n + 1]

)
.

(29)

In a labeled-transition FSVQ, not the states but the state
transitions are labeled by the quantized precoders, and the
selected quantized precoder is determined not by the arrival
state but by both the departure state and the arrival state.
Hence, the labeled-transition FSVQ decoder β depends on
the current as well as on the next state:

β
(
i[n], s[n]

) = Fi[n],s[n] = ψ
(
s[n], f

(
i[n], s[n]

))

= ψ
(
s[n], s[n + 1]

)
.

(30)

As will be illustrated later on, the design of an FSVQ is
often based on an initial classifier that classifies channels into
states. Such a classifier could for instance be a simple memo-
ryless VQ with a codebook Cclass = {F1,F2, . . . ,FK} that
assigns a state s ∈ S to a channel H[n] using the function g,

g
(
H[n]

) = argmin
s∈S

Sclass
(
H[n],Fs

)
, (31)

where the selection function Sclass is one of the functions
introduced in Section 3.1, and could possibly be different
from the selection function S chosen in the encoder (25). We
will come back to this issue in Section 5.2.

In the next few subsections, we will describe a few
methodologies to design the state codebooks and the next
state functions based on the initial classifier. In the first
subsection, we will discuss some labeled-state FSVQ designs.
These are basically existing designs, although they have
not always been introduced in the framework of FSVQ or
in the context of time-correlated channels. In the second
subsection, we describe the so-called omniscient design,
which is a completely novel feedback compression method.
Note that it is still possible to iteratively improve the
obtained state codebooks, given the next-state function, as
illustrated in [18, page 536]. However, this generally only
shows marginal performance gains over the initial designs,
and thus we will not consider it in this work.

5.1. Labeled-state FSVQ designs

In this section, we discuss a few labeled-state FSVQ feedback
designs, where each state s ∈ S is labeled with the precoder
Fs from the classifier codebook Cclass. Hence, the decoder β is
then simply given by

β
(
i[n], s[n]

) = φ
(
s[n + 1]

) = Fs[n+1]. (32)

In that case, the super codebook C corresponds to the
classifier codebook Cclass, and the state codebooks Cs are
subsets of the classifier codebook Cclass. Below wedescribe a

Table 3: Example of transition probabilities and precoder distances
assuming the previous state was s = 8.

s′ P(g(H[n]) = s′ | g(H[n− 1]) = 8) D(Fs′ ,F8)

1 0.0380 1, 6292

2 0.0200 1, 4550

3 0.0132 1, 3461

4 0.0365 1, 2801

5 0.0250 1, 1548

6 0.0397 1, 3112

7 0.0232 1, 4487

8 0.8045 0

few popular methods to determine the state codebooks and
next-state function.

5.1.1. Conditional histogram design

For the conditional histogram design, the next states of a
current state s are the N states s′ that have the highest
probability to be reached from state s in terms of the initial
classifier. Hence, the state codebook Cs is the set of N
precoders Fs′ corresponding to the N states s′ that have the
highest transition probability P(g(H[n]) = s′ | g(H[n −
1]) = s). If we define, without loss of generality, Fi,s as the
precoder Fs′ of the state s′ with the ith highest transition
probability P(g(H[n]) = s′ | g(H[n − 1]) = s), then the
next-state function f (i, s) is simply given by this state s′.
Note that the transition probabilities can be computed as in
Section 4, but the adaptive approach can not be used here
because the decoder does not have knowledge about the
current channel. An example is given in Table 3, where we
assume that the current state is s = 8. Assuming the state
codebooks have size N = 4, the state codebook C8 is given
by C8 = {F8,F6,F1,F4}. Although presented in a different
framework, a similar approach has been proposed in [22].

5.1.2. Nearest neighbor design

For the nearest neighbor design, the next states of a current
state s are not the N states s′ that have the highest transition
probability, but the N states s′ that have the closest precoder
to the precoder of state s in terms of some distance d, which
could be a subspace distance, the Frobenius norm dF , or the
modified Frobenius norm dMF, although the latter are not
strictly speaking distances. Hence, the state codebook Cs is
the set of N precoders Fs′ that have the smallest distance
d(Fs′ ,Fs). If we define, without loss of generality, Fi,s as the
precoder Fs′ of the state s′ with the ith smallest distance
d(Fs′ ,Fs), then the next-state function f (i, s) is simply given
by this state s′. Again looking at the example in Table 3,
we now see that the state codebook C8 is given by C8 =
{F8,F5,F4,F6}.

In the context of orthogonal frequency division multi-
plexing (OFDM), this approach has already been proposed
in [28] to compress the feedback of the precoders on the
different subcarriers.
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5.1.3. Discussion

The problem of both the conditional histogram design and
the nearest neighbor design is that if K/N is large and
the time correlation of the channel is small, the optimal
transition might be not one of the N most likely ones or not
one of the N transitions with the smallest distance between
precoders. This could lead to a so-called derailment problem.
Taking a smaller K/N is a possible solution, but it either
leads to a lower performance (decreasing K) or a higher
feedback rate (increasing N). As suggested in [18, page 540],
the derailment problem could also be solved by periodic
reinitialization.

5.2. Omniscient design

In this section, we present a novel feedback compression
method, based on what in the field of vector quantization
is known as the omniscient design [18]. In general, the
omniscient design provides the best performance of all the
FSVQ design approaches [18].

To explain the omniscient design, let us assume that
the next-state function is not determined by the current
quantization index and state, but simply by the current
channel, for instance by means of the classifier function g,

s[n + 1] = g(H[n]). (33)

The state codebook Cs for a state s can then be designed by
minimizing some average distortion:

Dav,s =
∫

CNR×NT
D
(
H,Q(H, s)

)
p
(
H[n] | g(H[n− 1]

)= s
)
dH,

(34)

whereD(H,Q(H, s)) is the distortion betweenH andQ(H, s),
and p(H[n] | g(H[n − 1]) = s) is the conditional prob-
ability density function of H[n] given g(H[n − 1]) = s,
or equivalently, given the current state s[n] = s. Any of
the distortion functions presented in Section 3.2 can be
considered. We can now solve (34) by the GL algorithm or
the MC algorithm, as was done in Sections 3.2.2 and 3.2.3.
This requires a set of training channels Ts. To construct Ts,
we first generate a large set of pairs of consecutive channels
based on the channel statistics, P = {(H(r)[n−1],H(r)[n])},
where r is the realization index. From this set P we construct
Ts as the set of channels H(r)[n] for which g(H(r)[n −
1]) = s, that is, Ts = {H(r)[n] | (H(r)[n − 1],H(r)[n]) ∈
P and g(H(r)[n − 1]) = s}. The problem of this approach
is that the decoder can not track the state, because it does
not have access to the current channel. Hence, it is assumed
here that the decoder is omniscient and we actually do not
have an FSVQ. Thus, we should replace H[n] in the next-
state function by its estimate Ĥ[n] that is computed based on
the quantized precoder Q(H[n], s[n]) known to the decoder.
As an estimate, we could for instance consider Ĥ[n] =
[Q(H[n], s[n]), 0NT×(NR−NS)]

H . This is of course not a good
channel estimate for equalization, but it is good in terms
of the NS largest right singular vectors collected in V[n].
Hence, if the classifier g is designed based on a selection

function Sclass that only depends on V[n], then g(Ĥ[n]) is
a good approximation of g(H[n]). That is why we often
choose Sclass based on a subspace distance (SP2, SFS, or SC),
the Frobenius norm (SF), or the modified Frobenius norm
(SMF), irrespective of what is chosen as selection function S
in the encoder (25). So, we keep the idealized state codebooks
Cs but we change the next-state function into

s[n + 1] = g
(
Ĥ[n]

) = f
(
i[n], s[n]

)
. (35)

This way we obtain an FSVQ. When K/N gets smaller and
the time correlation of the channel gets larger, that is, when
the regions related to the classifier codebook Cclass get larger
compared to the regions related to the state codebooks Cs,
the approximation gets better. On the other hand, however,
for a fixed N , it is sometimes worth to increase K to benefit
from an increased knowledge about the past.

In [18], it is mentioned that the omniscient design
leads to a labeled-transition FSVQ, because given a current
state, every possible quantization index leads to a different
next state. However, this is not necessarily true. Different
quantization indices could sometimes lead to the same next
state, and thus in general we do not have a labeled-transition
FSVQ.

5.3. Adaptive FSVQ

Unfortunately, it is not trivial to extend the FSVQ to adapt to
changing channel characteristics, that is, to a nonstationary
source. The adaptation of the state codebooks Cs has to
rely on information that is available both at the encoder
and the decoder. This shared information can for instance
consist of the last l states s[n], s[n − 1], . . . , s[n − l + 1]
and the last l quantized precoders Q(H[n], s[n]),Q(H[n −
1], s[n − 1]), . . . ,Q(H[n − l + 1], s[n − l + 1]). We restrict
our approach to such a window of l samples due to memory
restrictions, and we forget past samples for which the channel
might have different characteristics. Whenever the precoder
is Q(H[n], s[n]) = Fi,s[n], we know that the channel matrix
H[n] lies in some region Ri,s[n]. Assuming a realistic channel
distribution, we can then define one or more random
channel matrices that also lie in the region Ri,s[n]. Finally,
the FSVQ design algorithms mentioned previously can be
used with the new training sequence to design the new
state codebooks. Note that the state codebooks, and thus
the quantizer regions, are recalculated from scratch after
each feedback. Instead, we could also consider updating the
codebook as done in competitive learning [29]. However,
such techniques still have to be adapted to take the unitary
constraint of the precoding matrix into account, and they are
considered future work.

6. SIMULATIONS

In this section, we are providing numerical results for the
different schemes and design approaches presented so far.
We assume that NS = 2 data streams are transmitted over
NT = 4 antennas. The receiver is equipped with NR = 2
receive antennas, and QPSK modulation is used.
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Figure 2: Comparison between different codebooks using the BER
selection criterion (NS = 2, NT = 4, NR = 2, |C| = 16, ZF receiver).

We start in Section 6.1 by comparing the BER perfor-
mance for different codebooks using the BER criterion as
selection function. Section 6.2 then shows the performance
of Monte-Carlo and subspace packing codebooks for spa-
tially correlated channels. In Section 6.3, the possible feed-
back compression gains of entropy coding over memoryless
VQ are shown for time-correlated channels. Section 6.4
shows how fast the adaptive entropy coding schemes adapt
to changing channel statistics. The following subsection then
compares FSVQ to memoryless VQ, and it also compares the
different FSVQ design approaches. Finally, Section 6.6 shows
the duality between FSVQ and entropy coding.

6.1. Memoryless VQ

Figure 2 compares the performance of different codebook
designs presented in Section 3.2. The BER is used as selection
function (14). The Frobenius norm, the modified Frobenius
norm, and the chordal distance codebook are using the
Monte-Carlo algorithm to solve (17), using the respective
squared distances as distortion function. The BER codebook
is also designed using the Monte-Carlo algorithm. The Love-
Heath codebook [10] and the Zhou-Li codebook [12] are
designed to optimize (19) with the chordal distance as
subspace distance. Love and Heath were using techniques
from [30], and Zhou and Li were using the generalized Lloyd
algorithm. The simulation shows that the performance of the
different codebooks is similar, and even using the BER as a
distortion function in the codebook design does not yield a
noticeable performance gain.

6.2. Codebook design for spatially correlated channels

Figure 3 compares the performance of two codebooks for
a spatially correlated channel. One codebook is designed
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Figure 3: Comparison of different codebooks for memoryless VQ
for a spatially correlated channel (NS = 2, NT = 4, NR = 4, |C| = 4,
ZR receiver).

using the Grassmannian subspace packing approach with
the chordal distance, and the other codebook is designed
using the Monte-Carlo algorithm with the squared modified
Frobenius norm as distortion function. The channel is mod-
eled using the measurements in [31], and the BER selection
function (14) is used to choose the best codebook entry. We
see that the Monte-Carlo codebook, which takes the channel
correlation into account, outperforms the Grassmannian
subspace packing codebook, which aims at spatially white
channels.

6.3. Entropy coding

Figure 4 depicts the compression gains possible through
entropy coding. The channel is modeled through Jakes’
model with the Doppler spread fixed. The mean feedback
rate is depicted as a function of the frame duration Tf . A
small frame duration implies a highly correlated channel,
whereas a longer frame duration implies a less correlated
channel. The Huffman code is used as prefix-free code, and
the simple binary numbering from Table 2 is used as the non-
prefix-free code. The modified Frobenius norm (16) is used
as selection function and the squared modified Frobenius
norm as distortion function to design the codebook using the
Monte-Carlo algorithm. The transition probabilities used to
design the entropy codes are estimated through Monte-Carlo
simulations.

We see that the prefix-free code achieves a mean feedback
rate of 1 bit for highly correlated channels, whereas the non-
prefix-free code can even achieve 0 bits, that is, no feedback
is necessary. For longer frame durations, that is, uncorrelated
channels, the mean feedback rate for the Huffman encoded
bitwords converges to 4 bits, since the transitions between
the different codewords become equiprobable, and then
the Huffman code assigns equal-length bitwords to all the
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Figure 4: Feedback compression with entropy coding for different
frame lengths (NS = 2, NT = 2, fD = 30 Hz, |C| = 16).
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Figure 5: Tradeoff between adaptation speed and accuracy using a
Huffman code ( fD = 30 Hz, NS = NT = 2, |C| = 16).

precoders. The non-prefix-free code converges to 2.375 bits
for uncorrelated channels since the transitions between the
different codewords become equiprobable as well, and thus
it assigns the binary numbering bitwords randomly.

6.4. Adaptive entropy coding

The tradeoff between adaptation speed and accuracy for
adaptive entropy coding is depicted in Figures 5 and 6.
To depict the adaptation of the adaptive entropy coding to
changing channel statistics, we changed the frame duration
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Figure 6: Tradeoff between adaptation speed and accuracy using a
non-prefix-free code ( fD = 30 Hz, NS = NT = 2, |C| = 16).
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Figure 7: Comparison of several codebook design approaches
(NS = 2, NT = 4, NR = 2, fD = 30 Hz, MMSE receiver).

from 10−3 seconds to 10−2 seconds after 3000 frames, and
back after another 3000 frames. The remaining simulation
parameters are identically as in the previous subsection.

Figure 5 assumes a nondedicated feedback channel. We
see how the selection of the weighting factor N controls
the tradeoff between performance and speed of the adaptive
encoding process. For small N , the transition probabilities
are estimated faster but less accurate, and for higher N , the
estimation is slower but more accurate.
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Figure 6 shows a similar scenario, but for a dedicated
feedback channel, where the bitwords are designed using the
non-prefix-free code from Table 2. We see that the system
quickly adapts to the changing frame lengths for both values
of N , since the encoding of the bitwords does no longer
depend on the exact transition probabilities but only on their
order.

6.5. FSVQ

The performance of different state codebook designs is
depicted in Figure 7. The FSVQs are created using the
omniscient design. The different codebooks are designed
with the squared modified Frobenius norm as distortion
function, and the modified Frobenius norm (16) is used as
selection function for the classifier (33) as well as for the
quantization (27).

We see that the performance of the FSVQ highly depends
on the time correlation of the channel. If the time correlation
between the channels is high, the 2 bit feedback of a FSVQ
has the same BER performance as the 4 bit memoryless VQ.
However, for less correlated channels the performance drops
to the same performance as the 2 bit memoryless VQ.

Different design approaches for FSVQ codebooks are
shown in Figure 8. We simulate for the different design
approaches the performance after 1 transmission and after
100 transmissions. We use the same distortion and selection
functions as in the previous simulations.

We see that the omniscient design performs best after 1
transmission, but it also suffers the most from the derailment
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Figure 9: Comparison of adaptive entropy coding and FSVQ (NS =
2, NT = 4, NR = 2, fD = 30 Hz, SNR = 10 dB, MMSE receiver).

problem, that is, its performance after 100 transmissions
is worse than the nearest neighbor and the conditional
histogram design. This effect can be counteracted through
periodic reinitialization.
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6.6. Comparison entropy coding and FSVQ

We compare the omniscient design with the entropy coding
approach for a MIMO system with a nondedicated feedback
link. Figure 9 shows the average feedback rate and the BER
of the linear MMSE receiver as a function of the frame
length Tf . The modified Frobenius norm is used as selection
function, and the squared modified Frobenius norm is used
as distortion function to design the codebooks. We consider
codebooks for the entropy coding approach with |C| =
2, 4, 8, and 16, whereas for the omniscient design we
take |Cclass| = 64 and |Cs| = 2, 4, 8, and 16. For the
entropy coding approach, the BER is constant and the
average feedback rate increases with an increasing Doppler
spread. On the other hand, for the omniscient design, the
average feedback rate is constant and the BER increases with
an increasing Doppler spread. Hence, the question basically
is how their average feedback rates (BERs) compare for the
same BER (average feedback rate). To answer this question,
let us take a look at a few examples. We see that the entropy
coding approach with |C| = 8 has the same average feedback
rate as the omniscient design with |Cclass| = 64 and |Cs| =
4 at Tf ≈ 0.01 s. However, at this frame length, the first
has a worse BER as the latter. Similarly, we see that the
entropy coding approach with |C| = 8 has the same BER
as the omniscient design with |Cclass| = 64 and |Cs| = 4
at Tf ≈ 0.02 s. But at this frame length, the first has a
higher average feedback rate as the latter. Other examples
show the same behavior. Hence, we can conclude that for this
particular set-up, the entropy coding approach is worse than
the omniscient design.

7. CONCLUSION

In this paper, we presented existing and novel schemes
exploiting limited feedback for linear precoded spatial
multiplexing in the framework of vector quantization. We
depicted the different selection and distortion functions to
generate the codebooks, and to quantize the input. Further,
we considered the problem of reducing the data rate on the
feedback link, and the problem of optimizing the overall
performance of the system, both for stationary and for
nonstationary sources.
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